@@ -499,6 +499,7 @@ static int dax_open(struct inode *inode, struct file *filp)
inode->i_mapping = __dax_inode->i_mapping;
inode->i_mapping->host = __dax_inode;
filp->f_mapping = inode->i_mapping;
+ filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
filp->private_data = dev_dax;
inode->i_flags = S_DAX;
@@ -1746,6 +1746,7 @@ static int blkdev_open(struct inode * inode, struct file * filp)
return -ENOMEM;
filp->f_mapping = bdev->bd_inode->i_mapping;
+ filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
return blkdev_get(bdev, filp->f_mode, filp);
}
@@ -168,6 +168,7 @@ struct file *alloc_file(const struct path *path, fmode_t mode,
file->f_path = *path;
file->f_inode = path->dentry->d_inode;
file->f_mapping = path->dentry->d_inode->i_mapping;
+ file->f_wb_err = filemap_sample_wb_err(file->f_mapping);
if ((mode & FMODE_READ) &&
likely(fop->read || fop->read_iter))
mode |= FMODE_CAN_READ;
@@ -707,6 +707,9 @@ static int do_dentry_open(struct file *f,
f->f_inode = inode;
f->f_mapping = inode->i_mapping;
+ /* Ensure that we skip any errors that predate opening of the file */
+ f->f_wb_err = filemap_sample_wb_err(f->f_mapping);
+
if (unlikely(f->f_flags & O_PATH)) {
f->f_mode = FMODE_PATH;
f->f_op = &empty_fops;
@@ -31,6 +31,7 @@
#include <linux/workqueue.h>
#include <linux/delayed_call.h>
#include <linux/uuid.h>
+#include <linux/errseq.h>
#include <asm/byteorder.h>
#include <uapi/linux/fs.h>
@@ -393,6 +394,7 @@ struct address_space {
gfp_t gfp_mask; /* implicit gfp mask for allocations */
struct list_head private_list; /* ditto */
void *private_data; /* ditto */
+ errseq_t wb_err;
} __attribute__((aligned(sizeof(long))));
/*
* On most architectures that alignment is already the case; but
@@ -847,6 +849,7 @@ struct file {
* Must not be taken from IRQ context.
*/
spinlock_t f_lock;
+ errseq_t f_wb_err;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
@@ -2521,6 +2524,56 @@ extern int filemap_fdatawrite_range(struct address_space *mapping,
loff_t start, loff_t end);
extern int filemap_check_errors(struct address_space *mapping);
+extern int __must_check filemap_report_wb_err(struct file *file);
+
+/**
+ * filemap_set_wb_err - set a writeback error on an address_space
+ * @mapping: mapping in which to set writeback error
+ * @err: error to be set in mapping
+ *
+ * When writeback fails in some way, we must record that error so that
+ * userspace can be informed when fsync and the like are called. We endeavor
+ * to report errors on any file that was open at the time of the error. Some
+ * internal callers also need to know when writeback errors have occurred.
+ *
+ * When a writeback error occurs, most filesystems will want to call
+ * filemap_set_wb_err to record the error in the mapping so that it will be
+ * automatically reported whenever fsync is called on the file.
+ *
+ * FIXME: mention FS_* flag here?
+ */
+static inline void filemap_set_wb_err(struct address_space *mapping, int err)
+{
+ errseq_set(&mapping->wb_err, err);
+}
+
+/**
+ * filemap_check_wb_error - has an error occurred since the mark was sampled?
+ * @mapping: mapping to check for writeback errors
+ * @since: previously-sampled errseq_t
+ *
+ * Grab the errseq_t value from the mapping, and see if it has changed "since"
+ * the given value was sampled.
+ *
+ * If it has then report the latest error set, otherwise return 0.
+ */
+static inline int filemap_check_wb_err(struct address_space *mapping, errseq_t since)
+{
+ return errseq_check(&mapping->wb_err, since);
+}
+
+/**
+ * filemap_sample_wb_err - sample the current errseq_t to test for later errors
+ * @mapping: mapping to be sampled
+ *
+ * Writeback errors are always reported relative to a particular sample point
+ * in the past. This function provides those sample points.
+ */
+static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
+{
+ return errseq_sample(&mapping->wb_err);
+}
+
extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
int datasync);
extern int vfs_fsync(struct file *file, int datasync);
@@ -556,6 +556,44 @@ int filemap_write_and_wait_range(struct address_space *mapping,
EXPORT_SYMBOL(filemap_write_and_wait_range);
/**
+ * filemap_report_wb_err - report wb error (if any) that was previously set
+ * @file: struct file on which the error is being reported
+ *
+ * When userland calls fsync (or something like nfsd does the equivalent), we
+ * want to report any writeback errors that occurred since the last fsync (or
+ * since the file was opened if there haven't been any).
+ *
+ * Grab the wb_err from the mapping. If it matches what we have in the file,
+ * then just quickly return 0. The file is all caught up.
+ *
+ * If it doesn't match, then take the mapping value, set the "seen" flag in
+ * it and try to swap it into place. If it works, or another task beat us
+ * to it with the new value, then update the f_wb_err and return the error
+ * portion. The error at this point must be reported via proper channels
+ * (a'la fsync, or NFS COMMIT operation, etc.).
+ *
+ * While we handle mapping->wb_err with atomic operations, the f_wb_err
+ * value is protected by the f_lock since we must ensure that it reflects
+ * the latest value swapped in for this file descriptor.
+ */
+int filemap_report_wb_err(struct file *file)
+{
+ int err = 0;
+ struct address_space *mapping = file->f_mapping;
+
+ /* Locklessly handle the common case where nothing has changed */
+ if (errseq_check(&mapping->wb_err, READ_ONCE(file->f_wb_err))) {
+ /* Something changed, must use slow path */
+ spin_lock(&file->f_lock);
+ err = errseq_check_and_advance(&mapping->wb_err,
+ &file->f_wb_err);
+ spin_unlock(&file->f_lock);
+ }
+ return err;
+}
+EXPORT_SYMBOL(filemap_report_wb_err);
+
+/**
* replace_page_cache_page - replace a pagecache page with a new one
* @old: page to be replaced
* @new: page to replace with