new file mode 100644
@@ -0,0 +1,464 @@
+/*
+ * Definitions for the 'struct ptr_ring' datastructure.
+ *
+ * Author:
+ * Michael S. Tsirkin <mst@redhat.com>
+ *
+ * Copyright (C) 2016 Red Hat, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * This is a limited-size FIFO maintaining pointers in FIFO order, with
+ * one CPU producing entries and another consuming entries from a FIFO.
+ *
+ * This implementation tries to minimize cache-contention when there is a
+ * single producer and a single consumer CPU.
+ */
+
+#ifndef QEMU_PTR_RING_H
+#define QEMU_PTR_RING_H 1
+
+#include "qemu/thread.h"
+
+#define PTR_RING_CACHE_BYTES 64
+#define PTR_RING_CACHE_ALIGNED __attribute__((__aligned__(PTR_RING_CACHE_BYTES)))
+#define PTR_RING_WRITE_ONCE(p, v) (*(volatile typeof(&(p)))(&(p)) = (v))
+#define PTR_RING_READ_ONCE(p) (*(volatile typeof(&(p)))(&(p)))
+
+struct ptr_ring {
+ int producer PTR_RING_CACHE_ALIGNED;
+ QemuSpin producer_lock;
+ int consumer_head PTR_RING_CACHE_ALIGNED; /* next valid entry */
+ int consumer_tail; /* next entry to invalidate */
+ QemuSpin consumer_lock;
+ /* Shared consumer/producer data */
+ /* Read-only by both the producer and the consumer */
+ int size PTR_RING_CACHE_ALIGNED; /* max entries in queue */
+ int batch; /* number of entries to consume in a batch */
+ void **queue;
+};
+
+/* Note: callers invoking this in a loop must use a compiler barrier,
+ * for example cpu_relax().
+ *
+ * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
+ * see e.g. ptr_ring_full.
+ */
+static inline bool __ptr_ring_full(struct ptr_ring *r)
+{
+ return r->queue[r->producer];
+}
+
+static inline bool ptr_ring_full(struct ptr_ring *r)
+{
+ bool ret;
+
+ qemu_spin_lock(&r->producer_lock);
+ ret = __ptr_ring_full(r);
+ qemu_spin_unlock(&r->producer_lock);
+
+ return ret;
+}
+
+/* Note: callers invoking this in a loop must use a compiler barrier,
+ * for example cpu_relax(). Callers must hold producer_lock.
+ * Callers are responsible for making sure pointer that is being queued
+ * points to a valid data.
+ */
+static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
+{
+ if (unlikely(!r->size) || r->queue[r->producer])
+ return -ENOSPC;
+
+ /* Make sure the pointer we are storing points to a valid data. */
+ /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
+ smp_wmb();
+
+ PTR_RING_WRITE_ONCE(r->queue[r->producer++], ptr);
+ if (unlikely(r->producer >= r->size))
+ r->producer = 0;
+ return 0;
+}
+
+/*
+ * Note: resize (below) nests producer lock within consumer lock, so if you
+ * consume in interrupt or BH context, you must disable interrupts/BH when
+ * calling this.
+ */
+static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
+{
+ int ret;
+
+ qemu_spin_lock(&r->producer_lock);
+ ret = __ptr_ring_produce(r, ptr);
+ qemu_spin_unlock(&r->producer_lock);
+
+ return ret;
+}
+
+static inline void *__ptr_ring_peek(struct ptr_ring *r)
+{
+ if (likely(r->size))
+ return PTR_RING_READ_ONCE(r->queue[r->consumer_head]);
+ return NULL;
+}
+
+/*
+ * Test ring empty status without taking any locks.
+ *
+ * NB: This is only safe to call if ring is never resized.
+ *
+ * However, if some other CPU consumes ring entries at the same time, the value
+ * returned is not guaranteed to be correct.
+ *
+ * In this case - to avoid incorrectly detecting the ring
+ * as empty - the CPU consuming the ring entries is responsible
+ * for either consuming all ring entries until the ring is empty,
+ * or synchronizing with some other CPU and causing it to
+ * re-test __ptr_ring_empty and/or consume the ring enteries
+ * after the synchronization point.
+ *
+ * Note: callers invoking this in a loop must use a compiler barrier,
+ * for example cpu_relax().
+ */
+static inline bool __ptr_ring_empty(struct ptr_ring *r)
+{
+ if (likely(r->size))
+ return !r->queue[PTR_RING_READ_ONCE(r->consumer_head)];
+ return true;
+}
+
+static inline bool ptr_ring_empty(struct ptr_ring *r)
+{
+ bool ret;
+
+ qemu_spin_lock(&r->consumer_lock);
+ ret = __ptr_ring_empty(r);
+ qemu_spin_unlock(&r->consumer_lock);
+
+ return ret;
+}
+
+/* Must only be called after __ptr_ring_peek returned !NULL */
+static inline void __ptr_ring_discard_one(struct ptr_ring *r)
+{
+ /* Fundamentally, what we want to do is update consumer
+ * index and zero out the entry so producer can reuse it.
+ * Doing it naively at each consume would be as simple as:
+ * consumer = r->consumer;
+ * r->queue[consumer++] = NULL;
+ * if (unlikely(consumer >= r->size))
+ * consumer = 0;
+ * r->consumer = consumer;
+ * but that is suboptimal when the ring is full as producer is writing
+ * out new entries in the same cache line. Defer these updates until a
+ * batch of entries has been consumed.
+ */
+ /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
+ * to work correctly.
+ */
+ int consumer_head = r->consumer_head;
+ int head = consumer_head++;
+
+ /* Once we have processed enough entries invalidate them in
+ * the ring all at once so producer can reuse their space in the ring.
+ * We also do this when we reach end of the ring - not mandatory
+ * but helps keep the implementation simple.
+ */
+ if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
+ consumer_head >= r->size)) {
+ /* Zero out entries in the reverse order: this way we touch the
+ * cache line that producer might currently be reading the last;
+ * producer won't make progress and touch other cache lines
+ * besides the first one until we write out all entries.
+ */
+ while (likely(head >= r->consumer_tail))
+ r->queue[head--] = NULL;
+ r->consumer_tail = consumer_head;
+ }
+ if (unlikely(consumer_head >= r->size)) {
+ consumer_head = 0;
+ r->consumer_tail = 0;
+ }
+ /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
+ PTR_RING_WRITE_ONCE(r->consumer_head, consumer_head);
+}
+
+static inline void *__ptr_ring_consume(struct ptr_ring *r)
+{
+ void *ptr;
+
+ /* The READ_ONCE in __ptr_ring_peek guarantees that anyone
+ * accessing data through the pointer is up to date. Pairs
+ * with smp_wmb in __ptr_ring_produce.
+ */
+ ptr = __ptr_ring_peek(r);
+ if (ptr)
+ __ptr_ring_discard_one(r);
+
+ return ptr;
+}
+
+static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
+ void **array, int n)
+{
+ void *ptr;
+ int i;
+
+ for (i = 0; i < n; i++) {
+ ptr = __ptr_ring_consume(r);
+ if (!ptr)
+ break;
+ array[i] = ptr;
+ }
+
+ return i;
+}
+
+/*
+ * Note: resize (below) nests producer lock within consumer lock, so if you
+ * call this in interrupt or BH context, you must disable interrupts/BH when
+ * producing.
+ */
+static inline void *ptr_ring_consume(struct ptr_ring *r)
+{
+ void *ptr;
+
+ qemu_spin_lock(&r->consumer_lock);
+ ptr = __ptr_ring_consume(r);
+ qemu_spin_unlock(&r->consumer_lock);
+
+ return ptr;
+}
+
+static inline int ptr_ring_consume_batched(struct ptr_ring *r,
+ void **array, int n)
+{
+ int ret;
+
+ qemu_spin_lock(&r->consumer_lock);
+ ret = __ptr_ring_consume_batched(r, array, n);
+ qemu_spin_unlock(&r->consumer_lock);
+
+ return ret;
+}
+
+/* Cast to structure type and call a function without discarding from FIFO.
+ * Function must return a value.
+ * Callers must take consumer_lock.
+ */
+#define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
+
+#define PTR_RING_PEEK_CALL(r, f) ({ \
+ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
+ \
+ qemu_spin_lock(&(r)->consumer_lock); \
+ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
+ qemu_spin_unlock(&(r)->consumer_lock); \
+ __PTR_RING_PEEK_CALL_v; \
+})
+
+static inline void **__ptr_ring_init_queue_alloc(unsigned int size)
+{
+ return g_try_new(void *, size);
+}
+
+static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
+{
+ r->size = size;
+ r->batch = PTR_RING_CACHE_BYTES * 2 / sizeof(*(r->queue));
+ /* We need to set batch at least to 1 to make logic
+ * in __ptr_ring_discard_one work correctly.
+ * Batching too much (because ring is small) would cause a lot of
+ * burstiness. Needs tuning, for now disable batching.
+ */
+ if (r->batch > r->size / 2 || !r->batch)
+ r->batch = 1;
+}
+
+static inline int ptr_ring_init(struct ptr_ring *r, int size)
+{
+ r->queue = __ptr_ring_init_queue_alloc(size);
+ if (!r->queue)
+ return -ENOMEM;
+
+ __ptr_ring_set_size(r, size);
+ r->producer = r->consumer_head = r->consumer_tail = 0;
+ qemu_spin_init(&r->producer_lock);
+ qemu_spin_init(&r->consumer_lock);
+
+ return 0;
+}
+
+/*
+ * Return entries into ring. Destroy entries that don't fit.
+ *
+ * Note: this is expected to be a rare slow path operation.
+ *
+ * Note: producer lock is nested within consumer lock, so if you
+ * resize you must make sure all uses nest correctly.
+ * In particular if you consume ring in interrupt or BH context, you must
+ * disable interrupts/BH when doing so.
+ */
+static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
+ void (*destroy)(void *))
+{
+ int head;
+
+ qemu_spin_lock(&r->consumer_lock);
+ qemu_spin_lock(&r->producer_lock);
+
+ if (!r->size)
+ goto done;
+
+ /*
+ * Clean out buffered entries (for simplicity). This way following code
+ * can test entries for NULL and if not assume they are valid.
+ */
+ head = r->consumer_head - 1;
+ while (likely(head >= r->consumer_tail))
+ r->queue[head--] = NULL;
+ r->consumer_tail = r->consumer_head;
+
+ /*
+ * Go over entries in batch, start moving head back and copy entries.
+ * Stop when we run into previously unconsumed entries.
+ */
+ while (n) {
+ head = r->consumer_head - 1;
+ if (head < 0)
+ head = r->size - 1;
+ if (r->queue[head]) {
+ /* This batch entry will have to be destroyed. */
+ goto done;
+ }
+ r->queue[head] = batch[--n];
+ r->consumer_tail = head;
+ /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
+ PTR_RING_WRITE_ONCE(r->consumer_head, head);
+ }
+
+done:
+ /* Destroy all entries left in the batch. */
+ while (n)
+ destroy(batch[--n]);
+ qemu_spin_unlock(&r->producer_lock);
+ qemu_spin_unlock(&r->consumer_lock);
+}
+
+static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
+ int size,
+ void (*destroy)(void *))
+{
+ int producer = 0;
+ void **old;
+ void *ptr;
+
+ while ((ptr = __ptr_ring_consume(r)))
+ if (producer < size)
+ queue[producer++] = ptr;
+ else if (destroy)
+ destroy(ptr);
+
+ __ptr_ring_set_size(r, size);
+ r->producer = producer;
+ r->consumer_head = 0;
+ r->consumer_tail = 0;
+ old = r->queue;
+ r->queue = queue;
+
+ return old;
+}
+
+/*
+ * Note: producer lock is nested within consumer lock, so if you
+ * resize you must make sure all uses nest correctly.
+ * In particular if you consume ring in interrupt or BH context, you must
+ * disable interrupts/BH when doing so.
+ */
+static inline int ptr_ring_resize(struct ptr_ring *r, int size,
+ void (*destroy)(void *))
+{
+ void **queue = __ptr_ring_init_queue_alloc(size);
+ void **old;
+
+ if (!queue)
+ return -ENOMEM;
+
+ qemu_spin_lock(&(r)->consumer_lock);
+ qemu_spin_lock(&(r)->producer_lock);
+
+ old = __ptr_ring_swap_queue(r, queue, size, destroy);
+
+ qemu_spin_unlock(&(r)->producer_lock);
+ qemu_spin_unlock(&(r)->consumer_lock);
+
+ g_free(old);
+
+ return 0;
+}
+
+/*
+ * Note: producer lock is nested within consumer lock, so if you
+ * resize you must make sure all uses nest correctly.
+ * In particular if you consume ring in interrupt or BH context, you must
+ * disable interrupts/BH when doing so.
+ */
+static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
+ unsigned int nrings,
+ int size,
+ void (*destroy)(void *))
+{
+ void ***queues;
+ int i;
+
+ queues = g_try_new(void **, nrings);
+ if (!queues)
+ goto noqueues;
+
+ for (i = 0; i < nrings; ++i) {
+ queues[i] = __ptr_ring_init_queue_alloc(size);
+ if (!queues[i])
+ goto nomem;
+ }
+
+ for (i = 0; i < nrings; ++i) {
+ qemu_spin_lock(&(rings[i])->consumer_lock);
+ qemu_spin_lock(&(rings[i])->producer_lock);
+ queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
+ size, destroy);
+ qemu_spin_unlock(&(rings[i])->producer_lock);
+ qemu_spin_unlock(&(rings[i])->consumer_lock);
+ }
+
+ for (i = 0; i < nrings; ++i)
+ g_free(queues[i]);
+
+ g_free(queues);
+
+ return 0;
+
+nomem:
+ while (--i >= 0)
+ g_free(queues[i]);
+
+ g_free(queues);
+
+noqueues:
+ return -ENOMEM;
+}
+
+static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
+{
+ void *ptr;
+
+ if (destroy)
+ while ((ptr = ptr_ring_consume(r)))
+ destroy(ptr);
+ g_free(r->queue);
+}
+
+#endif /* _LINUX_PTR_RING_H */