Message ID | 1541601809-16950-2-git-send-email-frieder.schrempf@kontron.de (mailing list archive) |
---|---|
State | Superseded |
Headers | show |
Series | Port the FSL QSPI driver to the SPI framework | expand |
Hi, > -----Original Message----- > From: Frieder Schrempf [mailto:frieder.schrempf@kontron.de] > Sent: Wednesday, November 7, 2018 8:13 PM > To: linux-mtd@lists.infradead.org; boris.brezillon@bootlin.com; linux- > spi@vger.kernel.org > Cc: dwmw2@infradead.org; computersforpeace@gmail.com; > marek.vasut@gmail.com; richard@nod.at; miquel.raynal@bootlin.com; > broonie@kernel.org; David Wolfe <david.wolfe@nxp.com>; Fabio Estevam > <fabio.estevam@nxp.com>; Prabhakar Kushwaha > <prabhakar.kushwaha@nxp.com>; Yogesh Narayan Gaur > <yogeshnarayan.gaur@nxp.com>; Han Xu <han.xu@nxp.com>; > shawnguo@kernel.org; Frieder Schrempf <frieder.schrempf@exceet.de>; linux- > kernel@vger.kernel.org > Subject: [PATCH v4 01/10] spi: Add a driver for the Freescale/NXP QuadSPI > controller > > From: Frieder Schrempf <frieder.schrempf@exceet.de> > > This driver is derived from the SPI NOR driver at mtd/spi-nor/fsl-quadspi.c. It > uses the new SPI memory interface of the SPI framework to issue flash memory > operations to up to four connected flash chips (2 buses with 2 CS each). > > The controller does not support generic SPI messages. > > Signed-off-by: Frieder Schrempf <frieder.schrempf@exceet.de> > --- > drivers/spi/Kconfig | 11 + > drivers/spi/Makefile | 1 + > drivers/spi/spi-fsl-qspi.c | 948 ++++++++++++++++++++++++++++++++++++++++ > 3 files changed, 960 insertions(+) > > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index 7d3a5c9..52e2298 > 100644 > --- a/drivers/spi/Kconfig > +++ b/drivers/spi/Kconfig > @@ -259,6 +259,17 @@ config SPI_FSL_LPSPI > help > This enables Freescale i.MX LPSPI controllers in master mode. > > +config SPI_FSL_QSPI > + tristate "Freescale QSPI controller" > + depends on ARCH_MXC || SOC_LS1021A || ARCH_LAYERSCAPE || > COMPILE_TEST > + depends on HAS_IOMEM > + help > + This enables support for the Quad SPI controller in master mode. > + Up to four flash chips can be connected on two buses with two > + chipselects each. > + This controller does not support generic SPI messages. It only > + supports the high-level SPI memory interface. > + > config SPI_GPIO > tristate "GPIO-based bitbanging SPI Master" > depends on GPIOLIB || COMPILE_TEST > diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index 3575205..833b9e7 > 100644 > --- a/drivers/spi/Makefile > +++ b/drivers/spi/Makefile > @@ -44,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl- > dspi.o > obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o > obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o > obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o > +obj-$(CONFIG_SPI_FSL_QSPI) += spi-fsl-qspi.o > obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o > obj-$(CONFIG_SPI_GPIO) += spi-gpio.o > obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o > diff --git a/drivers/spi/spi-fsl-qspi.c b/drivers/spi/spi-fsl-qspi.c new file mode > 100644 index 0000000..a43cfe8 > --- /dev/null > +++ b/drivers/spi/spi-fsl-qspi.c > @@ -0,0 +1,948 @@ > +// SPDX-License-Identifier: GPL-2.0+ > + > +/* > + * Freescale QuadSPI driver. > + * > + * Copyright (C) 2013 Freescale Semiconductor, Inc. > + * Copyright (C) 2018 Bootlin > + * Copyright (C) 2018 exceet electronics GmbH > + * Copyright (C) 2018 Kontron Electronics GmbH > + * > + * Transition to SPI MEM interface: > + * Author: > + * Boris Brezillion <boris.brezillon@bootlin.com> > + * Frieder Schrempf <frieder.schrempf@kontron.de> > + * Yogesh Gaur <yogeshnarayan.gaur@nxp.com> > + * Suresh Gupta <suresh.gupta@nxp.com> > + * > + * Based on the original fsl-quadspi.c spi-nor driver: > + * Author: Freescale Semiconductor, Inc. > + * > + */ > + > +#include <linux/bitops.h> > +#include <linux/clk.h> > +#include <linux/completion.h> > +#include <linux/delay.h> > +#include <linux/err.h> > +#include <linux/errno.h> > +#include <linux/interrupt.h> > +#include <linux/io.h> > +#include <linux/iopoll.h> > +#include <linux/jiffies.h> > +#include <linux/kernel.h> > +#include <linux/module.h> > +#include <linux/mutex.h> > +#include <linux/of.h> > +#include <linux/of_device.h> > +#include <linux/platform_device.h> > +#include <linux/pm_qos.h> > +#include <linux/sizes.h> > + > +#include <linux/spi/spi.h> > +#include <linux/spi/spi-mem.h> > + > +/* > + * The driver only uses one single LUT entry, that is updated on > + * each call of exec_op(). Index 0 is preset at boot with a basic > + * read operation, so let's use the last entry (15). > + */ > +#define SEQID_LUT 15 > + > +/* Registers used by the driver */ > +#define QUADSPI_MCR 0x00 > +#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) > +#define QUADSPI_MCR_MDIS_MASK BIT(14) > +#define QUADSPI_MCR_CLR_TXF_MASK BIT(11) > +#define QUADSPI_MCR_CLR_RXF_MASK BIT(10) > +#define QUADSPI_MCR_DDR_EN_MASK BIT(7) > +#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) > +#define QUADSPI_MCR_SWRSTHD_MASK BIT(1) > +#define QUADSPI_MCR_SWRSTSD_MASK BIT(0) > + > +#define QUADSPI_IPCR 0x08 > +#define QUADSPI_IPCR_SEQID(x) ((x) << 24) > + > +#define QUADSPI_BUF3CR 0x1c > +#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) > +#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) > +#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) > + > +#define QUADSPI_BFGENCR 0x20 > +#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) > + > +#define QUADSPI_BUF0IND 0x30 > +#define QUADSPI_BUF1IND 0x34 > +#define QUADSPI_BUF2IND 0x38 > +#define QUADSPI_SFAR 0x100 > + > +#define QUADSPI_SMPR 0x108 > +#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) > +#define QUADSPI_SMPR_FSDLY_MASK BIT(6) > +#define QUADSPI_SMPR_FSPHS_MASK BIT(5) > +#define QUADSPI_SMPR_HSENA_MASK BIT(0) > + > +#define QUADSPI_RBCT 0x110 > +#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) > +#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) > + > +#define QUADSPI_TBDR 0x154 > + > +#define QUADSPI_SR 0x15c > +#define QUADSPI_SR_IP_ACC_MASK BIT(1) > +#define QUADSPI_SR_AHB_ACC_MASK BIT(2) > + > +#define QUADSPI_FR 0x160 > +#define QUADSPI_FR_TFF_MASK BIT(0) > + > +#define QUADSPI_SPTRCLR 0x16c > +#define QUADSPI_SPTRCLR_IPPTRC BIT(8) > +#define QUADSPI_SPTRCLR_BFPTRC BIT(0) > + > +#define QUADSPI_SFA1AD 0x180 > +#define QUADSPI_SFA2AD 0x184 > +#define QUADSPI_SFB1AD 0x188 > +#define QUADSPI_SFB2AD 0x18c > +#define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) > + > +#define QUADSPI_LUTKEY 0x300 > +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 > + > +#define QUADSPI_LCKCR 0x304 > +#define QUADSPI_LCKER_LOCK BIT(0) > +#define QUADSPI_LCKER_UNLOCK BIT(1) > + > +#define QUADSPI_RSER 0x164 > +#define QUADSPI_RSER_TFIE BIT(0) > + > +#define QUADSPI_LUT_BASE 0x310 > +#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) > +#define QUADSPI_LUT_REG(idx) \ > + (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) > + > +/* Instruction set for the LUT register */ > +#define LUT_STOP 0 > +#define LUT_CMD 1 > +#define LUT_ADDR 2 > +#define LUT_DUMMY 3 > +#define LUT_MODE 4 > +#define LUT_MODE2 5 > +#define LUT_MODE4 6 > +#define LUT_FSL_READ 7 > +#define LUT_FSL_WRITE 8 > +#define LUT_JMP_ON_CS 9 > +#define LUT_ADDR_DDR 10 > +#define LUT_MODE_DDR 11 > +#define LUT_MODE2_DDR 12 > +#define LUT_MODE4_DDR 13 > +#define LUT_FSL_READ_DDR 14 > +#define LUT_FSL_WRITE_DDR 15 > +#define LUT_DATA_LEARN 16 > + > +/* > + * The PAD definitions for LUT register. > + * > + * The pad stands for the number of IO lines [0:3]. > + * For example, the quad read needs four IO lines, > + * so you should use LUT_PAD(4). > + */ > +#define LUT_PAD(x) (fls(x) - 1) > + > +/* > + * Macro for constructing the LUT entries with the following > + * register layout: > + * > + * --------------------------------------------------- > + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | > + * --------------------------------------------------- > + */ > +#define LUT_DEF(idx, ins, pad, opr) \ > + ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) > + > +/* Controller needs driver to swap endianness */ > +#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) > + > +/* Controller needs 4x internal clock */ > +#define QUADSPI_QUIRK_4X_INT_CLK BIT(1) > + > +/* > + * TKT253890, the controller needs the driver to fill the txfifo with > + * 16 bytes at least to trigger a data transfer, even though the extra > + * data won't be transferred. > + */ > +#define QUADSPI_QUIRK_TKT253890 BIT(2) > + > +/* TKT245618, the controller cannot wake up from wait mode */ > +#define QUADSPI_QUIRK_TKT245618 BIT(3) > + > +enum fsl_qspi_devtype { > + FSL_QUADSPI_VYBRID, > + FSL_QUADSPI_IMX6SX, > + FSL_QUADSPI_IMX7D, > + FSL_QUADSPI_IMX6UL, > + FSL_QUADSPI_LS1021A, > + FSL_QUADSPI_LS2080A, > +}; > + We can go away with this enum > +struct fsl_qspi_devtype_data { > + enum fsl_qspi_devtype devtype; > + unsigned int rxfifo; > + unsigned int txfifo; > + unsigned int ahb_buf_size; > + unsigned int quirks; > + bool little_endian; > +}; > + > +static const struct fsl_qspi_devtype_data vybrid_data = { > + .devtype = FSL_QUADSPI_VYBRID, > + .rxfifo = SZ_128, > + .txfifo = SZ_64, > + .ahb_buf_size = SZ_1K, > + .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, > + .little_endian = true, > +}; > + > +static const struct fsl_qspi_devtype_data imx6sx_data = { > + .devtype = FSL_QUADSPI_IMX6SX, > + .rxfifo = SZ_128, > + .txfifo = SZ_512, > + .ahb_buf_size = SZ_1K, > + .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, > + .little_endian = true, > +}; > + > +static const struct fsl_qspi_devtype_data imx7d_data = { > + .devtype = FSL_QUADSPI_IMX7D, > + .rxfifo = SZ_512, > + .txfifo = SZ_512, > + .ahb_buf_size = SZ_1K, > + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, > + .little_endian = true, > +}; > + > +static const struct fsl_qspi_devtype_data imx6ul_data = { > + .devtype = FSL_QUADSPI_IMX6UL, > + .rxfifo = SZ_128, > + .txfifo = SZ_512, > + .ahb_buf_size = SZ_1K, > + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, > + .little_endian = true, > +}; > + > +static const struct fsl_qspi_devtype_data ls1021a_data = { > + .devtype = FSL_QUADSPI_LS1021A, > + .rxfifo = SZ_128, > + .txfifo = SZ_64, > + .ahb_buf_size = SZ_1K, > + .quirks = 0, > + .little_endian = false, > +}; > + > +static const struct fsl_qspi_devtype_data ls2080a_data = { > + .devtype = FSL_QUADSPI_LS2080A, > + .rxfifo = SZ_128, > + .txfifo = SZ_64, > + .ahb_buf_size = SZ_1K, > + .quirks = QUADSPI_QUIRK_TKT253890, > + .little_endian = true, > +}; > + > +struct fsl_qspi { > + void __iomem *iobase; > + void __iomem *ahb_addr; > + u32 memmap_phy; > + struct clk *clk, *clk_en; > + struct device *dev; > + struct completion c; > + const struct fsl_qspi_devtype_data *devtype_data; > + struct mutex lock; > + struct pm_qos_request pm_qos_req; > + int selected; > + u8 seq; > + void (*write)(u32 val, void __iomem *addr); > + u32 (*read)(void __iomem *addr); > +}; > + > +static inline int needs_swap_endian(struct fsl_qspi *q) { > + return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; } > + > +static inline int needs_4x_clock(struct fsl_qspi *q) { > + return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; } > + > +static inline int needs_fill_txfifo(struct fsl_qspi *q) { > + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; } > + > +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) { > + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; } > + > +/* > + * An IC bug makes it necessary to rearrange the 32-bit data. > + * Later chips, such as IMX6SLX, have fixed this bug. > + */ > +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) { > + return needs_swap_endian(q) ? __swab32(a) : a; } > + > +/* > + * R/W functions for big- or little-endian registers: > + * The QSPI controller's endianness is independent of > + * the CPU core's endianness. So far, although the CPU > + * core is little-endian the QSPI controller can use > + * big-endian or little-endian. > + */ > +static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem > +*addr) { > + if (q->devtype_data->little_endian) > + iowrite32(val, addr); > + else > + iowrite32be(val, addr); > +} > + > +static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) { > + if (q->devtype_data->little_endian) > + return ioread32(addr); > + > + return ioread32be(addr); > +} > + > +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) { > + struct fsl_qspi *q = dev_id; > + u32 reg; > + > + /* clear interrupt */ > + reg = qspi_readl(q, q->iobase + QUADSPI_FR); > + qspi_writel(q, reg, q->iobase + QUADSPI_FR); > + > + if (reg & QUADSPI_FR_TFF_MASK) > + complete(&q->c); > + > + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg); > + return IRQ_HANDLED; > +} > + > +static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) { > + switch (width) { > + case 1: > + case 2: > + case 4: > + return 0; > + } > + > + return -ENOTSUPP; > +} > + > +static bool fsl_qspi_supports_op(struct spi_mem *mem, > + const struct spi_mem_op *op) > +{ > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > + int ret; > + > + ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); > + > + if (op->addr.nbytes) > + ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); > + > + if (op->dummy.nbytes) > + ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); > + > + if (op->data.nbytes) > + ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); > + > + if (ret) > + return false; > + > + /* > + * The number of instructions needed for the op, needs > + * to fit into a single LUT entry. > + */ > + if (op->addr.nbytes + > + (op->dummy.nbytes ? 1:0) + > + (op->data.nbytes ? 1:0) > 6) > + return false; > + > + /* Max 64 dummy clock cycles supported */ > + if (op->dummy.nbytes && > + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) > + return false; > + > + /* Max data length, check controller limits and alignment */ > + if (op->data.dir == SPI_MEM_DATA_IN && > + (op->data.nbytes > q->devtype_data->ahb_buf_size || > + (op->data.nbytes > q->devtype_data->rxfifo - 4 && > + !IS_ALIGNED(op->data.nbytes, 8)))) > + return false; > + > + if (op->data.dir == SPI_MEM_DATA_OUT && > + op->data.nbytes > q->devtype_data->txfifo) > + return false; > + > + return true; > +} > + > +static void fsl_qspi_prepare_lut(struct fsl_qspi *q, > + const struct spi_mem_op *op) > +{ > + void __iomem *base = q->iobase; > + u32 lutval[4] = {}; > + int lutidx = 1, i; > + > + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), > + op->cmd.opcode); > + > + /* > + * For some unknown reason, using LUT_ADDR doesn't work in some > + * cases (at least with only one byte long addresses), so > + * let's use LUT_MODE to write the address bytes one by one > + */ > + for (i = 0; i < op->addr.nbytes; i++) { > + u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); > + > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, > + LUT_PAD(op->addr.buswidth), > + addrbyte); > + lutidx++; > + } > + > + if (op->dummy.nbytes) { > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, > + LUT_PAD(op->dummy.buswidth), > + op->dummy.nbytes * 8 / > + op->dummy.buswidth); > + lutidx++; > + } > + > + if (op->data.nbytes) { > + lutval[lutidx / 2] |= LUT_DEF(lutidx, > + op->data.dir == > SPI_MEM_DATA_IN ? > + LUT_FSL_READ : LUT_FSL_WRITE, > + LUT_PAD(op->data.buswidth), > + 0); > + lutidx++; > + } > + > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); > + > + /* unlock LUT */ > + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); > + qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); > + > + /* fill LUT */ > + for (i = 0; i < ARRAY_SIZE(lutval); i++) > + qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); > + > + /* lock LUT */ > + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); > + qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); } > + > +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) { > + int ret; > + > + ret = clk_prepare_enable(q->clk_en); > + if (ret) > + return ret; > + > + ret = clk_prepare_enable(q->clk); > + if (ret) { > + clk_disable_unprepare(q->clk_en); > + return ret; > + } > + > + if (needs_wakeup_wait_mode(q)) > + pm_qos_add_request(&q->pm_qos_req, > PM_QOS_CPU_DMA_LATENCY, 0); > + > + return 0; > +} > + > +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) { > + if (needs_wakeup_wait_mode(q)) > + pm_qos_remove_request(&q->pm_qos_req); > + > + clk_disable_unprepare(q->clk); > + clk_disable_unprepare(q->clk_en); > +} > + > +static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device > +*spi) { > + unsigned long rate = spi->max_speed_hz; > + int ret, i; > + u32 map_addr; > + > + if (q->selected == spi->chip_select) > + return; > + > + /* > + * In HW there can be a maximum of four chips on two buses with > + * two chip selects on each bus. We use four chip selects in SW > + * to differentiate between the four chips. > + * We use the SFA1AD, SFA2AD, SFB1AD, SFB2AD registers to select > + * the chip we want to access. > + */ > + for (i = 0; i < 4; i++) { > + if (i < spi->chip_select) > + map_addr = q->memmap_phy; > + else > + map_addr = q->memmap_phy + > + 2 * q->devtype_data->ahb_buf_size; > + > + qspi_writel(q, map_addr, q->iobase + QUADSPI_SFA1AD + (i * > 4)); > + } > + > + if (needs_4x_clock(q)) > + rate *= 4; > + > + fsl_qspi_clk_disable_unprep(q); > + > + ret = clk_set_rate(q->clk, rate); > + if (ret) > + return; > + > + ret = fsl_qspi_clk_prep_enable(q); > + if (ret) > + return; > + > + q->selected = spi->chip_select; > +} > + > +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct > +spi_mem_op *op) { > + /* > + * We want to avoid needing to invalidate the cache by issueing > + * a reset to the AHB and Serial Flash domain, as this needs > + * time. So we change the address on each read to trigger an > + * actual read operation on the flash. The actual address for > + * the flash memory is set by programming the LUT. > + */ As discussed previously, please go away with this hack and use AHB bus invalidation method with smaller timeout value. I would start doing validation of this patch series from next version onward. As you have mentioned in other mail discussion about issue in the break condition for function fsl_qspi_readl_poll_tout(). -- Regards Yogesh Gaur > + memcpy_fromio(op->data.buf.in, > + q->ahb_addr + > + (((q->seq & (1 << q->selected)) == 0 ? 0:1) * > + q->devtype_data->ahb_buf_size), > + op->data.nbytes); > + > + q->seq ^= 1 << q->selected; > +} > + > +static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, > + const struct spi_mem_op *op) > +{ > + void __iomem *base = q->iobase; > + int i; > + u32 val; > + > + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { > + memcpy(&val, op->data.buf.out + i, 4); > + val = fsl_qspi_endian_xchg(q, val); > + qspi_writel(q, val, base + QUADSPI_TBDR); > + } > + > + if (i < op->data.nbytes) { > + memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); > + val = fsl_qspi_endian_xchg(q, val); > + qspi_writel(q, val, base + QUADSPI_TBDR); > + } > + > + if (needs_fill_txfifo(q)) { > + for (i = op->data.nbytes; i < 16; i += 4) > + qspi_writel(q, 0, base + QUADSPI_TBDR); > + } > +} > + > +static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, > + const struct spi_mem_op *op) > +{ > + void __iomem *base = q->iobase; > + int i; > + u8 *buf = op->data.buf.in; > + u32 val; > + > + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { > + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); > + val = fsl_qspi_endian_xchg(q, val); > + memcpy(buf + i, &val, 4); > + } > + > + if (i < op->data.nbytes) { > + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); > + val = fsl_qspi_endian_xchg(q, val); > + memcpy(buf + i, &val, op->data.nbytes - i); > + } > +} > + > +static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op > +*op) { > + void __iomem *base = q->iobase; > + int err = 0; > + > + init_completion(&q->c); > + > + /* > + * Always start the sequence at the same index since we update > + * the LUT at each exec_op() call. And also specify the DATA > + * length, since it's has not been specified in the LUT. > + */ > + qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), > + base + QUADSPI_IPCR); > + > + /* Wait for the interrupt. */ > + if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) > + err = -ETIMEDOUT; > + > + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) > + fsl_qspi_read_rxfifo(q, op); > + > + return err; > +} > + > +static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, > + u32 mask, u32 delay_us, u32 timeout_us) { > + u32 reg; > + > + if (!q->devtype_data->little_endian) > + mask = (u32)cpu_to_be32(mask); > + > + return readl_poll_timeout(base, reg, (reg & mask), delay_us, > + timeout_us); > +} > + > +static int fsl_qspi_exec_op(struct spi_mem *mem, const struct > +spi_mem_op *op) { > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > + void __iomem *base = q->iobase; > + int err = 0; > + > + mutex_lock(&q->lock); > + > + fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, > (QUADSPI_SR_IP_ACC_MASK | > + QUADSPI_SR_AHB_ACC_MASK), 10, 1000); > + > + fsl_qspi_select_mem(q, mem->spi); > + > + qspi_writel(q, q->memmap_phy, base + QUADSPI_SFAR); > + > + qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | > + QUADSPI_MCR_CLR_RXF_MASK | > QUADSPI_MCR_CLR_TXF_MASK, > + base + QUADSPI_MCR); > + > + qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, > + base + QUADSPI_SPTRCLR); > + > + fsl_qspi_prepare_lut(q, op); > + > + /* > + * If we have large chunks of data, we read them through the AHB bus > + * by accessing the mapped memory. In all other cases we use > + * IP commands to access the flash. > + */ > + if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && > + op->data.dir == SPI_MEM_DATA_IN) { > + fsl_qspi_read_ahb(q, op); > + } else { > + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | > + QUADSPI_RBCT_RXBRD_USEIPS, base + > QUADSPI_RBCT); > + > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) > + fsl_qspi_fill_txfifo(q, op); > + > + err = fsl_qspi_do_op(q, op); > + } > + > + mutex_unlock(&q->lock); > + > + return err; > +} > + > +static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct > +spi_mem_op *op) { > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > + > + if (op->data.dir == SPI_MEM_DATA_OUT) { > + if (op->data.nbytes > q->devtype_data->txfifo) > + op->data.nbytes = q->devtype_data->txfifo; > + } else { > + if (op->data.nbytes > q->devtype_data->ahb_buf_size) > + op->data.nbytes = q->devtype_data->ahb_buf_size; > + else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) > + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); > + } > + > + return 0; > +} > + > +static int fsl_qspi_default_setup(struct fsl_qspi *q) { > + void __iomem *base = q->iobase; > + u32 reg; > + int ret; > + > + /* disable and unprepare clock to avoid glitch pass to controller */ > + fsl_qspi_clk_disable_unprep(q); > + > + /* the default frequency, we will change it later if necessary. */ > + ret = clk_set_rate(q->clk, 66000000); > + if (ret) > + return ret; > + > + ret = fsl_qspi_clk_prep_enable(q); > + if (ret) > + return ret; > + > + /* Reset the module */ > + qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | > QUADSPI_MCR_SWRSTHD_MASK, > + base + QUADSPI_MCR); > + udelay(1); > + > + /* Disable the module */ > + qspi_writel(q, QUADSPI_MCR_MDIS_MASK | > QUADSPI_MCR_RESERVED_MASK, > + base + QUADSPI_MCR); > + > + reg = qspi_readl(q, base + QUADSPI_SMPR); > + qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK > + | QUADSPI_SMPR_FSPHS_MASK > + | QUADSPI_SMPR_HSENA_MASK > + | QUADSPI_SMPR_DDRSMP_MASK), base + > QUADSPI_SMPR); > + > + /* We only use the buffer3 for AHB read */ > + qspi_writel(q, 0, base + QUADSPI_BUF0IND); > + qspi_writel(q, 0, base + QUADSPI_BUF1IND); > + qspi_writel(q, 0, base + QUADSPI_BUF2IND); > + > + qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), > + q->iobase + QUADSPI_BFGENCR); > + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); > + qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | > + QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / > 8), > + base + QUADSPI_BUF3CR); > + > + q->selected = -1; > + q->seq = 0; > + > + /* Enable the module */ > + qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | > QUADSPI_MCR_END_CFG_MASK, > + base + QUADSPI_MCR); > + > + /* clear all interrupt status */ > + qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); > + > + /* enable the interrupt */ > + qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); > + > + return 0; > +} > + > +static const char *fsl_qspi_get_name(struct spi_mem *mem) { > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > + struct device *dev = &mem->spi->dev; > + const char *name; > + > + /* > + * In order to keep mtdparts compatible with the old MTD driver at > + * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the > + * platform_device of the controller. > + */ > + if (of_get_available_child_count(q->dev->of_node) == 1) > + return dev_name(q->dev); > + > + name = devm_kasprintf(dev, GFP_KERNEL, > + "%s-%d", dev_name(q->dev), > + mem->spi->chip_select); > + > + if (!name) { > + dev_err(dev, "failed to get memory for custom flash name\n"); > + return ERR_PTR(-ENOMEM); > + } > + > + return name; > +} > + > +static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { > + .adjust_op_size = fsl_qspi_adjust_op_size, > + .supports_op = fsl_qspi_supports_op, > + .exec_op = fsl_qspi_exec_op, > + .get_name = fsl_qspi_get_name, > +}; > + > +static int fsl_qspi_probe(struct platform_device *pdev) { > + struct spi_controller *ctlr; > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + struct resource *res; > + struct fsl_qspi *q; > + int ret; > + > + ctlr = spi_alloc_master(&pdev->dev, sizeof(*q)); > + if (!ctlr) > + return -ENOMEM; > + > + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | > + SPI_TX_DUAL | SPI_TX_QUAD; > + > + q = spi_controller_get_devdata(ctlr); > + q->dev = dev; > + q->devtype_data = of_device_get_match_data(dev); > + if (!q->devtype_data) { > + ret = -ENODEV; > + goto err_put_ctrl; > + } > + > + platform_set_drvdata(pdev, q); > + > + /* find the resources */ > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > "QuadSPI"); > + q->iobase = devm_ioremap_resource(dev, res); > + if (IS_ERR(q->iobase)) { > + ret = PTR_ERR(q->iobase); > + goto err_put_ctrl; > + } > + > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + "QuadSPI-memory"); > + q->ahb_addr = devm_ioremap_resource(dev, res); > + if (IS_ERR(q->ahb_addr)) { > + ret = PTR_ERR(q->ahb_addr); > + goto err_put_ctrl; > + } > + > + q->memmap_phy = res->start; > + > + /* find the clocks */ > + q->clk_en = devm_clk_get(dev, "qspi_en"); > + if (IS_ERR(q->clk_en)) { > + ret = PTR_ERR(q->clk_en); > + goto err_put_ctrl; > + } > + > + q->clk = devm_clk_get(dev, "qspi"); > + if (IS_ERR(q->clk)) { > + ret = PTR_ERR(q->clk); > + goto err_put_ctrl; > + } > + > + ret = fsl_qspi_clk_prep_enable(q); > + if (ret) { > + dev_err(dev, "can not enable the clock\n"); > + goto err_put_ctrl; > + } > + > + /* find the irq */ > + ret = platform_get_irq(pdev, 0); > + if (ret < 0) { > + dev_err(dev, "failed to get the irq: %d\n", ret); > + goto err_disable_clk; > + } > + > + ret = devm_request_irq(dev, ret, > + fsl_qspi_irq_handler, 0, pdev->name, q); > + if (ret) { > + dev_err(dev, "failed to request irq: %d\n", ret); > + goto err_disable_clk; > + } > + > + mutex_init(&q->lock); > + > + ctlr->bus_num = -1; > + ctlr->num_chipselect = 4; > + ctlr->mem_ops = &fsl_qspi_mem_ops; > + > + fsl_qspi_default_setup(q); > + > + ctlr->dev.of_node = np; > + > + ret = spi_register_controller(ctlr); > + if (ret) > + goto err_destroy_mutex; > + > + return 0; > + > +err_destroy_mutex: > + mutex_destroy(&q->lock); > + > +err_disable_clk: > + fsl_qspi_clk_disable_unprep(q); > + > +err_put_ctrl: > + spi_controller_put(ctlr); > + > + dev_err(dev, "Freescale QuadSPI probe failed\n"); > + return ret; > +} > + > +static int fsl_qspi_remove(struct platform_device *pdev) { > + struct fsl_qspi *q = platform_get_drvdata(pdev); > + > + /* disable the hardware */ > + qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); > + qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); > + > + fsl_qspi_clk_disable_unprep(q); > + > + mutex_destroy(&q->lock); > + > + return 0; > +} > + > +static int fsl_qspi_suspend(struct device *dev) { > + return 0; > +} > + > +static int fsl_qspi_resume(struct device *dev) { > + struct fsl_qspi *q = dev_get_drvdata(dev); > + > + fsl_qspi_default_setup(q); > + > + return 0; > +} > + > +static const struct of_device_id fsl_qspi_dt_ids[] = { > + { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, > + { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, > + { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, > + { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, > + { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, }, > + { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); > + > +static const struct dev_pm_ops fsl_qspi_pm_ops = { > + .suspend = fsl_qspi_suspend, > + .resume = fsl_qspi_resume, > +}; > + > +static struct platform_driver fsl_qspi_driver = { > + .driver = { > + .name = "fsl-quadspi", > + .of_match_table = fsl_qspi_dt_ids, > + .pm = &fsl_qspi_pm_ops, > + }, > + .probe = fsl_qspi_probe, > + .remove = fsl_qspi_remove, > +}; > +module_platform_driver(fsl_qspi_driver); > + > +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); > +MODULE_AUTHOR("Freescale Semiconductor Inc."); MODULE_AUTHOR("Boris > +Brezillion <boris.brezillon@bootlin.com>"); MODULE_AUTHOR("Frieder > +Schrempf <frieder.schrempf@kontron.de>"); MODULE_AUTHOR("Yogesh Gaur > +<yogeshnarayan.gaur@nxp.com>"); MODULE_AUTHOR("Suresh Gupta > +<suresh.gupta@nxp.com>"); MODULE_LICENSE("GPL v2"); > -- > 2.7.4
Hi, > -----Original Message----- > From: Yogesh Narayan Gaur > Sent: Tuesday, November 13, 2018 1:53 PM > To: 'Frieder Schrempf' <frieder.schrempf@kontron.de>; linux- > mtd@lists.infradead.org; boris.brezillon@bootlin.com; linux- > spi@vger.kernel.org > Cc: dwmw2@infradead.org; computersforpeace@gmail.com; > marek.vasut@gmail.com; richard@nod.at; miquel.raynal@bootlin.com; > broonie@kernel.org; David Wolfe <david.wolfe@nxp.com>; Fabio Estevam > <fabio.estevam@nxp.com>; Prabhakar Kushwaha > <prabhakar.kushwaha@nxp.com>; Han Xu <han.xu@nxp.com>; > shawnguo@kernel.org; Frieder Schrempf <frieder.schrempf@exceet.de>; linux- > kernel@vger.kernel.org > Subject: RE: [PATCH v4 01/10] spi: Add a driver for the Freescale/NXP QuadSPI > controller > > Hi, > > > -----Original Message----- > > From: Frieder Schrempf [mailto:frieder.schrempf@kontron.de] > > Sent: Wednesday, November 7, 2018 8:13 PM > > To: linux-mtd@lists.infradead.org; boris.brezillon@bootlin.com; linux- > > spi@vger.kernel.org > > Cc: dwmw2@infradead.org; computersforpeace@gmail.com; > > marek.vasut@gmail.com; richard@nod.at; miquel.raynal@bootlin.com; > > broonie@kernel.org; David Wolfe <david.wolfe@nxp.com>; Fabio Estevam > > <fabio.estevam@nxp.com>; Prabhakar Kushwaha > > <prabhakar.kushwaha@nxp.com>; Yogesh Narayan Gaur > > <yogeshnarayan.gaur@nxp.com>; Han Xu <han.xu@nxp.com>; > > shawnguo@kernel.org; Frieder Schrempf <frieder.schrempf@exceet.de>; > > linux- kernel@vger.kernel.org > > Subject: [PATCH v4 01/10] spi: Add a driver for the Freescale/NXP > > QuadSPI controller > > > > From: Frieder Schrempf <frieder.schrempf@exceet.de> > > > > This driver is derived from the SPI NOR driver at > > mtd/spi-nor/fsl-quadspi.c. It uses the new SPI memory interface of the > > SPI framework to issue flash memory operations to up to four connected flash > chips (2 buses with 2 CS each). > > > > The controller does not support generic SPI messages. > > > > Signed-off-by: Frieder Schrempf <frieder.schrempf@exceet.de> > > --- > > drivers/spi/Kconfig | 11 + > > drivers/spi/Makefile | 1 + > > drivers/spi/spi-fsl-qspi.c | 948 > > ++++++++++++++++++++++++++++++++++++++++ > > 3 files changed, 960 insertions(+) > > > > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index > > 7d3a5c9..52e2298 > > 100644 > > --- a/drivers/spi/Kconfig > > +++ b/drivers/spi/Kconfig > > @@ -259,6 +259,17 @@ config SPI_FSL_LPSPI > > help > > This enables Freescale i.MX LPSPI controllers in master mode. > > > > +config SPI_FSL_QSPI > > + tristate "Freescale QSPI controller" > > + depends on ARCH_MXC || SOC_LS1021A || ARCH_LAYERSCAPE || > > COMPILE_TEST > > + depends on HAS_IOMEM > > + help > > + This enables support for the Quad SPI controller in master mode. > > + Up to four flash chips can be connected on two buses with two > > + chipselects each. > > + This controller does not support generic SPI messages. It only > > + supports the high-level SPI memory interface. > > + > > config SPI_GPIO > > tristate "GPIO-based bitbanging SPI Master" > > depends on GPIOLIB || COMPILE_TEST > > diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index > > 3575205..833b9e7 > > 100644 > > --- a/drivers/spi/Makefile > > +++ b/drivers/spi/Makefile > > @@ -44,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl- > > dspi.o > > obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o > > obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o > > obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o > > +obj-$(CONFIG_SPI_FSL_QSPI) += spi-fsl-qspi.o > > obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o > > obj-$(CONFIG_SPI_GPIO) += spi-gpio.o > > obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o > > diff --git a/drivers/spi/spi-fsl-qspi.c b/drivers/spi/spi-fsl-qspi.c > > new file mode > > 100644 index 0000000..a43cfe8 > > --- /dev/null > > +++ b/drivers/spi/spi-fsl-qspi.c > > @@ -0,0 +1,948 @@ > > +// SPDX-License-Identifier: GPL-2.0+ > > + > > +/* > > + * Freescale QuadSPI driver. > > + * > > + * Copyright (C) 2013 Freescale Semiconductor, Inc. > > + * Copyright (C) 2018 Bootlin > > + * Copyright (C) 2018 exceet electronics GmbH > > + * Copyright (C) 2018 Kontron Electronics GmbH > > + * > > + * Transition to SPI MEM interface: > > + * Author: > > + * Boris Brezillion <boris.brezillon@bootlin.com> > > + * Frieder Schrempf <frieder.schrempf@kontron.de> > > + * Yogesh Gaur <yogeshnarayan.gaur@nxp.com> > > + * Suresh Gupta <suresh.gupta@nxp.com> > > + * > > + * Based on the original fsl-quadspi.c spi-nor driver: > > + * Author: Freescale Semiconductor, Inc. > > + * > > + */ > > + > > +#include <linux/bitops.h> > > +#include <linux/clk.h> > > +#include <linux/completion.h> > > +#include <linux/delay.h> > > +#include <linux/err.h> > > +#include <linux/errno.h> > > +#include <linux/interrupt.h> > > +#include <linux/io.h> > > +#include <linux/iopoll.h> > > +#include <linux/jiffies.h> > > +#include <linux/kernel.h> > > +#include <linux/module.h> > > +#include <linux/mutex.h> > > +#include <linux/of.h> > > +#include <linux/of_device.h> > > +#include <linux/platform_device.h> > > +#include <linux/pm_qos.h> > > +#include <linux/sizes.h> > > + > > +#include <linux/spi/spi.h> > > +#include <linux/spi/spi-mem.h> > > + > > +/* > > + * The driver only uses one single LUT entry, that is updated on > > + * each call of exec_op(). Index 0 is preset at boot with a basic > > + * read operation, so let's use the last entry (15). > > + */ > > +#define SEQID_LUT 15 > > + > > +/* Registers used by the driver */ > > +#define QUADSPI_MCR 0x00 > > +#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) > > +#define QUADSPI_MCR_MDIS_MASK BIT(14) > > +#define QUADSPI_MCR_CLR_TXF_MASK BIT(11) > > +#define QUADSPI_MCR_CLR_RXF_MASK BIT(10) > > +#define QUADSPI_MCR_DDR_EN_MASK BIT(7) > > +#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) > > +#define QUADSPI_MCR_SWRSTHD_MASK BIT(1) > > +#define QUADSPI_MCR_SWRSTSD_MASK BIT(0) > > + > > +#define QUADSPI_IPCR 0x08 > > +#define QUADSPI_IPCR_SEQID(x) ((x) << 24) > > + > > +#define QUADSPI_BUF3CR 0x1c > > +#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) > > +#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) > > +#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) > > + > > +#define QUADSPI_BFGENCR 0x20 > > +#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) > > + > > +#define QUADSPI_BUF0IND 0x30 > > +#define QUADSPI_BUF1IND 0x34 > > +#define QUADSPI_BUF2IND 0x38 > > +#define QUADSPI_SFAR 0x100 > > + > > +#define QUADSPI_SMPR 0x108 > > +#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) > > +#define QUADSPI_SMPR_FSDLY_MASK BIT(6) > > +#define QUADSPI_SMPR_FSPHS_MASK BIT(5) > > +#define QUADSPI_SMPR_HSENA_MASK BIT(0) > > + > > +#define QUADSPI_RBCT 0x110 > > +#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) > > +#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) > > + > > +#define QUADSPI_TBDR 0x154 > > + > > +#define QUADSPI_SR 0x15c > > +#define QUADSPI_SR_IP_ACC_MASK BIT(1) > > +#define QUADSPI_SR_AHB_ACC_MASK BIT(2) > > + > > +#define QUADSPI_FR 0x160 > > +#define QUADSPI_FR_TFF_MASK BIT(0) > > + > > +#define QUADSPI_SPTRCLR 0x16c > > +#define QUADSPI_SPTRCLR_IPPTRC BIT(8) > > +#define QUADSPI_SPTRCLR_BFPTRC BIT(0) > > + > > +#define QUADSPI_SFA1AD 0x180 > > +#define QUADSPI_SFA2AD 0x184 > > +#define QUADSPI_SFB1AD 0x188 > > +#define QUADSPI_SFB2AD 0x18c > > +#define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) > > + > > +#define QUADSPI_LUTKEY 0x300 > > +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 > > + > > +#define QUADSPI_LCKCR 0x304 > > +#define QUADSPI_LCKER_LOCK BIT(0) > > +#define QUADSPI_LCKER_UNLOCK BIT(1) > > + > > +#define QUADSPI_RSER 0x164 > > +#define QUADSPI_RSER_TFIE BIT(0) > > + > > +#define QUADSPI_LUT_BASE 0x310 > > +#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) > > +#define QUADSPI_LUT_REG(idx) \ > > + (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) > > + > > +/* Instruction set for the LUT register */ > > +#define LUT_STOP 0 > > +#define LUT_CMD 1 > > +#define LUT_ADDR 2 > > +#define LUT_DUMMY 3 > > +#define LUT_MODE 4 > > +#define LUT_MODE2 5 > > +#define LUT_MODE4 6 > > +#define LUT_FSL_READ 7 > > +#define LUT_FSL_WRITE 8 > > +#define LUT_JMP_ON_CS 9 > > +#define LUT_ADDR_DDR 10 > > +#define LUT_MODE_DDR 11 > > +#define LUT_MODE2_DDR 12 > > +#define LUT_MODE4_DDR 13 > > +#define LUT_FSL_READ_DDR 14 > > +#define LUT_FSL_WRITE_DDR 15 > > +#define LUT_DATA_LEARN 16 > > + > > +/* > > + * The PAD definitions for LUT register. > > + * > > + * The pad stands for the number of IO lines [0:3]. > > + * For example, the quad read needs four IO lines, > > + * so you should use LUT_PAD(4). > > + */ > > +#define LUT_PAD(x) (fls(x) - 1) > > + > > +/* > > + * Macro for constructing the LUT entries with the following > > + * register layout: > > + * > > + * --------------------------------------------------- > > + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | > > + * --------------------------------------------------- > > + */ > > +#define LUT_DEF(idx, ins, pad, opr) \ > > + ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) > > + > > +/* Controller needs driver to swap endianness */ > > +#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) > > + > > +/* Controller needs 4x internal clock */ > > +#define QUADSPI_QUIRK_4X_INT_CLK BIT(1) > > + > > +/* > > + * TKT253890, the controller needs the driver to fill the txfifo with > > + * 16 bytes at least to trigger a data transfer, even though the > > +extra > > + * data won't be transferred. > > + */ > > +#define QUADSPI_QUIRK_TKT253890 BIT(2) > > + > > +/* TKT245618, the controller cannot wake up from wait mode */ > > +#define QUADSPI_QUIRK_TKT245618 BIT(3) > > + > > +enum fsl_qspi_devtype { > > + FSL_QUADSPI_VYBRID, > > + FSL_QUADSPI_IMX6SX, > > + FSL_QUADSPI_IMX7D, > > + FSL_QUADSPI_IMX6UL, > > + FSL_QUADSPI_LS1021A, > > + FSL_QUADSPI_LS2080A, > > +}; > > + > We can go away with this enum > > > +struct fsl_qspi_devtype_data { > > + enum fsl_qspi_devtype devtype; > > + unsigned int rxfifo; > > + unsigned int txfifo; > > + unsigned int ahb_buf_size; > > + unsigned int quirks; > > + bool little_endian; > > +}; > > + > > +static const struct fsl_qspi_devtype_data vybrid_data = { > > + .devtype = FSL_QUADSPI_VYBRID, > > + .rxfifo = SZ_128, > > + .txfifo = SZ_64, > > + .ahb_buf_size = SZ_1K, > > + .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, > > + .little_endian = true, > > +}; > > + > > +static const struct fsl_qspi_devtype_data imx6sx_data = { > > + .devtype = FSL_QUADSPI_IMX6SX, > > + .rxfifo = SZ_128, > > + .txfifo = SZ_512, > > + .ahb_buf_size = SZ_1K, > > + .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, > > + .little_endian = true, > > +}; > > + > > +static const struct fsl_qspi_devtype_data imx7d_data = { > > + .devtype = FSL_QUADSPI_IMX7D, > > + .rxfifo = SZ_512, > > + .txfifo = SZ_512, > > + .ahb_buf_size = SZ_1K, > > + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, > > + .little_endian = true, > > +}; > > + > > +static const struct fsl_qspi_devtype_data imx6ul_data = { > > + .devtype = FSL_QUADSPI_IMX6UL, > > + .rxfifo = SZ_128, > > + .txfifo = SZ_512, > > + .ahb_buf_size = SZ_1K, > > + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, > > + .little_endian = true, > > +}; > > + > > +static const struct fsl_qspi_devtype_data ls1021a_data = { > > + .devtype = FSL_QUADSPI_LS1021A, > > + .rxfifo = SZ_128, > > + .txfifo = SZ_64, > > + .ahb_buf_size = SZ_1K, > > + .quirks = 0, > > + .little_endian = false, > > +}; > > + > > +static const struct fsl_qspi_devtype_data ls2080a_data = { > > + .devtype = FSL_QUADSPI_LS2080A, > > + .rxfifo = SZ_128, > > + .txfifo = SZ_64, > > + .ahb_buf_size = SZ_1K, > > + .quirks = QUADSPI_QUIRK_TKT253890, > > + .little_endian = true, > > +}; > > + > > +struct fsl_qspi { > > + void __iomem *iobase; > > + void __iomem *ahb_addr; > > + u32 memmap_phy; > > + struct clk *clk, *clk_en; > > + struct device *dev; > > + struct completion c; > > + const struct fsl_qspi_devtype_data *devtype_data; > > + struct mutex lock; > > + struct pm_qos_request pm_qos_req; > > + int selected; > > + u8 seq; > > + void (*write)(u32 val, void __iomem *addr); > > + u32 (*read)(void __iomem *addr); We can go away with these read and write function pointer. -- Regards Yogesh Gaur > > +}; > > + > > +static inline int needs_swap_endian(struct fsl_qspi *q) { > > + return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; } > > + > > +static inline int needs_4x_clock(struct fsl_qspi *q) { > > + return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; } > > + > > +static inline int needs_fill_txfifo(struct fsl_qspi *q) { > > + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; } > > + > > +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) { > > + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; } > > + > > +/* > > + * An IC bug makes it necessary to rearrange the 32-bit data. > > + * Later chips, such as IMX6SLX, have fixed this bug. > > + */ > > +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) { > > + return needs_swap_endian(q) ? __swab32(a) : a; } > > + > > +/* > > + * R/W functions for big- or little-endian registers: > > + * The QSPI controller's endianness is independent of > > + * the CPU core's endianness. So far, although the CPU > > + * core is little-endian the QSPI controller can use > > + * big-endian or little-endian. > > + */ > > +static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem > > +*addr) { > > + if (q->devtype_data->little_endian) > > + iowrite32(val, addr); > > + else > > + iowrite32be(val, addr); > > +} > > + > > +static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) { > > + if (q->devtype_data->little_endian) > > + return ioread32(addr); > > + > > + return ioread32be(addr); > > +} > > + > > +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) { > > + struct fsl_qspi *q = dev_id; > > + u32 reg; > > + > > + /* clear interrupt */ > > + reg = qspi_readl(q, q->iobase + QUADSPI_FR); > > + qspi_writel(q, reg, q->iobase + QUADSPI_FR); > > + > > + if (reg & QUADSPI_FR_TFF_MASK) > > + complete(&q->c); > > + > > + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg); > > + return IRQ_HANDLED; > > +} > > + > > +static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) { > > + switch (width) { > > + case 1: > > + case 2: > > + case 4: > > + return 0; > > + } > > + > > + return -ENOTSUPP; > > +} > > + > > +static bool fsl_qspi_supports_op(struct spi_mem *mem, > > + const struct spi_mem_op *op) > > +{ > > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > > + int ret; > > + > > + ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); > > + > > + if (op->addr.nbytes) > > + ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); > > + > > + if (op->dummy.nbytes) > > + ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); > > + > > + if (op->data.nbytes) > > + ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); > > + > > + if (ret) > > + return false; > > + > > + /* > > + * The number of instructions needed for the op, needs > > + * to fit into a single LUT entry. > > + */ > > + if (op->addr.nbytes + > > + (op->dummy.nbytes ? 1:0) + > > + (op->data.nbytes ? 1:0) > 6) > > + return false; > > + > > + /* Max 64 dummy clock cycles supported */ > > + if (op->dummy.nbytes && > > + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) > > + return false; > > + > > + /* Max data length, check controller limits and alignment */ > > + if (op->data.dir == SPI_MEM_DATA_IN && > > + (op->data.nbytes > q->devtype_data->ahb_buf_size || > > + (op->data.nbytes > q->devtype_data->rxfifo - 4 && > > + !IS_ALIGNED(op->data.nbytes, 8)))) > > + return false; > > + > > + if (op->data.dir == SPI_MEM_DATA_OUT && > > + op->data.nbytes > q->devtype_data->txfifo) > > + return false; > > + > > + return true; > > +} > > + > > +static void fsl_qspi_prepare_lut(struct fsl_qspi *q, > > + const struct spi_mem_op *op) > > +{ > > + void __iomem *base = q->iobase; > > + u32 lutval[4] = {}; > > + int lutidx = 1, i; > > + > > + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), > > + op->cmd.opcode); > > + > > + /* > > + * For some unknown reason, using LUT_ADDR doesn't work in some > > + * cases (at least with only one byte long addresses), so > > + * let's use LUT_MODE to write the address bytes one by one > > + */ > > + for (i = 0; i < op->addr.nbytes; i++) { > > + u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); > > + > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, > > + LUT_PAD(op->addr.buswidth), > > + addrbyte); > > + lutidx++; > > + } > > + > > + if (op->dummy.nbytes) { > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, > > + LUT_PAD(op->dummy.buswidth), > > + op->dummy.nbytes * 8 / > > + op->dummy.buswidth); > > + lutidx++; > > + } > > + > > + if (op->data.nbytes) { > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, > > + op->data.dir == > > SPI_MEM_DATA_IN ? > > + LUT_FSL_READ : LUT_FSL_WRITE, > > + LUT_PAD(op->data.buswidth), > > + 0); > > + lutidx++; > > + } > > + > > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); > > + > > + /* unlock LUT */ > > + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); > > + qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); > > + > > + /* fill LUT */ > > + for (i = 0; i < ARRAY_SIZE(lutval); i++) > > + qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); > > + > > + /* lock LUT */ > > + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); > > + qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); } > > + > > +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) { > > + int ret; > > + > > + ret = clk_prepare_enable(q->clk_en); > > + if (ret) > > + return ret; > > + > > + ret = clk_prepare_enable(q->clk); > > + if (ret) { > > + clk_disable_unprepare(q->clk_en); > > + return ret; > > + } > > + > > + if (needs_wakeup_wait_mode(q)) > > + pm_qos_add_request(&q->pm_qos_req, > > PM_QOS_CPU_DMA_LATENCY, 0); > > + > > + return 0; > > +} > > + > > +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) { > > + if (needs_wakeup_wait_mode(q)) > > + pm_qos_remove_request(&q->pm_qos_req); > > + > > + clk_disable_unprepare(q->clk); > > + clk_disable_unprepare(q->clk_en); > > +} > > + > > +static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device > > +*spi) { > > + unsigned long rate = spi->max_speed_hz; > > + int ret, i; > > + u32 map_addr; > > + > > + if (q->selected == spi->chip_select) > > + return; > > + > > + /* > > + * In HW there can be a maximum of four chips on two buses with > > + * two chip selects on each bus. We use four chip selects in SW > > + * to differentiate between the four chips. > > + * We use the SFA1AD, SFA2AD, SFB1AD, SFB2AD registers to select > > + * the chip we want to access. > > + */ > > + for (i = 0; i < 4; i++) { > > + if (i < spi->chip_select) > > + map_addr = q->memmap_phy; > > + else > > + map_addr = q->memmap_phy + > > + 2 * q->devtype_data->ahb_buf_size; > > + > > + qspi_writel(q, map_addr, q->iobase + QUADSPI_SFA1AD + (i * > > 4)); > > + } > > + > > + if (needs_4x_clock(q)) > > + rate *= 4; > > + > > + fsl_qspi_clk_disable_unprep(q); > > + > > + ret = clk_set_rate(q->clk, rate); > > + if (ret) > > + return; > > + > > + ret = fsl_qspi_clk_prep_enable(q); > > + if (ret) > > + return; > > + > > + q->selected = spi->chip_select; > > +} > > + > > +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct > > +spi_mem_op *op) { > > + /* > > + * We want to avoid needing to invalidate the cache by issueing > > + * a reset to the AHB and Serial Flash domain, as this needs > > + * time. So we change the address on each read to trigger an > > + * actual read operation on the flash. The actual address for > > + * the flash memory is set by programming the LUT. > > + */ > As discussed previously, please go away with this hack and use AHB bus > invalidation method with smaller timeout value. > > I would start doing validation of this patch series from next version onward. As > you have mentioned in other mail discussion about issue in the break condition > for function fsl_qspi_readl_poll_tout(). > > -- > Regards > Yogesh Gaur > > > + memcpy_fromio(op->data.buf.in, > > + q->ahb_addr + > > + (((q->seq & (1 << q->selected)) == 0 ? 0:1) * > > + q->devtype_data->ahb_buf_size), > > + op->data.nbytes); > > + > > + q->seq ^= 1 << q->selected; > > +} > > + > > +static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, > > + const struct spi_mem_op *op) > > +{ > > + void __iomem *base = q->iobase; > > + int i; > > + u32 val; > > + > > + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { > > + memcpy(&val, op->data.buf.out + i, 4); > > + val = fsl_qspi_endian_xchg(q, val); > > + qspi_writel(q, val, base + QUADSPI_TBDR); > > + } > > + > > + if (i < op->data.nbytes) { > > + memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); > > + val = fsl_qspi_endian_xchg(q, val); > > + qspi_writel(q, val, base + QUADSPI_TBDR); > > + } > > + > > + if (needs_fill_txfifo(q)) { > > + for (i = op->data.nbytes; i < 16; i += 4) > > + qspi_writel(q, 0, base + QUADSPI_TBDR); > > + } > > +} > > + > > +static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, > > + const struct spi_mem_op *op) > > +{ > > + void __iomem *base = q->iobase; > > + int i; > > + u8 *buf = op->data.buf.in; > > + u32 val; > > + > > + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { > > + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); > > + val = fsl_qspi_endian_xchg(q, val); > > + memcpy(buf + i, &val, 4); > > + } > > + > > + if (i < op->data.nbytes) { > > + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); > > + val = fsl_qspi_endian_xchg(q, val); > > + memcpy(buf + i, &val, op->data.nbytes - i); > > + } > > +} > > + > > +static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op > > +*op) { > > + void __iomem *base = q->iobase; > > + int err = 0; > > + > > + init_completion(&q->c); > > + > > + /* > > + * Always start the sequence at the same index since we update > > + * the LUT at each exec_op() call. And also specify the DATA > > + * length, since it's has not been specified in the LUT. > > + */ > > + qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), > > + base + QUADSPI_IPCR); > > + > > + /* Wait for the interrupt. */ > > + if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) > > + err = -ETIMEDOUT; > > + > > + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) > > + fsl_qspi_read_rxfifo(q, op); > > + > > + return err; > > +} > > + > > +static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, > > + u32 mask, u32 delay_us, u32 timeout_us) { > > + u32 reg; > > + > > + if (!q->devtype_data->little_endian) > > + mask = (u32)cpu_to_be32(mask); > > + > > + return readl_poll_timeout(base, reg, (reg & mask), delay_us, > > + timeout_us); > > +} > > + > > +static int fsl_qspi_exec_op(struct spi_mem *mem, const struct > > +spi_mem_op *op) { > > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > > + void __iomem *base = q->iobase; > > + int err = 0; > > + > > + mutex_lock(&q->lock); > > + > > + fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, > > (QUADSPI_SR_IP_ACC_MASK | > > + QUADSPI_SR_AHB_ACC_MASK), 10, 1000); > > + > > + fsl_qspi_select_mem(q, mem->spi); > > + > > + qspi_writel(q, q->memmap_phy, base + QUADSPI_SFAR); > > + > > + qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | > > + QUADSPI_MCR_CLR_RXF_MASK | > > QUADSPI_MCR_CLR_TXF_MASK, > > + base + QUADSPI_MCR); > > + > > + qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, > > + base + QUADSPI_SPTRCLR); > > + > > + fsl_qspi_prepare_lut(q, op); > > + > > + /* > > + * If we have large chunks of data, we read them through the AHB bus > > + * by accessing the mapped memory. In all other cases we use > > + * IP commands to access the flash. > > + */ > > + if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && > > + op->data.dir == SPI_MEM_DATA_IN) { > > + fsl_qspi_read_ahb(q, op); > > + } else { > > + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | > > + QUADSPI_RBCT_RXBRD_USEIPS, base + > > QUADSPI_RBCT); > > + > > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) > > + fsl_qspi_fill_txfifo(q, op); > > + > > + err = fsl_qspi_do_op(q, op); > > + } > > + > > + mutex_unlock(&q->lock); > > + > > + return err; > > +} > > + > > +static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct > > +spi_mem_op *op) { > > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > > + > > + if (op->data.dir == SPI_MEM_DATA_OUT) { > > + if (op->data.nbytes > q->devtype_data->txfifo) > > + op->data.nbytes = q->devtype_data->txfifo; > > + } else { > > + if (op->data.nbytes > q->devtype_data->ahb_buf_size) > > + op->data.nbytes = q->devtype_data->ahb_buf_size; > > + else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) > > + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); > > + } > > + > > + return 0; > > +} > > + > > +static int fsl_qspi_default_setup(struct fsl_qspi *q) { > > + void __iomem *base = q->iobase; > > + u32 reg; > > + int ret; > > + > > + /* disable and unprepare clock to avoid glitch pass to controller */ > > + fsl_qspi_clk_disable_unprep(q); > > + > > + /* the default frequency, we will change it later if necessary. */ > > + ret = clk_set_rate(q->clk, 66000000); > > + if (ret) > > + return ret; > > + > > + ret = fsl_qspi_clk_prep_enable(q); > > + if (ret) > > + return ret; > > + > > + /* Reset the module */ > > + qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | > > QUADSPI_MCR_SWRSTHD_MASK, > > + base + QUADSPI_MCR); > > + udelay(1); > > + > > + /* Disable the module */ > > + qspi_writel(q, QUADSPI_MCR_MDIS_MASK | > > QUADSPI_MCR_RESERVED_MASK, > > + base + QUADSPI_MCR); > > + > > + reg = qspi_readl(q, base + QUADSPI_SMPR); > > + qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK > > + | QUADSPI_SMPR_FSPHS_MASK > > + | QUADSPI_SMPR_HSENA_MASK > > + | QUADSPI_SMPR_DDRSMP_MASK), base + > > QUADSPI_SMPR); > > + > > + /* We only use the buffer3 for AHB read */ > > + qspi_writel(q, 0, base + QUADSPI_BUF0IND); > > + qspi_writel(q, 0, base + QUADSPI_BUF1IND); > > + qspi_writel(q, 0, base + QUADSPI_BUF2IND); > > + > > + qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), > > + q->iobase + QUADSPI_BFGENCR); > > + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); > > + qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | > > + QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / > > 8), > > + base + QUADSPI_BUF3CR); > > + > > + q->selected = -1; > > + q->seq = 0; > > + > > + /* Enable the module */ > > + qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | > > QUADSPI_MCR_END_CFG_MASK, > > + base + QUADSPI_MCR); > > + > > + /* clear all interrupt status */ > > + qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); > > + > > + /* enable the interrupt */ > > + qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); > > + > > + return 0; > > +} > > + > > +static const char *fsl_qspi_get_name(struct spi_mem *mem) { > > + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); > > + struct device *dev = &mem->spi->dev; > > + const char *name; > > + > > + /* > > + * In order to keep mtdparts compatible with the old MTD driver at > > + * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the > > + * platform_device of the controller. > > + */ > > + if (of_get_available_child_count(q->dev->of_node) == 1) > > + return dev_name(q->dev); > > + > > + name = devm_kasprintf(dev, GFP_KERNEL, > > + "%s-%d", dev_name(q->dev), > > + mem->spi->chip_select); > > + > > + if (!name) { > > + dev_err(dev, "failed to get memory for custom flash name\n"); > > + return ERR_PTR(-ENOMEM); > > + } > > + > > + return name; > > +} > > + > > +static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { > > + .adjust_op_size = fsl_qspi_adjust_op_size, > > + .supports_op = fsl_qspi_supports_op, > > + .exec_op = fsl_qspi_exec_op, > > + .get_name = fsl_qspi_get_name, > > +}; > > + > > +static int fsl_qspi_probe(struct platform_device *pdev) { > > + struct spi_controller *ctlr; > > + struct device *dev = &pdev->dev; > > + struct device_node *np = dev->of_node; > > + struct resource *res; > > + struct fsl_qspi *q; > > + int ret; > > + > > + ctlr = spi_alloc_master(&pdev->dev, sizeof(*q)); > > + if (!ctlr) > > + return -ENOMEM; > > + > > + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | > > + SPI_TX_DUAL | SPI_TX_QUAD; > > + > > + q = spi_controller_get_devdata(ctlr); > > + q->dev = dev; > > + q->devtype_data = of_device_get_match_data(dev); > > + if (!q->devtype_data) { > > + ret = -ENODEV; > > + goto err_put_ctrl; > > + } > > + > > + platform_set_drvdata(pdev, q); > > + > > + /* find the resources */ > > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > > "QuadSPI"); > > + q->iobase = devm_ioremap_resource(dev, res); > > + if (IS_ERR(q->iobase)) { > > + ret = PTR_ERR(q->iobase); > > + goto err_put_ctrl; > > + } > > + > > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > > + "QuadSPI-memory"); > > + q->ahb_addr = devm_ioremap_resource(dev, res); > > + if (IS_ERR(q->ahb_addr)) { > > + ret = PTR_ERR(q->ahb_addr); > > + goto err_put_ctrl; > > + } > > + > > + q->memmap_phy = res->start; > > + > > + /* find the clocks */ > > + q->clk_en = devm_clk_get(dev, "qspi_en"); > > + if (IS_ERR(q->clk_en)) { > > + ret = PTR_ERR(q->clk_en); > > + goto err_put_ctrl; > > + } > > + > > + q->clk = devm_clk_get(dev, "qspi"); > > + if (IS_ERR(q->clk)) { > > + ret = PTR_ERR(q->clk); > > + goto err_put_ctrl; > > + } > > + > > + ret = fsl_qspi_clk_prep_enable(q); > > + if (ret) { > > + dev_err(dev, "can not enable the clock\n"); > > + goto err_put_ctrl; > > + } > > + > > + /* find the irq */ > > + ret = platform_get_irq(pdev, 0); > > + if (ret < 0) { > > + dev_err(dev, "failed to get the irq: %d\n", ret); > > + goto err_disable_clk; > > + } > > + > > + ret = devm_request_irq(dev, ret, > > + fsl_qspi_irq_handler, 0, pdev->name, q); > > + if (ret) { > > + dev_err(dev, "failed to request irq: %d\n", ret); > > + goto err_disable_clk; > > + } > > + > > + mutex_init(&q->lock); > > + > > + ctlr->bus_num = -1; > > + ctlr->num_chipselect = 4; > > + ctlr->mem_ops = &fsl_qspi_mem_ops; > > + > > + fsl_qspi_default_setup(q); > > + > > + ctlr->dev.of_node = np; > > + > > + ret = spi_register_controller(ctlr); > > + if (ret) > > + goto err_destroy_mutex; > > + > > + return 0; > > + > > +err_destroy_mutex: > > + mutex_destroy(&q->lock); > > + > > +err_disable_clk: > > + fsl_qspi_clk_disable_unprep(q); > > + > > +err_put_ctrl: > > + spi_controller_put(ctlr); > > + > > + dev_err(dev, "Freescale QuadSPI probe failed\n"); > > + return ret; > > +} > > + > > +static int fsl_qspi_remove(struct platform_device *pdev) { > > + struct fsl_qspi *q = platform_get_drvdata(pdev); > > + > > + /* disable the hardware */ > > + qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); > > + qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); > > + > > + fsl_qspi_clk_disable_unprep(q); > > + > > + mutex_destroy(&q->lock); > > + > > + return 0; > > +} > > + > > +static int fsl_qspi_suspend(struct device *dev) { > > + return 0; > > +} > > + > > +static int fsl_qspi_resume(struct device *dev) { > > + struct fsl_qspi *q = dev_get_drvdata(dev); > > + > > + fsl_qspi_default_setup(q); > > + > > + return 0; > > +} > > + > > +static const struct of_device_id fsl_qspi_dt_ids[] = { > > + { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, > > + { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, > > + { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, > > + { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, > > + { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, }, > > + { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, > > + { /* sentinel */ } > > +}; > > +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); > > + > > +static const struct dev_pm_ops fsl_qspi_pm_ops = { > > + .suspend = fsl_qspi_suspend, > > + .resume = fsl_qspi_resume, > > +}; > > + > > +static struct platform_driver fsl_qspi_driver = { > > + .driver = { > > + .name = "fsl-quadspi", > > + .of_match_table = fsl_qspi_dt_ids, > > + .pm = &fsl_qspi_pm_ops, > > + }, > > + .probe = fsl_qspi_probe, > > + .remove = fsl_qspi_remove, > > +}; > > +module_platform_driver(fsl_qspi_driver); > > + > > +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); > > +MODULE_AUTHOR("Freescale Semiconductor Inc."); > MODULE_AUTHOR("Boris > > +Brezillion <boris.brezillon@bootlin.com>"); MODULE_AUTHOR("Frieder > > +Schrempf <frieder.schrempf@kontron.de>"); MODULE_AUTHOR("Yogesh > Gaur > > +<yogeshnarayan.gaur@nxp.com>"); MODULE_AUTHOR("Suresh Gupta > > +<suresh.gupta@nxp.com>"); MODULE_LICENSE("GPL v2"); > > -- > > 2.7.4
Hi Yogesh, On 13.11.18 09:22, Yogesh Narayan Gaur wrote: [...] >> + >> +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct >> +spi_mem_op *op) { >> + /* >> + * We want to avoid needing to invalidate the cache by issueing >> + * a reset to the AHB and Serial Flash domain, as this needs >> + * time. So we change the address on each read to trigger an >> + * actual read operation on the flash. The actual address for >> + * the flash memory is set by programming the LUT. >> + */ > As discussed previously, please go away with this hack and use AHB bus invalidation method with smaller timeout value. > > I would start doing validation of this patch series from next version onward. As you have mentioned in other mail discussion about issue in the break condition for function fsl_qspi_readl_poll_tout(). Thank you for your comments. I just sent v5 with some fixes, including fixed fsl_qspi_readl_poll_tout(). I also removed the hack above and I'm properly resetting the AHB domain now. I'm using a 1us delay just like in the old driver. In my tests the performance impact was very small (~2%) and it didn't get better when using ndelay. Thanks, Frieder
diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index 7d3a5c9..52e2298 100644 --- a/drivers/spi/Kconfig +++ b/drivers/spi/Kconfig @@ -259,6 +259,17 @@ config SPI_FSL_LPSPI help This enables Freescale i.MX LPSPI controllers in master mode. +config SPI_FSL_QSPI + tristate "Freescale QSPI controller" + depends on ARCH_MXC || SOC_LS1021A || ARCH_LAYERSCAPE || COMPILE_TEST + depends on HAS_IOMEM + help + This enables support for the Quad SPI controller in master mode. + Up to four flash chips can be connected on two buses with two + chipselects each. + This controller does not support generic SPI messages. It only + supports the high-level SPI memory interface. + config SPI_GPIO tristate "GPIO-based bitbanging SPI Master" depends on GPIOLIB || COMPILE_TEST diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index 3575205..833b9e7 100644 --- a/drivers/spi/Makefile +++ b/drivers/spi/Makefile @@ -44,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl-dspi.o obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o +obj-$(CONFIG_SPI_FSL_QSPI) += spi-fsl-qspi.o obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o obj-$(CONFIG_SPI_GPIO) += spi-gpio.o obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o diff --git a/drivers/spi/spi-fsl-qspi.c b/drivers/spi/spi-fsl-qspi.c new file mode 100644 index 0000000..a43cfe8 --- /dev/null +++ b/drivers/spi/spi-fsl-qspi.c @@ -0,0 +1,948 @@ +// SPDX-License-Identifier: GPL-2.0+ + +/* + * Freescale QuadSPI driver. + * + * Copyright (C) 2013 Freescale Semiconductor, Inc. + * Copyright (C) 2018 Bootlin + * Copyright (C) 2018 exceet electronics GmbH + * Copyright (C) 2018 Kontron Electronics GmbH + * + * Transition to SPI MEM interface: + * Author: + * Boris Brezillion <boris.brezillon@bootlin.com> + * Frieder Schrempf <frieder.schrempf@kontron.de> + * Yogesh Gaur <yogeshnarayan.gaur@nxp.com> + * Suresh Gupta <suresh.gupta@nxp.com> + * + * Based on the original fsl-quadspi.c spi-nor driver: + * Author: Freescale Semiconductor, Inc. + * + */ + +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/delay.h> +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/iopoll.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/pm_qos.h> +#include <linux/sizes.h> + +#include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> + +/* + * The driver only uses one single LUT entry, that is updated on + * each call of exec_op(). Index 0 is preset at boot with a basic + * read operation, so let's use the last entry (15). + */ +#define SEQID_LUT 15 + +/* Registers used by the driver */ +#define QUADSPI_MCR 0x00 +#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) +#define QUADSPI_MCR_MDIS_MASK BIT(14) +#define QUADSPI_MCR_CLR_TXF_MASK BIT(11) +#define QUADSPI_MCR_CLR_RXF_MASK BIT(10) +#define QUADSPI_MCR_DDR_EN_MASK BIT(7) +#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) +#define QUADSPI_MCR_SWRSTHD_MASK BIT(1) +#define QUADSPI_MCR_SWRSTSD_MASK BIT(0) + +#define QUADSPI_IPCR 0x08 +#define QUADSPI_IPCR_SEQID(x) ((x) << 24) + +#define QUADSPI_BUF3CR 0x1c +#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) +#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) +#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) + +#define QUADSPI_BFGENCR 0x20 +#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) + +#define QUADSPI_BUF0IND 0x30 +#define QUADSPI_BUF1IND 0x34 +#define QUADSPI_BUF2IND 0x38 +#define QUADSPI_SFAR 0x100 + +#define QUADSPI_SMPR 0x108 +#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) +#define QUADSPI_SMPR_FSDLY_MASK BIT(6) +#define QUADSPI_SMPR_FSPHS_MASK BIT(5) +#define QUADSPI_SMPR_HSENA_MASK BIT(0) + +#define QUADSPI_RBCT 0x110 +#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) +#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) + +#define QUADSPI_TBDR 0x154 + +#define QUADSPI_SR 0x15c +#define QUADSPI_SR_IP_ACC_MASK BIT(1) +#define QUADSPI_SR_AHB_ACC_MASK BIT(2) + +#define QUADSPI_FR 0x160 +#define QUADSPI_FR_TFF_MASK BIT(0) + +#define QUADSPI_SPTRCLR 0x16c +#define QUADSPI_SPTRCLR_IPPTRC BIT(8) +#define QUADSPI_SPTRCLR_BFPTRC BIT(0) + +#define QUADSPI_SFA1AD 0x180 +#define QUADSPI_SFA2AD 0x184 +#define QUADSPI_SFB1AD 0x188 +#define QUADSPI_SFB2AD 0x18c +#define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) + +#define QUADSPI_LUTKEY 0x300 +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 + +#define QUADSPI_LCKCR 0x304 +#define QUADSPI_LCKER_LOCK BIT(0) +#define QUADSPI_LCKER_UNLOCK BIT(1) + +#define QUADSPI_RSER 0x164 +#define QUADSPI_RSER_TFIE BIT(0) + +#define QUADSPI_LUT_BASE 0x310 +#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) +#define QUADSPI_LUT_REG(idx) \ + (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) + +/* Instruction set for the LUT register */ +#define LUT_STOP 0 +#define LUT_CMD 1 +#define LUT_ADDR 2 +#define LUT_DUMMY 3 +#define LUT_MODE 4 +#define LUT_MODE2 5 +#define LUT_MODE4 6 +#define LUT_FSL_READ 7 +#define LUT_FSL_WRITE 8 +#define LUT_JMP_ON_CS 9 +#define LUT_ADDR_DDR 10 +#define LUT_MODE_DDR 11 +#define LUT_MODE2_DDR 12 +#define LUT_MODE4_DDR 13 +#define LUT_FSL_READ_DDR 14 +#define LUT_FSL_WRITE_DDR 15 +#define LUT_DATA_LEARN 16 + +/* + * The PAD definitions for LUT register. + * + * The pad stands for the number of IO lines [0:3]. + * For example, the quad read needs four IO lines, + * so you should use LUT_PAD(4). + */ +#define LUT_PAD(x) (fls(x) - 1) + +/* + * Macro for constructing the LUT entries with the following + * register layout: + * + * --------------------------------------------------- + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | + * --------------------------------------------------- + */ +#define LUT_DEF(idx, ins, pad, opr) \ + ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) + +/* Controller needs driver to swap endianness */ +#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) + +/* Controller needs 4x internal clock */ +#define QUADSPI_QUIRK_4X_INT_CLK BIT(1) + +/* + * TKT253890, the controller needs the driver to fill the txfifo with + * 16 bytes at least to trigger a data transfer, even though the extra + * data won't be transferred. + */ +#define QUADSPI_QUIRK_TKT253890 BIT(2) + +/* TKT245618, the controller cannot wake up from wait mode */ +#define QUADSPI_QUIRK_TKT245618 BIT(3) + +enum fsl_qspi_devtype { + FSL_QUADSPI_VYBRID, + FSL_QUADSPI_IMX6SX, + FSL_QUADSPI_IMX7D, + FSL_QUADSPI_IMX6UL, + FSL_QUADSPI_LS1021A, + FSL_QUADSPI_LS2080A, +}; + +struct fsl_qspi_devtype_data { + enum fsl_qspi_devtype devtype; + unsigned int rxfifo; + unsigned int txfifo; + unsigned int ahb_buf_size; + unsigned int quirks; + bool little_endian; +}; + +static const struct fsl_qspi_devtype_data vybrid_data = { + .devtype = FSL_QUADSPI_VYBRID, + .rxfifo = SZ_128, + .txfifo = SZ_64, + .ahb_buf_size = SZ_1K, + .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, + .little_endian = true, +}; + +static const struct fsl_qspi_devtype_data imx6sx_data = { + .devtype = FSL_QUADSPI_IMX6SX, + .rxfifo = SZ_128, + .txfifo = SZ_512, + .ahb_buf_size = SZ_1K, + .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, + .little_endian = true, +}; + +static const struct fsl_qspi_devtype_data imx7d_data = { + .devtype = FSL_QUADSPI_IMX7D, + .rxfifo = SZ_512, + .txfifo = SZ_512, + .ahb_buf_size = SZ_1K, + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, + .little_endian = true, +}; + +static const struct fsl_qspi_devtype_data imx6ul_data = { + .devtype = FSL_QUADSPI_IMX6UL, + .rxfifo = SZ_128, + .txfifo = SZ_512, + .ahb_buf_size = SZ_1K, + .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, + .little_endian = true, +}; + +static const struct fsl_qspi_devtype_data ls1021a_data = { + .devtype = FSL_QUADSPI_LS1021A, + .rxfifo = SZ_128, + .txfifo = SZ_64, + .ahb_buf_size = SZ_1K, + .quirks = 0, + .little_endian = false, +}; + +static const struct fsl_qspi_devtype_data ls2080a_data = { + .devtype = FSL_QUADSPI_LS2080A, + .rxfifo = SZ_128, + .txfifo = SZ_64, + .ahb_buf_size = SZ_1K, + .quirks = QUADSPI_QUIRK_TKT253890, + .little_endian = true, +}; + +struct fsl_qspi { + void __iomem *iobase; + void __iomem *ahb_addr; + u32 memmap_phy; + struct clk *clk, *clk_en; + struct device *dev; + struct completion c; + const struct fsl_qspi_devtype_data *devtype_data; + struct mutex lock; + struct pm_qos_request pm_qos_req; + int selected; + u8 seq; + void (*write)(u32 val, void __iomem *addr); + u32 (*read)(void __iomem *addr); +}; + +static inline int needs_swap_endian(struct fsl_qspi *q) +{ + return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; +} + +static inline int needs_4x_clock(struct fsl_qspi *q) +{ + return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; +} + +static inline int needs_fill_txfifo(struct fsl_qspi *q) +{ + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; +} + +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) +{ + return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; +} + +/* + * An IC bug makes it necessary to rearrange the 32-bit data. + * Later chips, such as IMX6SLX, have fixed this bug. + */ +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) +{ + return needs_swap_endian(q) ? __swab32(a) : a; +} + +/* + * R/W functions for big- or little-endian registers: + * The QSPI controller's endianness is independent of + * the CPU core's endianness. So far, although the CPU + * core is little-endian the QSPI controller can use + * big-endian or little-endian. + */ +static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) +{ + if (q->devtype_data->little_endian) + iowrite32(val, addr); + else + iowrite32be(val, addr); +} + +static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) +{ + if (q->devtype_data->little_endian) + return ioread32(addr); + + return ioread32be(addr); +} + +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) +{ + struct fsl_qspi *q = dev_id; + u32 reg; + + /* clear interrupt */ + reg = qspi_readl(q, q->iobase + QUADSPI_FR); + qspi_writel(q, reg, q->iobase + QUADSPI_FR); + + if (reg & QUADSPI_FR_TFF_MASK) + complete(&q->c); + + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg); + return IRQ_HANDLED; +} + +static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) +{ + switch (width) { + case 1: + case 2: + case 4: + return 0; + } + + return -ENOTSUPP; +} + +static bool fsl_qspi_supports_op(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); + int ret; + + ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); + + if (op->addr.nbytes) + ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); + + if (op->dummy.nbytes) + ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); + + if (op->data.nbytes) + ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); + + if (ret) + return false; + + /* + * The number of instructions needed for the op, needs + * to fit into a single LUT entry. + */ + if (op->addr.nbytes + + (op->dummy.nbytes ? 1:0) + + (op->data.nbytes ? 1:0) > 6) + return false; + + /* Max 64 dummy clock cycles supported */ + if (op->dummy.nbytes && + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) + return false; + + /* Max data length, check controller limits and alignment */ + if (op->data.dir == SPI_MEM_DATA_IN && + (op->data.nbytes > q->devtype_data->ahb_buf_size || + (op->data.nbytes > q->devtype_data->rxfifo - 4 && + !IS_ALIGNED(op->data.nbytes, 8)))) + return false; + + if (op->data.dir == SPI_MEM_DATA_OUT && + op->data.nbytes > q->devtype_data->txfifo) + return false; + + return true; +} + +static void fsl_qspi_prepare_lut(struct fsl_qspi *q, + const struct spi_mem_op *op) +{ + void __iomem *base = q->iobase; + u32 lutval[4] = {}; + int lutidx = 1, i; + + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), + op->cmd.opcode); + + /* + * For some unknown reason, using LUT_ADDR doesn't work in some + * cases (at least with only one byte long addresses), so + * let's use LUT_MODE to write the address bytes one by one + */ + for (i = 0; i < op->addr.nbytes; i++) { + u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); + + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, + LUT_PAD(op->addr.buswidth), + addrbyte); + lutidx++; + } + + if (op->dummy.nbytes) { + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, + LUT_PAD(op->dummy.buswidth), + op->dummy.nbytes * 8 / + op->dummy.buswidth); + lutidx++; + } + + if (op->data.nbytes) { + lutval[lutidx / 2] |= LUT_DEF(lutidx, + op->data.dir == SPI_MEM_DATA_IN ? + LUT_FSL_READ : LUT_FSL_WRITE, + LUT_PAD(op->data.buswidth), + 0); + lutidx++; + } + + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); + + /* unlock LUT */ + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); + + /* fill LUT */ + for (i = 0; i < ARRAY_SIZE(lutval); i++) + qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); + + /* lock LUT */ + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); +} + +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) +{ + int ret; + + ret = clk_prepare_enable(q->clk_en); + if (ret) + return ret; + + ret = clk_prepare_enable(q->clk); + if (ret) { + clk_disable_unprepare(q->clk_en); + return ret; + } + + if (needs_wakeup_wait_mode(q)) + pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0); + + return 0; +} + +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) +{ + if (needs_wakeup_wait_mode(q)) + pm_qos_remove_request(&q->pm_qos_req); + + clk_disable_unprepare(q->clk); + clk_disable_unprepare(q->clk_en); +} + +static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi) +{ + unsigned long rate = spi->max_speed_hz; + int ret, i; + u32 map_addr; + + if (q->selected == spi->chip_select) + return; + + /* + * In HW there can be a maximum of four chips on two buses with + * two chip selects on each bus. We use four chip selects in SW + * to differentiate between the four chips. + * We use the SFA1AD, SFA2AD, SFB1AD, SFB2AD registers to select + * the chip we want to access. + */ + for (i = 0; i < 4; i++) { + if (i < spi->chip_select) + map_addr = q->memmap_phy; + else + map_addr = q->memmap_phy + + 2 * q->devtype_data->ahb_buf_size; + + qspi_writel(q, map_addr, q->iobase + QUADSPI_SFA1AD + (i * 4)); + } + + if (needs_4x_clock(q)) + rate *= 4; + + fsl_qspi_clk_disable_unprep(q); + + ret = clk_set_rate(q->clk, rate); + if (ret) + return; + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return; + + q->selected = spi->chip_select; +} + +static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op) +{ + /* + * We want to avoid needing to invalidate the cache by issueing + * a reset to the AHB and Serial Flash domain, as this needs + * time. So we change the address on each read to trigger an + * actual read operation on the flash. The actual address for + * the flash memory is set by programming the LUT. + */ + memcpy_fromio(op->data.buf.in, + q->ahb_addr + + (((q->seq & (1 << q->selected)) == 0 ? 0:1) * + q->devtype_data->ahb_buf_size), + op->data.nbytes); + + q->seq ^= 1 << q->selected; +} + +static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, + const struct spi_mem_op *op) +{ + void __iomem *base = q->iobase; + int i; + u32 val; + + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { + memcpy(&val, op->data.buf.out + i, 4); + val = fsl_qspi_endian_xchg(q, val); + qspi_writel(q, val, base + QUADSPI_TBDR); + } + + if (i < op->data.nbytes) { + memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); + val = fsl_qspi_endian_xchg(q, val); + qspi_writel(q, val, base + QUADSPI_TBDR); + } + + if (needs_fill_txfifo(q)) { + for (i = op->data.nbytes; i < 16; i += 4) + qspi_writel(q, 0, base + QUADSPI_TBDR); + } +} + +static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, + const struct spi_mem_op *op) +{ + void __iomem *base = q->iobase; + int i; + u8 *buf = op->data.buf.in; + u32 val; + + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); + val = fsl_qspi_endian_xchg(q, val); + memcpy(buf + i, &val, 4); + } + + if (i < op->data.nbytes) { + val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); + val = fsl_qspi_endian_xchg(q, val); + memcpy(buf + i, &val, op->data.nbytes - i); + } +} + +static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op) +{ + void __iomem *base = q->iobase; + int err = 0; + + init_completion(&q->c); + + /* + * Always start the sequence at the same index since we update + * the LUT at each exec_op() call. And also specify the DATA + * length, since it's has not been specified in the LUT. + */ + qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), + base + QUADSPI_IPCR); + + /* Wait for the interrupt. */ + if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) + err = -ETIMEDOUT; + + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) + fsl_qspi_read_rxfifo(q, op); + + return err; +} + +static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, + u32 mask, u32 delay_us, u32 timeout_us) +{ + u32 reg; + + if (!q->devtype_data->little_endian) + mask = (u32)cpu_to_be32(mask); + + return readl_poll_timeout(base, reg, (reg & mask), delay_us, + timeout_us); +} + +static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) +{ + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); + void __iomem *base = q->iobase; + int err = 0; + + mutex_lock(&q->lock); + + fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK | + QUADSPI_SR_AHB_ACC_MASK), 10, 1000); + + fsl_qspi_select_mem(q, mem->spi); + + qspi_writel(q, q->memmap_phy, base + QUADSPI_SFAR); + + qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | + QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK, + base + QUADSPI_MCR); + + qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, + base + QUADSPI_SPTRCLR); + + fsl_qspi_prepare_lut(q, op); + + /* + * If we have large chunks of data, we read them through the AHB bus + * by accessing the mapped memory. In all other cases we use + * IP commands to access the flash. + */ + if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && + op->data.dir == SPI_MEM_DATA_IN) { + fsl_qspi_read_ahb(q, op); + } else { + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | + QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT); + + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) + fsl_qspi_fill_txfifo(q, op); + + err = fsl_qspi_do_op(q, op); + } + + mutex_unlock(&q->lock); + + return err; +} + +static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) +{ + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); + + if (op->data.dir == SPI_MEM_DATA_OUT) { + if (op->data.nbytes > q->devtype_data->txfifo) + op->data.nbytes = q->devtype_data->txfifo; + } else { + if (op->data.nbytes > q->devtype_data->ahb_buf_size) + op->data.nbytes = q->devtype_data->ahb_buf_size; + else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); + } + + return 0; +} + +static int fsl_qspi_default_setup(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + u32 reg; + int ret; + + /* disable and unprepare clock to avoid glitch pass to controller */ + fsl_qspi_clk_disable_unprep(q); + + /* the default frequency, we will change it later if necessary. */ + ret = clk_set_rate(q->clk, 66000000); + if (ret) + return ret; + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + + /* Reset the module */ + qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, + base + QUADSPI_MCR); + udelay(1); + + /* Disable the module */ + qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, + base + QUADSPI_MCR); + + reg = qspi_readl(q, base + QUADSPI_SMPR); + qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK + | QUADSPI_SMPR_FSPHS_MASK + | QUADSPI_SMPR_HSENA_MASK + | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); + + /* We only use the buffer3 for AHB read */ + qspi_writel(q, 0, base + QUADSPI_BUF0IND); + qspi_writel(q, 0, base + QUADSPI_BUF1IND); + qspi_writel(q, 0, base + QUADSPI_BUF2IND); + + qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), + q->iobase + QUADSPI_BFGENCR); + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); + qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | + QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8), + base + QUADSPI_BUF3CR); + + q->selected = -1; + q->seq = 0; + + /* Enable the module */ + qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, + base + QUADSPI_MCR); + + /* clear all interrupt status */ + qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); + + /* enable the interrupt */ + qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); + + return 0; +} + +static const char *fsl_qspi_get_name(struct spi_mem *mem) +{ + struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); + struct device *dev = &mem->spi->dev; + const char *name; + + /* + * In order to keep mtdparts compatible with the old MTD driver at + * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the + * platform_device of the controller. + */ + if (of_get_available_child_count(q->dev->of_node) == 1) + return dev_name(q->dev); + + name = devm_kasprintf(dev, GFP_KERNEL, + "%s-%d", dev_name(q->dev), + mem->spi->chip_select); + + if (!name) { + dev_err(dev, "failed to get memory for custom flash name\n"); + return ERR_PTR(-ENOMEM); + } + + return name; +} + +static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { + .adjust_op_size = fsl_qspi_adjust_op_size, + .supports_op = fsl_qspi_supports_op, + .exec_op = fsl_qspi_exec_op, + .get_name = fsl_qspi_get_name, +}; + +static int fsl_qspi_probe(struct platform_device *pdev) +{ + struct spi_controller *ctlr; + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct resource *res; + struct fsl_qspi *q; + int ret; + + ctlr = spi_alloc_master(&pdev->dev, sizeof(*q)); + if (!ctlr) + return -ENOMEM; + + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | + SPI_TX_DUAL | SPI_TX_QUAD; + + q = spi_controller_get_devdata(ctlr); + q->dev = dev; + q->devtype_data = of_device_get_match_data(dev); + if (!q->devtype_data) { + ret = -ENODEV; + goto err_put_ctrl; + } + + platform_set_drvdata(pdev, q); + + /* find the resources */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); + q->iobase = devm_ioremap_resource(dev, res); + if (IS_ERR(q->iobase)) { + ret = PTR_ERR(q->iobase); + goto err_put_ctrl; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "QuadSPI-memory"); + q->ahb_addr = devm_ioremap_resource(dev, res); + if (IS_ERR(q->ahb_addr)) { + ret = PTR_ERR(q->ahb_addr); + goto err_put_ctrl; + } + + q->memmap_phy = res->start; + + /* find the clocks */ + q->clk_en = devm_clk_get(dev, "qspi_en"); + if (IS_ERR(q->clk_en)) { + ret = PTR_ERR(q->clk_en); + goto err_put_ctrl; + } + + q->clk = devm_clk_get(dev, "qspi"); + if (IS_ERR(q->clk)) { + ret = PTR_ERR(q->clk); + goto err_put_ctrl; + } + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) { + dev_err(dev, "can not enable the clock\n"); + goto err_put_ctrl; + } + + /* find the irq */ + ret = platform_get_irq(pdev, 0); + if (ret < 0) { + dev_err(dev, "failed to get the irq: %d\n", ret); + goto err_disable_clk; + } + + ret = devm_request_irq(dev, ret, + fsl_qspi_irq_handler, 0, pdev->name, q); + if (ret) { + dev_err(dev, "failed to request irq: %d\n", ret); + goto err_disable_clk; + } + + mutex_init(&q->lock); + + ctlr->bus_num = -1; + ctlr->num_chipselect = 4; + ctlr->mem_ops = &fsl_qspi_mem_ops; + + fsl_qspi_default_setup(q); + + ctlr->dev.of_node = np; + + ret = spi_register_controller(ctlr); + if (ret) + goto err_destroy_mutex; + + return 0; + +err_destroy_mutex: + mutex_destroy(&q->lock); + +err_disable_clk: + fsl_qspi_clk_disable_unprep(q); + +err_put_ctrl: + spi_controller_put(ctlr); + + dev_err(dev, "Freescale QuadSPI probe failed\n"); + return ret; +} + +static int fsl_qspi_remove(struct platform_device *pdev) +{ + struct fsl_qspi *q = platform_get_drvdata(pdev); + + /* disable the hardware */ + qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); + qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); + + fsl_qspi_clk_disable_unprep(q); + + mutex_destroy(&q->lock); + + return 0; +} + +static int fsl_qspi_suspend(struct device *dev) +{ + return 0; +} + +static int fsl_qspi_resume(struct device *dev) +{ + struct fsl_qspi *q = dev_get_drvdata(dev); + + fsl_qspi_default_setup(q); + + return 0; +} + +static const struct of_device_id fsl_qspi_dt_ids[] = { + { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, + { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, + { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, + { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, + { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, }, + { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); + +static const struct dev_pm_ops fsl_qspi_pm_ops = { + .suspend = fsl_qspi_suspend, + .resume = fsl_qspi_resume, +}; + +static struct platform_driver fsl_qspi_driver = { + .driver = { + .name = "fsl-quadspi", + .of_match_table = fsl_qspi_dt_ids, + .pm = &fsl_qspi_pm_ops, + }, + .probe = fsl_qspi_probe, + .remove = fsl_qspi_remove, +}; +module_platform_driver(fsl_qspi_driver); + +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); +MODULE_AUTHOR("Freescale Semiconductor Inc."); +MODULE_AUTHOR("Boris Brezillion <boris.brezillon@bootlin.com>"); +MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); +MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>"); +MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>"); +MODULE_LICENSE("GPL v2");