diff mbox series

[5/7] doc/vm: New documentation for memory cache

Message ID 20181114224921.12123-6-keith.busch@intel.com (mailing list archive)
State Changes Requested, archived
Headers show
Series ACPI HMAT memory sysfs representation | expand

Commit Message

Keith Busch Nov. 14, 2018, 10:49 p.m. UTC
Platforms may provide system memory that contains side caches to help
spped up access. These memory caches are part of a memory node and
the cache attributes are exported by the kernel.

Add new documentation providing a brief overview of system memory side
caches and the kernel provided attributes for application optimization.

Signed-off-by: Keith Busch <keith.busch@intel.com>
---
 Documentation/vm/numacache.rst | 76 ++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 76 insertions(+)
 create mode 100644 Documentation/vm/numacache.rst

Comments

Dave Hansen Nov. 15, 2018, 12:41 a.m. UTC | #1
On 11/14/18 2:49 PM, Keith Busch wrote:
> +	# tree sys/devices/system/node/node0/cache/
> +	/sys/devices/system/node/node0/cache/
> +	|-- index1
> +	|   |-- associativity
> +	|   |-- level
> +	|   |-- line_size
> +	|   |-- size
> +	|   `-- write_policy

Whoops, and here it is...
Jonathan Cameron Nov. 15, 2018, 1:16 p.m. UTC | #2
On Wed, 14 Nov 2018 15:49:18 -0700
Keith Busch <keith.busch@intel.com> wrote:

> Platforms may provide system memory that contains side caches to help

If we can call them "memory-side caches" that would avoid a persistent
confusion on what they actually are.  It took me ages to get to the
bottom of why they were always drawn to the side of the memory
path ;)

> spped up access. These memory caches are part of a memory node and

speed

> the cache attributes are exported by the kernel.
> 
> Add new documentation providing a brief overview of system memory side
> caches and the kernel provided attributes for application optimization.
A few few nits in line, but mostly looks good to me.

Thanks,

Jonathan

> 
> Signed-off-by: Keith Busch <keith.busch@intel.com>
> ---
>  Documentation/vm/numacache.rst | 76 ++++++++++++++++++++++++++++++++++++++++++
>  1 file changed, 76 insertions(+)
>  create mode 100644 Documentation/vm/numacache.rst
> 
> diff --git a/Documentation/vm/numacache.rst b/Documentation/vm/numacache.rst
> new file mode 100644
> index 000000000000..e79c801b7e3b
> --- /dev/null
> +++ b/Documentation/vm/numacache.rst
> @@ -0,0 +1,76 @@
> +.. _numacache:
> +
> +==========
> +NUMA Cache
> +==========
> +
> +System memory may be constructed in a hierarchy of various performing

of elements with various performance

> +characteristics in order to provide large address space of slower
> +performing memory cached by a smaller size of higher performing

cached by smaller higher performing memory.

> +memory. The system physical addresses that software is aware of see

is aware of is provided (no 'see')

> +is provided by the last memory level in the hierarchy, while higher
> +performing memory transparently provides caching to slower levels.
> +
> +The term "far memory" is used to denote the last level memory in the
> +hierarchy. Each increasing cache level provides higher performing CPU

initiator rather than CPU?

> +access, and the term "near memory" represents the highest level cache
> +provided by the system. This number is different than CPU caches where
> +the cache level (ex: L1, L2, L3) uses a CPU centric view with each level
> +being lower performing and closer to system memory. The memory cache
> +level is centric to the last level memory, so the higher numbered cache

from the last level memory?

> +level denotes memory nearer to the CPU, and further from far memory.
> +
> +The memory side caches are not directly addressable by software. When
> +software accesses a system address, the system will return it from the
> +near memory cache if it is present. If it is not present, the system
> +accesses the next level of memory until there is either a hit in that
> +cache level, or it reaches far memory.
> +
> +In order to maximize the performance out of such a setup, software may
> +wish to query the memory cache attributes. If the system provides a way
> +to query this information, for example with ACPI HMAT (Heterogeneous
> +Memory Attribute Table)[1], the kernel will append these attributes to
> +the NUMA node that provides the memory.
> +
> +When the kernel first registers a memory cache with a node, the kernel
> +will create the following directory::
> +
> +	/sys/devices/system/node/nodeX/cache/

Given we have other things with caches in a numa node, should we make
this name more specific?

> +
> +If that directory is not present, then either the memory does not have
> +a side cache, or that information is not provided to the kernel.
> +
> +The attributes for each level of cache is provided under its cache
> +level index::
> +
> +	/sys/devices/system/node/nodeX/cache/indexA/
> +	/sys/devices/system/node/nodeX/cache/indexB/
> +	/sys/devices/system/node/nodeX/cache/indexC/
> +
> +Each cache level's directory provides its attributes. For example,
> +the following is a single cache level and the attributes available for
> +software to query::
> +
> +	# tree sys/devices/system/node/node0/cache/
> +	/sys/devices/system/node/node0/cache/
> +	|-- index1
> +	|   |-- associativity
> +	|   |-- level
> +	|   |-- line_size
> +	|   |-- size
> +	|   `-- write_policy
> +
> +The cache "associativity" will be 0 if it is a direct-mapped cache, and
> +non-zero for any other indexed based, multi-way associativity.
This description is a little vague.  Right now I think we have 3 options
from HMAT,
1) no associativity (which I suppose could also be called fully associative?)
2) direct mapped (0 in your case)
3) Complex (who knows!)

So how do you map 1 and 3?

> +
> +The "level" is the distance from the far memory, and matches the number
> +appended to its "index" directory.
> +
> +The "line_size" is the number of bytes accessed on a cache miss.
> +
> +The "size" is the number of bytes provided by this cache level.
> +
> +The "write_policy" will be 0 for write-back, and non-zero for
> +write-through caching.

Do these not appear if the write_policy provided by acpi is "none".

> +
> +[1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
Mike Rapoport Nov. 20, 2018, 1:53 p.m. UTC | #3
On Wed, Nov 14, 2018 at 03:49:18PM -0700, Keith Busch wrote:
> Platforms may provide system memory that contains side caches to help
> spped up access. These memory caches are part of a memory node and
> the cache attributes are exported by the kernel.
> 
> Add new documentation providing a brief overview of system memory side
> caches and the kernel provided attributes for application optimization.
> 
> Signed-off-by: Keith Busch <keith.busch@intel.com>
> ---
>  Documentation/vm/numacache.rst | 76 ++++++++++++++++++++++++++++++++++++++++++

I think it's better to have both numaperf and numacache in a single
document, as they are quite related.

>  1 file changed, 76 insertions(+)
>  create mode 100644 Documentation/vm/numacache.rst
> 
> diff --git a/Documentation/vm/numacache.rst b/Documentation/vm/numacache.rst
> new file mode 100644
> index 000000000000..e79c801b7e3b
> --- /dev/null
> +++ b/Documentation/vm/numacache.rst
> @@ -0,0 +1,76 @@
> +.. _numacache:
> +
> +==========
> +NUMA Cache
> +==========
> +
> +System memory may be constructed in a hierarchy of various performing
> +characteristics in order to provide large address space of slower
> +performing memory cached by a smaller size of higher performing
> +memory. The system physical addresses that software is aware of see
> +is provided by the last memory level in the hierarchy, while higher
> +performing memory transparently provides caching to slower levels.
> +
> +The term "far memory" is used to denote the last level memory in the
> +hierarchy. Each increasing cache level provides higher performing CPU
> +access, and the term "near memory" represents the highest level cache
> +provided by the system. This number is different than CPU caches where
> +the cache level (ex: L1, L2, L3) uses a CPU centric view with each level
> +being lower performing and closer to system memory. The memory cache
> +level is centric to the last level memory, so the higher numbered cache
> +level denotes memory nearer to the CPU, and further from far memory.
> +
> +The memory side caches are not directly addressable by software. When
> +software accesses a system address, the system will return it from the
> +near memory cache if it is present. If it is not present, the system
> +accesses the next level of memory until there is either a hit in that
> +cache level, or it reaches far memory.
> +
> +In order to maximize the performance out of such a setup, software may
> +wish to query the memory cache attributes. If the system provides a way
> +to query this information, for example with ACPI HMAT (Heterogeneous
> +Memory Attribute Table)[1], the kernel will append these attributes to
> +the NUMA node that provides the memory.
> +
> +When the kernel first registers a memory cache with a node, the kernel
> +will create the following directory::
> +
> +	/sys/devices/system/node/nodeX/cache/
> +
> +If that directory is not present, then either the memory does not have
> +a side cache, or that information is not provided to the kernel.
> +
> +The attributes for each level of cache is provided under its cache
> +level index::
> +
> +	/sys/devices/system/node/nodeX/cache/indexA/
> +	/sys/devices/system/node/nodeX/cache/indexB/
> +	/sys/devices/system/node/nodeX/cache/indexC/
> +
> +Each cache level's directory provides its attributes. For example,
> +the following is a single cache level and the attributes available for
> +software to query::
> +
> +	# tree sys/devices/system/node/node0/cache/
> +	/sys/devices/system/node/node0/cache/
> +	|-- index1
> +	|   |-- associativity
> +	|   |-- level
> +	|   |-- line_size
> +	|   |-- size
> +	|   `-- write_policy
> +
> +The cache "associativity" will be 0 if it is a direct-mapped cache, and
> +non-zero for any other indexed based, multi-way associativity.
> +
> +The "level" is the distance from the far memory, and matches the number
> +appended to its "index" directory.
> +
> +The "line_size" is the number of bytes accessed on a cache miss.
> +
> +The "size" is the number of bytes provided by this cache level.
> +
> +The "write_policy" will be 0 for write-back, and non-zero for
> +write-through caching.
> +
> +[1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
> -- 
> 2.14.4
>
diff mbox series

Patch

diff --git a/Documentation/vm/numacache.rst b/Documentation/vm/numacache.rst
new file mode 100644
index 000000000000..e79c801b7e3b
--- /dev/null
+++ b/Documentation/vm/numacache.rst
@@ -0,0 +1,76 @@ 
+.. _numacache:
+
+==========
+NUMA Cache
+==========
+
+System memory may be constructed in a hierarchy of various performing
+characteristics in order to provide large address space of slower
+performing memory cached by a smaller size of higher performing
+memory. The system physical addresses that software is aware of see
+is provided by the last memory level in the hierarchy, while higher
+performing memory transparently provides caching to slower levels.
+
+The term "far memory" is used to denote the last level memory in the
+hierarchy. Each increasing cache level provides higher performing CPU
+access, and the term "near memory" represents the highest level cache
+provided by the system. This number is different than CPU caches where
+the cache level (ex: L1, L2, L3) uses a CPU centric view with each level
+being lower performing and closer to system memory. The memory cache
+level is centric to the last level memory, so the higher numbered cache
+level denotes memory nearer to the CPU, and further from far memory.
+
+The memory side caches are not directly addressable by software. When
+software accesses a system address, the system will return it from the
+near memory cache if it is present. If it is not present, the system
+accesses the next level of memory until there is either a hit in that
+cache level, or it reaches far memory.
+
+In order to maximize the performance out of such a setup, software may
+wish to query the memory cache attributes. If the system provides a way
+to query this information, for example with ACPI HMAT (Heterogeneous
+Memory Attribute Table)[1], the kernel will append these attributes to
+the NUMA node that provides the memory.
+
+When the kernel first registers a memory cache with a node, the kernel
+will create the following directory::
+
+	/sys/devices/system/node/nodeX/cache/
+
+If that directory is not present, then either the memory does not have
+a side cache, or that information is not provided to the kernel.
+
+The attributes for each level of cache is provided under its cache
+level index::
+
+	/sys/devices/system/node/nodeX/cache/indexA/
+	/sys/devices/system/node/nodeX/cache/indexB/
+	/sys/devices/system/node/nodeX/cache/indexC/
+
+Each cache level's directory provides its attributes. For example,
+the following is a single cache level and the attributes available for
+software to query::
+
+	# tree sys/devices/system/node/node0/cache/
+	/sys/devices/system/node/node0/cache/
+	|-- index1
+	|   |-- associativity
+	|   |-- level
+	|   |-- line_size
+	|   |-- size
+	|   `-- write_policy
+
+The cache "associativity" will be 0 if it is a direct-mapped cache, and
+non-zero for any other indexed based, multi-way associativity.
+
+The "level" is the distance from the far memory, and matches the number
+appended to its "index" directory.
+
+The "line_size" is the number of bytes accessed on a cache miss.
+
+The "size" is the number of bytes provided by this cache level.
+
+The "write_policy" will be 0 for write-back, and non-zero for
+write-through caching.
+
+[1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf