diff mbox series

[4/4] writeback, memcg: Implement foreign dirty flushing

Message ID 20190803140155.181190-5-tj@kernel.org (mailing list archive)
State New, archived
Headers show
Series [1/4] writeback: Generalize and expose wb_completion | expand

Commit Message

Tejun Heo Aug. 3, 2019, 2:01 p.m. UTC
There's an inherent mismatch between memcg and writeback.  The former
trackes ownership per-page while the latter per-inode.  This was a
deliberate design decision because honoring per-page ownership in the
writeback path is complicated, may lead to higher CPU and IO overheads
and deemed unnecessary given that write-sharing an inode across
different cgroups isn't a common use-case.

Combined with inode majority-writer ownership switching, this works
well enough in most cases but there are some pathological cases.  For
example, let's say there are two cgroups A and B which keep writing to
different but confined parts of the same inode.  B owns the inode and
A's memory is limited far below B's.  A's dirty ratio can rise enough
to trigger balance_dirty_pages() sleeps but B's can be low enough to
avoid triggering background writeback.  A will be slowed down without
a way to make writeback of the dirty pages happen.

This patch implements foreign dirty recording and foreign mechanism so
that when a memcg encounters a condition as above it can trigger
flushes on bdi_writebacks which can clean its pages.  Please see the
comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
details.

A reproducer follows.

write-range.c::

  #include <stdio.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <fcntl.h>
  #include <sys/types.h>

  static const char *usage = "write-range FILE START SIZE\n";

  int main(int argc, char **argv)
  {
	  int fd;
	  unsigned long start, size, end, pos;
	  char *endp;
	  char buf[4096];

	  if (argc < 4) {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  fd = open(argv[1], O_WRONLY);
	  if (fd < 0) {
		  perror("open");
		  return 1;
	  }

	  start = strtoul(argv[2], &endp, 0);
	  if (*endp != '\0') {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  size = strtoul(argv[3], &endp, 0);
	  if (*endp != '\0') {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  end = start + size;

	  while (1) {
		  for (pos = start; pos < end; ) {
			  long bread, bwritten = 0;

			  if (lseek(fd, pos, SEEK_SET) < 0) {
				  perror("lseek");
				  return 1;
			  }

			  bread = read(0, buf, sizeof(buf) < end - pos ?
					       sizeof(buf) : end - pos);
			  if (bread < 0) {
				  perror("read");
				  return 1;
			  }
			  if (bread == 0)
				  return 0;

			  while (bwritten < bread) {
				  long this;

				  this = write(fd, buf + bwritten,
					       bread - bwritten);
				  if (this < 0) {
					  perror("write");
					  return 1;
				  }

				  bwritten += this;
				  pos += bwritten;
			  }
		  }
	  }
  }

repro.sh::

  #!/bin/bash

  set -e
  set -x

  sysctl -w vm.dirty_expire_centisecs=300000
  sysctl -w vm.dirty_writeback_centisecs=300000
  sysctl -w vm.dirtytime_expire_seconds=300000
  echo 3 > /proc/sys/vm/drop_caches

  TEST=/sys/fs/cgroup/test
  A=$TEST/A
  B=$TEST/B

  mkdir -p $A $B
  echo "+memory +io" > $TEST/cgroup.subtree_control
  echo $((1<<30)) > $A/memory.high
  echo $((32<<30)) > $B/memory.high

  rm -f testfile
  touch testfile
  fallocate -l 4G testfile

  echo "Starting B"

  (echo $BASHPID > $B/cgroup.procs
   pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) &

  echo "Waiting 10s to ensure B claims the testfile inode"
  sleep 5
  sync
  sleep 5
  sync
  echo "Starting A"

  (echo $BASHPID > $A/cgroup.procs
   pv < /dev/urandom | ./write-range testfile 0 $((2<<30)))

Signed-off-by: Tejun Heo <tj@kernel.org>
---
 include/linux/backing-dev-defs.h |   1 +
 include/linux/memcontrol.h       |  35 +++++++++
 mm/memcontrol.c                  | 125 +++++++++++++++++++++++++++++++
 mm/page-writeback.c              |   4 +
 4 files changed, 165 insertions(+)

Comments

Andrew Morton Aug. 6, 2019, 11:03 p.m. UTC | #1
On Sat,  3 Aug 2019 07:01:55 -0700 Tejun Heo <tj@kernel.org> wrote:

> There's an inherent mismatch between memcg and writeback.  The former
> trackes ownership per-page while the latter per-inode.  This was a
> deliberate design decision because honoring per-page ownership in the
> writeback path is complicated, may lead to higher CPU and IO overheads
> and deemed unnecessary given that write-sharing an inode across
> different cgroups isn't a common use-case.
> 
> Combined with inode majority-writer ownership switching, this works
> well enough in most cases but there are some pathological cases.  For
> example, let's say there are two cgroups A and B which keep writing to
> different but confined parts of the same inode.  B owns the inode and
> A's memory is limited far below B's.  A's dirty ratio can rise enough
> to trigger balance_dirty_pages() sleeps but B's can be low enough to
> avoid triggering background writeback.  A will be slowed down without
> a way to make writeback of the dirty pages happen.
> 
> This patch implements foreign dirty recording and foreign mechanism so
> that when a memcg encounters a condition as above it can trigger
> flushes on bdi_writebacks which can clean its pages.  Please see the
> comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
> details.
> 
> ...
>
> +void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
> +					     struct bdi_writeback *wb)
> +{
> +	struct mem_cgroup *memcg = page->mem_cgroup;
> +	struct memcg_cgwb_frn *frn;
> +	u64 now = jiffies_64;
> +	u64 oldest_at = now;
> +	int oldest = -1;
> +	int i;
> +
> +	/*
> +	 * Pick the slot to use.  If there is already a slot for @wb, keep
> +	 * using it.  If not replace the oldest one which isn't being
> +	 * written out.
> +	 */
> +	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
> +		frn = &memcg->cgwb_frn[i];
> +		if (frn->bdi_id == wb->bdi->id &&
> +		    frn->memcg_id == wb->memcg_css->id)
> +			break;
> +		if (frn->at < oldest_at && atomic_read(&frn->done.cnt) == 1) {
> +			oldest = i;
> +			oldest_at = frn->at;
> +		}
> +	}
> +
> +	if (i < MEMCG_CGWB_FRN_CNT) {
> +		unsigned long update_intv =
> +			min_t(unsigned long, HZ,
> +			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

An explanation of what's going on here would be helpful.

Why "* 1.25" and not, umm "* 1.24"?

> +		/*
> +		 * Re-using an existing one.  Let's update timestamp lazily
> +		 * to avoid making the cacheline hot.
> +		 */
> +		if (frn->at < now - update_intv)
> +			frn->at = now;
> +	} else if (oldest >= 0) {
> +		/* replace the oldest free one */
> +		frn = &memcg->cgwb_frn[oldest];
> +		frn->bdi_id = wb->bdi->id;
> +		frn->memcg_id = wb->memcg_css->id;
> +		frn->at = now;
> +	}
> +}
> +
> +/*
> + * Issue foreign writeback flushes for recorded foreign dirtying events
> + * which haven't expired yet and aren't already being written out.
> + */
> +void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
> +{
> +	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
> +	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);

Ditto.

> +	u64 now = jiffies_64;
> +	int i;
> +
> +	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
> +		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
> +
> +		if (frn->at > now - intv && atomic_read(&frn->done.cnt) == 1) {
> +			frn->at = 0;
> +			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
> +					       LONG_MAX, WB_REASON_FOREIGN_FLUSH,
> +					       &frn->done);
> +		}
> +	}
> +}
> +
Tejun Heo Aug. 7, 2019, 6:34 p.m. UTC | #2
Hello,

On Tue, Aug 06, 2019 at 04:03:06PM -0700, Andrew Morton wrote:
> > +	if (i < MEMCG_CGWB_FRN_CNT) {
> > +		unsigned long update_intv =
> > +			min_t(unsigned long, HZ,
> > +			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
> 
> An explanation of what's going on here would be helpful.
> 
> Why "* 1.25" and not, umm "* 1.24"?

Just because /8 is cheaper.  It's likely that a fairly wide range of
numbers are okay for the above.  I'll add some comment to explain that
and why the specific constants are picked.

> > +void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
> > +{
> > +	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
> > +	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
> 
> Ditto.

This is just dirty expiration.  If the dirty data has expired,
writeback must already be in progress by its bdi_wb, so there's no
reason to scheduler foreign writeback.  Will add a comment.

Thanks.
Jan Kara Aug. 15, 2019, 2:34 p.m. UTC | #3
On Sat 03-08-19 07:01:55, Tejun Heo wrote:
> +void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
> +					     struct bdi_writeback *wb)
> +{
> +	struct mem_cgroup *memcg = page->mem_cgroup;
> +	struct memcg_cgwb_frn *frn;
> +	u64 now = jiffies_64;
> +	u64 oldest_at = now;
> +	int oldest = -1;
> +	int i;
> +
> +	/*
> +	 * Pick the slot to use.  If there is already a slot for @wb, keep
> +	 * using it.  If not replace the oldest one which isn't being
> +	 * written out.
> +	 */
> +	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
> +		frn = &memcg->cgwb_frn[i];
> +		if (frn->bdi_id == wb->bdi->id &&
> +		    frn->memcg_id == wb->memcg_css->id)
> +			break;
> +		if (frn->at < oldest_at && atomic_read(&frn->done.cnt) == 1) {
> +			oldest = i;
> +			oldest_at = frn->at;
> +		}
> +	}
> +
> +	if (i < MEMCG_CGWB_FRN_CNT) {
> +		unsigned long update_intv =
> +			min_t(unsigned long, HZ,
> +			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
> +		/*
> +		 * Re-using an existing one.  Let's update timestamp lazily
> +		 * to avoid making the cacheline hot.
> +		 */
> +		if (frn->at < now - update_intv)
> +			frn->at = now;
> +	} else if (oldest >= 0) {
> +		/* replace the oldest free one */
> +		frn = &memcg->cgwb_frn[oldest];
> +		frn->bdi_id = wb->bdi->id;
> +		frn->memcg_id = wb->memcg_css->id;
> +		frn->at = now;
> +	}

I have to say I'm a bit nervous about the completely lockless handling
here. I understand that garbage in the cgwb_frn will just result in this
mechanism not working and possibly flushing wrong wb's but still it seems a
bit fragile. But I don't see any cheap way of synchronizing this so I guess
let's try how this will work in practice.

								Honza
--
Jan Kara <jack@suse.com>
SUSE Labs, CR
Tejun Heo Aug. 15, 2019, 5:31 p.m. UTC | #4
Hello, Jan.

On Thu, Aug 15, 2019 at 04:34:04PM +0200, Jan Kara wrote:
> I have to say I'm a bit nervous about the completely lockless handling
> here. I understand that garbage in the cgwb_frn will just result in this
> mechanism not working and possibly flushing wrong wb's but still it seems a
> bit fragile. But I don't see any cheap way of synchronizing this so I guess
> let's try how this will work in practice.

Yeah, this approach is fundamentally best-effort, so I went for low
overhead and mostly correct operation.  If something like this doesn't
cut it (w/ bug fixes and some polishing over time), my gut feeling is
that we probably should bite the bullet and synchronize cgroup memory
and inode ownerships rather than pushing further on inherently
imprecise mitigation mechanisms.

Thanks.
diff mbox series

Patch

diff --git a/include/linux/backing-dev-defs.h b/include/linux/backing-dev-defs.h
index 1075f2552cfc..4fc87dee005a 100644
--- a/include/linux/backing-dev-defs.h
+++ b/include/linux/backing-dev-defs.h
@@ -63,6 +63,7 @@  enum wb_reason {
 	 * so it has a mismatch name.
 	 */
 	WB_REASON_FORKER_THREAD,
+	WB_REASON_FOREIGN_FLUSH,
 
 	WB_REASON_MAX,
 };
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 44c41462be33..7422e4a4dbeb 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -183,6 +183,19 @@  struct memcg_padding {
 #define MEMCG_PADDING(name)
 #endif
 
+/*
+ * Remember four most recent foreign inodes with dirty pages on this
+ * cgroup.  See mem_cgroup_track_foreign_dirty_slowpath() for details.
+ */
+#define MEMCG_CGWB_FRN_CNT	4
+
+struct memcg_cgwb_frn {
+	u64 bdi_id;			/* bdi->id of the foreign inode */
+	int memcg_id;			/* memcg->css.id of foreign inode */
+	u64 at;				/* jiffies_64 at the time of dirtying */
+	struct wb_completion done;	/* tracks in-flight foreign writebacks */
+};
+
 /*
  * The memory controller data structure. The memory controller controls both
  * page cache and RSS per cgroup. We would eventually like to provide
@@ -307,6 +320,7 @@  struct mem_cgroup {
 #ifdef CONFIG_CGROUP_WRITEBACK
 	struct list_head cgwb_list;
 	struct wb_domain cgwb_domain;
+	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 #endif
 
 	/* List of events which userspace want to receive */
@@ -1218,6 +1232,18 @@  void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
 			 unsigned long *pheadroom, unsigned long *pdirty,
 			 unsigned long *pwriteback);
 
+void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
+					     struct bdi_writeback *wb);
+
+static inline void mem_cgroup_track_foreign_dirty(struct page *page,
+						  struct bdi_writeback *wb)
+{
+	if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
+		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
+}
+
+void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
+
 #else	/* CONFIG_CGROUP_WRITEBACK */
 
 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
@@ -1233,6 +1259,15 @@  static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
 {
 }
 
+static inline void mem_cgroup_track_foreign_dirty(struct page *page,
+						  struct bdi_writeback *wb)
+{
+}
+
+static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
+{
+}
+
 #endif	/* CONFIG_CGROUP_WRITEBACK */
 
 struct sock;
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index cdbb7a84cb6e..e642fbacb504 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -87,6 +87,10 @@  int do_swap_account __read_mostly;
 #define do_swap_account		0
 #endif
 
+#ifdef CONFIG_CGROUP_WRITEBACK
+static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
+#endif
+
 /* Whether legacy memory+swap accounting is active */
 static bool do_memsw_account(void)
 {
@@ -4145,6 +4149,118 @@  void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
 	}
 }
 
+/*
+ * Foreign dirty flushing
+ *
+ * There's an inherent mismatch between memcg and writeback.  The former
+ * trackes ownership per-page while the latter per-inode.  This was a
+ * deliberate design decision because honoring per-page ownership in the
+ * writeback path is complicated, may lead to higher CPU and IO overheads
+ * and deemed unnecessary given that write-sharing an inode across
+ * different cgroups isn't a common use-case.
+ *
+ * Combined with inode majority-writer ownership switching, this works well
+ * enough in most cases but there are some pathological cases.  For
+ * example, let's say there are two cgroups A and B which keep writing to
+ * different but confined parts of the same inode.  B owns the inode and
+ * A's memory is limited far below B's.  A's dirty ratio can rise enough to
+ * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
+ * triggering background writeback.  A will be slowed down without a way to
+ * make writeback of the dirty pages happen.
+ *
+ * Conditions like the above can lead to a cgroup getting repatedly and
+ * severely throttled after making some progress after each
+ * dirty_expire_interval while the underyling IO device is almost
+ * completely idle.
+ *
+ * Solving this problem completely requires matching the ownership tracking
+ * granularities between memcg and writeback in either direction.  However,
+ * the more egregious behaviors can be avoided by simply remembering the
+ * most recent foreign dirtying events and initiating remote flushes on
+ * them when local writeback isn't enough to keep the memory clean enough.
+ *
+ * The following two functions implement such mechanism.  When a foreign
+ * page - a page whose memcg and writeback ownerships don't match - is
+ * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
+ * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
+ * decides that the memcg needs to sleep due to high dirty ratio, it calls
+ * mem_cgroup_flush_foreign() which queues writeback on the recorded
+ * foreign bdi_writebacks which haven't expired.  Both the numbers of
+ * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
+ * limited to MEMCG_CGWB_FRN_CNT.
+ *
+ * The mechanism only remembers IDs and doesn't hold any object references.
+ * As being wrong occasionally doesn't matter, updates and accesses to the
+ * records are lockless and racy.
+ */
+void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
+					     struct bdi_writeback *wb)
+{
+	struct mem_cgroup *memcg = page->mem_cgroup;
+	struct memcg_cgwb_frn *frn;
+	u64 now = jiffies_64;
+	u64 oldest_at = now;
+	int oldest = -1;
+	int i;
+
+	/*
+	 * Pick the slot to use.  If there is already a slot for @wb, keep
+	 * using it.  If not replace the oldest one which isn't being
+	 * written out.
+	 */
+	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+		frn = &memcg->cgwb_frn[i];
+		if (frn->bdi_id == wb->bdi->id &&
+		    frn->memcg_id == wb->memcg_css->id)
+			break;
+		if (frn->at < oldest_at && atomic_read(&frn->done.cnt) == 1) {
+			oldest = i;
+			oldest_at = frn->at;
+		}
+	}
+
+	if (i < MEMCG_CGWB_FRN_CNT) {
+		unsigned long update_intv =
+			min_t(unsigned long, HZ,
+			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
+		/*
+		 * Re-using an existing one.  Let's update timestamp lazily
+		 * to avoid making the cacheline hot.
+		 */
+		if (frn->at < now - update_intv)
+			frn->at = now;
+	} else if (oldest >= 0) {
+		/* replace the oldest free one */
+		frn = &memcg->cgwb_frn[oldest];
+		frn->bdi_id = wb->bdi->id;
+		frn->memcg_id = wb->memcg_css->id;
+		frn->at = now;
+	}
+}
+
+/*
+ * Issue foreign writeback flushes for recorded foreign dirtying events
+ * which haven't expired yet and aren't already being written out.
+ */
+void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
+{
+	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
+	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
+	u64 now = jiffies_64;
+	int i;
+
+	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
+
+		if (frn->at > now - intv && atomic_read(&frn->done.cnt) == 1) {
+			frn->at = 0;
+			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
+					       LONG_MAX, WB_REASON_FOREIGN_FLUSH,
+					       &frn->done);
+		}
+	}
+}
+
 #else	/* CONFIG_CGROUP_WRITEBACK */
 
 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
@@ -4661,6 +4777,7 @@  static struct mem_cgroup *mem_cgroup_alloc(void)
 	struct mem_cgroup *memcg;
 	unsigned int size;
 	int node;
+	int __maybe_unused i;
 
 	size = sizeof(struct mem_cgroup);
 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
@@ -4704,6 +4821,9 @@  static struct mem_cgroup *mem_cgroup_alloc(void)
 #endif
 #ifdef CONFIG_CGROUP_WRITEBACK
 	INIT_LIST_HEAD(&memcg->cgwb_list);
+	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+		memcg->cgwb_frn[i].done =
+			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
 #endif
 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
 	return memcg;
@@ -4833,7 +4953,12 @@  static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 {
 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+	int __maybe_unused i;
 
+#ifdef CONFIG_CGROUP_WRITEBACK
+	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
+#endif
 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
 		static_branch_dec(&memcg_sockets_enabled_key);
 
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 1804f64ff43c..50055d2e4ea8 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -1667,6 +1667,8 @@  static void balance_dirty_pages(struct bdi_writeback *wb,
 		if (unlikely(!writeback_in_progress(wb)))
 			wb_start_background_writeback(wb);
 
+		mem_cgroup_flush_foreign(wb);
+
 		/*
 		 * Calculate global domain's pos_ratio and select the
 		 * global dtc by default.
@@ -2427,6 +2429,8 @@  void account_page_dirtied(struct page *page, struct address_space *mapping)
 		task_io_account_write(PAGE_SIZE);
 		current->nr_dirtied++;
 		this_cpu_inc(bdp_ratelimits);
+
+		mem_cgroup_track_foreign_dirty(page, wb);
 	}
 }