Message ID | 20191128082109.30081-3-tao3.xu@intel.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Build ACPI Heterogeneous Memory Attribute Table (HMAT) | expand |
Tao Xu <tao3.xu@intel.com> writes: > From: Liu Jingqi <jingqi.liu@intel.com> > > Add -numa hmat-lb option to provide System Locality Latency and > Bandwidth Information. These memory attributes help to build > System Locality Latency and Bandwidth Information Structure(s) > in ACPI Heterogeneous Memory Attribute Table (HMAT). Before using > hmat-lb option, enable HMAT with -machine hmat=on. > > Signed-off-by: Liu Jingqi <jingqi.liu@intel.com> > Signed-off-by: Tao Xu <tao3.xu@intel.com> > --- [...] > diff --git a/qapi/machine.json b/qapi/machine.json > index 27d0e37534..cf9851fcd1 100644 > --- a/qapi/machine.json > +++ b/qapi/machine.json > @@ -426,10 +426,12 @@ > # > # @cpu: property based CPU(s) to node mapping (Since: 2.10) > # > +# @hmat-lb: memory latency and bandwidth information (Since: 5.0) > +# > # Since: 2.1 > ## > { 'enum': 'NumaOptionsType', > - 'data': [ 'node', 'dist', 'cpu' ] } > + 'data': [ 'node', 'dist', 'cpu', 'hmat-lb' ] } > > ## > # @NumaOptions: > @@ -444,7 +446,8 @@ > 'data': { > 'node': 'NumaNodeOptions', > 'dist': 'NumaDistOptions', > - 'cpu': 'NumaCpuOptions' }} > + 'cpu': 'NumaCpuOptions', > + 'hmat-lb': 'NumaHmatLBOptions' }} > > ## > # @NumaNodeOptions: > @@ -557,6 +560,92 @@ > 'base': 'CpuInstanceProperties', > 'data' : {} } > > +## > +# @HmatLBMemoryHierarchy: > +# > +# The memory hierarchy in the System Locality Latency and Bandwidth > +# Information Structure of HMAT (Heterogeneous Memory Attribute Table) > +# > +# For more information about @HmatLBMemoryHierarchy see chapter @HmatLBMemoryHierarchy, see > +# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. > +# > +# @memory: the structure represents the memory performance > +# > +# @first-level: first level of memory side cache > +# > +# @second-level: second level of memory side cache > +# > +# @third-level: third level of memory side cache > +# > +# Since: 5.0 > +## > +{ 'enum': 'HmatLBMemoryHierarchy', > + 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } > + > +## > +# @HmatLBDataType: > +# > +# Data type in the System Locality Latency and Bandwidth > +# Information Structure of HMAT (Heterogeneous Memory Attribute Table) > +# > +# For more information about @HmatLBDataType see chapter @HmatLBDataType, see > +# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. > +# > +# @access-latency: access latency (nanoseconds) > +# > +# @read-latency: read latency (nanoseconds) > +# > +# @write-latency: write latency (nanoseconds) > +# > +# @access-bandwidth: access bandwidth (Bytes per second) > +# > +# @read-bandwidth: read bandwidth (Bytes per second) > +# > +# @write-bandwidth: write bandwidth (Bytes per second) > +# > +# Since: 5.0 > +## > +{ 'enum': 'HmatLBDataType', > + 'data': [ 'access-latency', 'read-latency', 'write-latency', > + 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } > + > +## > +# @NumaHmatLBOptions: > +# > +# Set the system locality latency and bandwidth information > +# between Initiator and Target proximity Domains. > +# > +# For more information about @NumaHmatLBOptions see chapter @NumaHmatLBOptions, see > +# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. > +# > +# @initiator: the Initiator Proximity Domain. > +# > +# @target: the Target Proximity Domain. > +# > +# @hierarchy: the Memory Hierarchy. Indicates the performance > +# of memory or side cache. > +# > +# @data-type: presents the type of data, access/read/write > +# latency or hit latency. > +# > +# @latency: the value of latency from @initiator to @target > +# proximity domain, the latency unit is "ns(nanosecond)". > +# > +# @bandwidth: the value of bandwidth between @initiator and @target > +# proximity domain, the bandwidth unit is > +# "Bytes per second". > +# > +# Since: 5.0 > +## > +{ 'struct': 'NumaHmatLBOptions', > + 'data': { > + 'initiator': 'uint16', > + 'target': 'uint16', > + 'hierarchy': 'HmatLBMemoryHierarchy', > + 'data-type': 'HmatLBDataType', > + '*latency': 'uint64', > + '*bandwidth': 'size' }} > + > ## > # @HostMemPolicy: > # > diff --git a/qemu-options.hx b/qemu-options.hx > index 63f6b33322..23303fc7d7 100644 > --- a/qemu-options.hx > +++ b/qemu-options.hx > @@ -168,16 +168,19 @@ DEF("numa", HAS_ARG, QEMU_OPTION_numa, > "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" > "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" > "-numa dist,src=source,dst=destination,val=distance\n" > - "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n", > + "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n" > + "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n", > QEMU_ARCH_ALL) > STEXI > @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] > @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] > @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance} > @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}] > +@itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}] > @findex -numa > Define a NUMA node and assign RAM and VCPUs to it. > Set the NUMA distance from a source node to a destination node. > +Set the ACPI Heterogeneous Memory Attributes for the given nodes. > > Legacy VCPU assignment uses @samp{cpus} option where > @var{firstcpu} and @var{lastcpu} are CPU indexes. Each > @@ -256,6 +259,49 @@ specified resources, it just assigns existing resources to NUMA > nodes. This means that one still has to use the @option{-m}, > @option{-smp} options to allocate RAM and VCPUs respectively. > > +Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information > +between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT). > +Initiator NUMA node can create memory requests, usually it has one or more processors. > +Target NUMA node contains addressable memory. > + > +In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the memory > +hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the structure > +represents the memory performance; if @var{hierarchy} is 'first-level|second-level|third-level', > +this structure represents aggregated performance of memory side caches for each domain. > +@var{type} of 'data-type' is type of data represented by this structure instance: > +if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or 'access|read|write' > +bandwidth of the target memory; if 'hierarchy' is 'first-level|second-level|third-level', > +'data-type' is 'access|read|write' hit latency or 'access|read|write' hit bandwidth of the > +target memory side cache. > + > +@var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value, > +the possible value and units are NUM[M|G|T], mean that the bandwidth value are > +NUM byte per second (or MB/s, GB/s or TB/s depending on used suffix). > +And if input bandwidth value without any unit, the unit will be byte per second. This sentence feels redundant to me. > +Note that if latency or bandwidth value is 0, means the corresponding latency or > +bandwidth information is not provided. > + > +For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and > +a ram, node 1 has only a ram. The processors in node 0 access memory in node > +0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s; > +The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10 > +nanoseconds, access-bandwidth is 100 MB/s. > +@example > +-machine hmat=on \ > +-m 2G \ > +-object memory-backend-ram,size=1G,id=m0 \ > +-object memory-backend-ram,size=1G,id=m1 \ > +-smp 2 \ > +-numa node,nodeid=0,memdev=m0 \ > +-numa node,nodeid=1,memdev=m1,initiator=0 \ > +-numa cpu,node-id=0,socket-id=0 \ > +-numa cpu,node-id=0,socket-id=1 \ > +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \ > +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \ > +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \ > +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M > +@end example > + > ETEXI > > DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
On 11/28/2019 7:50 PM, Markus Armbruster wrote: > Tao Xu <tao3.xu@intel.com> writes: > >> From: Liu Jingqi <jingqi.liu@intel.com> >> >> Add -numa hmat-lb option to provide System Locality Latency and >> Bandwidth Information. These memory attributes help to build >> System Locality Latency and Bandwidth Information Structure(s) >> in ACPI Heterogeneous Memory Attribute Table (HMAT). Before using >> hmat-lb option, enable HMAT with -machine hmat=on. >> >> Signed-off-by: Liu Jingqi <jingqi.liu@intel.com> >> Signed-off-by: Tao Xu <tao3.xu@intel.com> >> --- > [...] >> diff --git a/qapi/machine.json b/qapi/machine.json >> index 27d0e37534..cf9851fcd1 100644 >> --- a/qapi/machine.json >> +++ b/qapi/machine.json >> @@ -426,10 +426,12 @@ >> # >> # @cpu: property based CPU(s) to node mapping (Since: 2.10) >> # >> +# @hmat-lb: memory latency and bandwidth information (Since: 5.0) >> +# >> # Since: 2.1 >> ## >> { 'enum': 'NumaOptionsType', >> - 'data': [ 'node', 'dist', 'cpu' ] } >> + 'data': [ 'node', 'dist', 'cpu', 'hmat-lb' ] } >> >> ## >> # @NumaOptions: >> @@ -444,7 +446,8 @@ >> 'data': { >> 'node': 'NumaNodeOptions', >> 'dist': 'NumaDistOptions', >> - 'cpu': 'NumaCpuOptions' }} >> + 'cpu': 'NumaCpuOptions', >> + 'hmat-lb': 'NumaHmatLBOptions' }} >> >> ## >> # @NumaNodeOptions: >> @@ -557,6 +560,92 @@ >> 'base': 'CpuInstanceProperties', >> 'data' : {} } >> >> +## >> +# @HmatLBMemoryHierarchy: >> +# >> +# The memory hierarchy in the System Locality Latency and Bandwidth >> +# Information Structure of HMAT (Heterogeneous Memory Attribute Table) >> +# >> +# For more information about @HmatLBMemoryHierarchy see chapter > > @HmatLBMemoryHierarchy, see > >> +# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. >> +# >> +# @memory: the structure represents the memory performance >> +# >> +# @first-level: first level of memory side cache >> +# >> +# @second-level: second level of memory side cache >> +# >> +# @third-level: third level of memory side cache >> +# >> +# Since: 5.0 >> +## >> +{ 'enum': 'HmatLBMemoryHierarchy', >> + 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } >> + >> +## >> +# @HmatLBDataType: >> +# >> +# Data type in the System Locality Latency and Bandwidth >> +# Information Structure of HMAT (Heterogeneous Memory Attribute Table) >> +# >> +# For more information about @HmatLBDataType see chapter > > @HmatLBDataType, see > >> +# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. >> +# >> +# @access-latency: access latency (nanoseconds) >> +# >> +# @read-latency: read latency (nanoseconds) >> +# >> +# @write-latency: write latency (nanoseconds) >> +# >> +# @access-bandwidth: access bandwidth (Bytes per second) >> +# >> +# @read-bandwidth: read bandwidth (Bytes per second) >> +# >> +# @write-bandwidth: write bandwidth (Bytes per second) >> +# >> +# Since: 5.0 >> +## >> +{ 'enum': 'HmatLBDataType', >> + 'data': [ 'access-latency', 'read-latency', 'write-latency', >> + 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } >> + >> +## >> +# @NumaHmatLBOptions: >> +# >> +# Set the system locality latency and bandwidth information >> +# between Initiator and Target proximity Domains. >> +# >> +# For more information about @NumaHmatLBOptions see chapter > > @NumaHmatLBOptions, see > >> +# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. >> +# >> +# @initiator: the Initiator Proximity Domain. >> +# >> +# @target: the Target Proximity Domain. >> +# >> +# @hierarchy: the Memory Hierarchy. Indicates the performance >> +# of memory or side cache. >> +# >> +# @data-type: presents the type of data, access/read/write >> +# latency or hit latency. >> +# >> +# @latency: the value of latency from @initiator to @target >> +# proximity domain, the latency unit is "ns(nanosecond)". >> +# >> +# @bandwidth: the value of bandwidth between @initiator and @target >> +# proximity domain, the bandwidth unit is >> +# "Bytes per second". >> +# >> +# Since: 5.0 >> +## >> +{ 'struct': 'NumaHmatLBOptions', >> + 'data': { >> + 'initiator': 'uint16', >> + 'target': 'uint16', >> + 'hierarchy': 'HmatLBMemoryHierarchy', >> + 'data-type': 'HmatLBDataType', >> + '*latency': 'uint64', >> + '*bandwidth': 'size' }} >> + >> ## >> # @HostMemPolicy: >> # >> diff --git a/qemu-options.hx b/qemu-options.hx >> index 63f6b33322..23303fc7d7 100644 >> --- a/qemu-options.hx >> +++ b/qemu-options.hx >> @@ -168,16 +168,19 @@ DEF("numa", HAS_ARG, QEMU_OPTION_numa, >> "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" >> "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" >> "-numa dist,src=source,dst=destination,val=distance\n" >> - "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n", >> + "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n" >> + "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n", >> QEMU_ARCH_ALL) >> STEXI >> @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] >> @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] >> @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance} >> @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}] >> +@itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}] >> @findex -numa >> Define a NUMA node and assign RAM and VCPUs to it. >> Set the NUMA distance from a source node to a destination node. >> +Set the ACPI Heterogeneous Memory Attributes for the given nodes. >> >> Legacy VCPU assignment uses @samp{cpus} option where >> @var{firstcpu} and @var{lastcpu} are CPU indexes. Each >> @@ -256,6 +259,49 @@ specified resources, it just assigns existing resources to NUMA >> nodes. This means that one still has to use the @option{-m}, >> @option{-smp} options to allocate RAM and VCPUs respectively. >> >> +Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information >> +between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT). >> +Initiator NUMA node can create memory requests, usually it has one or more processors. >> +Target NUMA node contains addressable memory. >> + >> +In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the memory >> +hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the structure >> +represents the memory performance; if @var{hierarchy} is 'first-level|second-level|third-level', >> +this structure represents aggregated performance of memory side caches for each domain. >> +@var{type} of 'data-type' is type of data represented by this structure instance: >> +if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or 'access|read|write' >> +bandwidth of the target memory; if 'hierarchy' is 'first-level|second-level|third-level', >> +'data-type' is 'access|read|write' hit latency or 'access|read|write' hit bandwidth of the >> +target memory side cache. >> + >> +@var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value, >> +the possible value and units are NUM[M|G|T], mean that the bandwidth value are >> +NUM byte per second (or MB/s, GB/s or TB/s depending on used suffix). >> +And if input bandwidth value without any unit, the unit will be byte per second. > > This sentence feels redundant to meOK, I will remove this sentence: "And if input bandwidth value without any unit, the unit will be byte per second." > >> +Note that if latency or bandwidth value is 0, means the corresponding latency or >> +bandwidth information is not provided. >> + >> +For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and >> +a ram, node 1 has only a ram. The processors in node 0 access memory in node >> +0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s; >> +The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10 >> +nanoseconds, access-bandwidth is 100 MB/s. >> +@example >> +-machine hmat=on \ >> +-m 2G \ >> +-object memory-backend-ram,size=1G,id=m0 \ >> +-object memory-backend-ram,size=1G,id=m1 \ >> +-smp 2 \ >> +-numa node,nodeid=0,memdev=m0 \ >> +-numa node,nodeid=1,memdev=m1,initiator=0 \ >> +-numa cpu,node-id=0,socket-id=0 \ >> +-numa cpu,node-id=0,socket-id=1 \ >> +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \ >> +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \ >> +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \ >> +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M >> +@end example >> + >> ETEXI >> >> DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd, >
diff --git a/hw/core/numa.c b/hw/core/numa.c index e60da99293..2183c8df1f 100644 --- a/hw/core/numa.c +++ b/hw/core/numa.c @@ -23,6 +23,7 @@ */ #include "qemu/osdep.h" +#include "qemu/units.h" #include "sysemu/hostmem.h" #include "sysemu/numa.h" #include "sysemu/sysemu.h" @@ -198,6 +199,173 @@ void parse_numa_distance(MachineState *ms, NumaDistOptions *dist, Error **errp) ms->numa_state->have_numa_distance = true; } +void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node, + Error **errp) +{ + int i, first_bit, last_bit; + uint64_t max_entry, temp_base_la; + NodeInfo *numa_info = numa_state->nodes; + HMAT_LB_Info *hmat_lb = + numa_state->hmat_lb[node->hierarchy][node->data_type]; + HMAT_LB_Data lb_data = {}; + HMAT_LB_Data *lb_temp; + + /* Error checking */ + if (node->initiator > numa_state->num_nodes) { + error_setg(errp, "Invalid initiator=%d, it should be less than %d", + node->initiator, numa_state->num_nodes); + return; + } + if (node->target > numa_state->num_nodes) { + error_setg(errp, "Invalid target=%d, it should be less than %d", + node->target, numa_state->num_nodes); + return; + } + if (!numa_info[node->initiator].has_cpu) { + error_setg(errp, "Invalid initiator=%d, it isn't an " + "initiator proximity domain", node->initiator); + return; + } + if (!numa_info[node->target].present) { + error_setg(errp, "The target=%d should point to an existing node", + node->target); + return; + } + + if (!hmat_lb) { + hmat_lb = g_malloc0(sizeof(*hmat_lb)); + numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb; + hmat_lb->list = g_array_new(false, true, sizeof(HMAT_LB_Data)); + } + hmat_lb->hierarchy = node->hierarchy; + hmat_lb->data_type = node->data_type; + lb_data.initiator = node->initiator; + lb_data.target = node->target; + + if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) { + /* Input latency data */ + + if (!node->has_latency) { + error_setg(errp, "Missing 'latency' option"); + return; + } + if (node->has_bandwidth) { + error_setg(errp, "Invalid option 'bandwidth' since " + "the data type is latency"); + return; + } + + /* Detect duplicate configuration */ + for (i = 0; i < hmat_lb->list->len; i++) { + lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i); + + if (node->initiator == lb_temp->initiator && + node->target == lb_temp->target) { + error_setg(errp, "Duplicate configuration of the latency for " + "initiator=%d and target=%d", node->initiator, + node->target); + return; + } + } + + hmat_lb->base = hmat_lb->base ? hmat_lb->base : UINT64_MAX; + + if (node->latency) { + /* Calculate the temporary base and compressed latency */ + max_entry = node->latency; + temp_base_la = 1; + while (QEMU_IS_ALIGNED(max_entry, 10)) { + max_entry /= 10; + temp_base_la *= 10; + } + + /* Calculate the max compressed latency */ + hmat_lb->base = MIN(hmat_lb->base, temp_base_la); + max_entry = node->latency / hmat_lb->base; + hmat_lb->range_bitmap = MAX(hmat_lb->range_bitmap, max_entry); + + /* + * For latency hmat_lb->range_bitmap record the max compressed + * latency which should be less than 0xFFFF (UINT16_MAX) + */ + if (hmat_lb->range_bitmap >= UINT16_MAX) { + error_setg(errp, "Latency %" PRIu64 " between initiator=%d and " + "target=%d should not differ from previously entered " + "min or max values on more than %d", node->latency, + node->initiator, node->target, UINT16_MAX - 1); + return; + } + + /* + * Set lb_info_provided bit 0 as 1, + * latency information is provided + */ + numa_info[node->target].lb_info_provided |= BIT(0); + } + lb_data.data = node->latency; + } else if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) { + /* Input bandwidth data */ + + if (!node->has_bandwidth) { + error_setg(errp, "Missing 'bandwidth' option"); + return; + } + if (node->has_latency) { + error_setg(errp, "Invalid option 'latency' since " + "the data type is bandwidth"); + return; + } + if (!QEMU_IS_ALIGNED(node->bandwidth, MiB)) { + error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and " + "target=%d should be 1MB aligned", node->bandwidth, + node->initiator, node->target); + return; + } + + /* Detect duplicate configuration */ + for (i = 0; i < hmat_lb->list->len; i++) { + lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i); + + if (node->initiator == lb_temp->initiator && + node->target == lb_temp->target) { + error_setg(errp, "Duplicate configuration of the bandwidth for " + "initiator=%d and target=%d", node->initiator, + node->target); + return; + } + } + + hmat_lb->range_bitmap |= node->bandwidth; + first_bit = ctz64(hmat_lb->range_bitmap); + hmat_lb->base = UINT64_C(1) << first_bit; + max_entry = node->bandwidth / hmat_lb->base; + last_bit = 64 - clz64(hmat_lb->range_bitmap); + + /* + * For bandwidth, first_bit record the base unit of bandwidth bits, + * last_bit record the last bit of the max bandwidth. The max compressed + * bandwidth should be less than 0xFFFF (UINT16_MAX) + */ + if ((last_bit - first_bit) > UINT16_BITS || max_entry >= UINT16_MAX) { + error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and " + "target=%d should not differ from previously entered " + "values on more than %d", node->bandwidth, + node->initiator, node->target, UINT16_MAX - 1); + return; + } + + /* Set lb_info_provided bit 1 as 1, bandwidth information is provided */ + if (node->bandwidth) { + numa_info[node->target].lb_info_provided |= BIT(1); + } + lb_data.data = node->bandwidth; + } else { + assert(0); + } + + g_array_append_val(hmat_lb->list, lb_data); +} + void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) { Error *err = NULL; @@ -236,6 +404,19 @@ void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu), &err); break; + case NUMA_OPTIONS_TYPE_HMAT_LB: + if (!ms->numa_state->hmat_enabled) { + error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " + "(HMAT) is disabled, enable it with -machine hmat=on " + "before using any of hmat specific options"); + return; + } + + parse_numa_hmat_lb(ms->numa_state, &object->u.hmat_lb, &err); + if (err) { + goto end; + } + break; default: abort(); } diff --git a/include/sysemu/numa.h b/include/sysemu/numa.h index 788cbec7a2..70f93c83d7 100644 --- a/include/sysemu/numa.h +++ b/include/sysemu/numa.h @@ -14,11 +14,34 @@ struct CPUArchId; #define NUMA_DISTANCE_MAX 254 #define NUMA_DISTANCE_UNREACHABLE 255 +/* the value of AcpiHmatLBInfo flags */ +enum { + HMAT_LB_MEM_MEMORY = 0, + HMAT_LB_MEM_CACHE_1ST_LEVEL = 1, + HMAT_LB_MEM_CACHE_2ND_LEVEL = 2, + HMAT_LB_MEM_CACHE_3RD_LEVEL = 3, + HMAT_LB_LEVELS /* must be the last entry */ +}; + +/* the value of AcpiHmatLBInfo data type */ +enum { + HMAT_LB_DATA_ACCESS_LATENCY = 0, + HMAT_LB_DATA_READ_LATENCY = 1, + HMAT_LB_DATA_WRITE_LATENCY = 2, + HMAT_LB_DATA_ACCESS_BANDWIDTH = 3, + HMAT_LB_DATA_READ_BANDWIDTH = 4, + HMAT_LB_DATA_WRITE_BANDWIDTH = 5, + HMAT_LB_TYPES /* must be the last entry */ +}; + +#define UINT16_BITS 16 + struct NodeInfo { uint64_t node_mem; struct HostMemoryBackend *node_memdev; bool present; bool has_cpu; + uint8_t lb_info_provided; uint16_t initiator; uint8_t distance[MAX_NODES]; }; @@ -28,6 +51,31 @@ struct NumaNodeMem { uint64_t node_plugged_mem; }; +struct HMAT_LB_Data { + uint8_t initiator; + uint8_t target; + uint64_t data; +}; +typedef struct HMAT_LB_Data HMAT_LB_Data; + +struct HMAT_LB_Info { + /* Indicates it's memory or the specified level memory side cache. */ + uint8_t hierarchy; + + /* Present the type of data, access/read/write latency or bandwidth. */ + uint8_t data_type; + + /* The range bitmap of bandwidth for calculating common base */ + uint64_t range_bitmap; + + /* The common base unit for latencies or bandwidths */ + uint64_t base; + + /* Array to store the latencies or bandwidths */ + GArray *list; +}; +typedef struct HMAT_LB_Info HMAT_LB_Info; + struct NumaState { /* Number of NUMA nodes */ int num_nodes; @@ -40,11 +88,16 @@ struct NumaState { /* NUMA nodes information */ NodeInfo nodes[MAX_NODES]; + + /* NUMA nodes HMAT Locality Latency and Bandwidth Information */ + HMAT_LB_Info *hmat_lb[HMAT_LB_LEVELS][HMAT_LB_TYPES]; }; typedef struct NumaState NumaState; void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp); void parse_numa_opts(MachineState *ms); +void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node, + Error **errp); void numa_complete_configuration(MachineState *ms); void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms); extern QemuOptsList qemu_numa_opts; diff --git a/qapi/machine.json b/qapi/machine.json index 27d0e37534..cf9851fcd1 100644 --- a/qapi/machine.json +++ b/qapi/machine.json @@ -426,10 +426,12 @@ # # @cpu: property based CPU(s) to node mapping (Since: 2.10) # +# @hmat-lb: memory latency and bandwidth information (Since: 5.0) +# # Since: 2.1 ## { 'enum': 'NumaOptionsType', - 'data': [ 'node', 'dist', 'cpu' ] } + 'data': [ 'node', 'dist', 'cpu', 'hmat-lb' ] } ## # @NumaOptions: @@ -444,7 +446,8 @@ 'data': { 'node': 'NumaNodeOptions', 'dist': 'NumaDistOptions', - 'cpu': 'NumaCpuOptions' }} + 'cpu': 'NumaCpuOptions', + 'hmat-lb': 'NumaHmatLBOptions' }} ## # @NumaNodeOptions: @@ -557,6 +560,92 @@ 'base': 'CpuInstanceProperties', 'data' : {} } +## +# @HmatLBMemoryHierarchy: +# +# The memory hierarchy in the System Locality Latency and Bandwidth +# Information Structure of HMAT (Heterogeneous Memory Attribute Table) +# +# For more information about @HmatLBMemoryHierarchy see chapter +# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec. +# +# @memory: the structure represents the memory performance +# +# @first-level: first level of memory side cache +# +# @second-level: second level of memory side cache +# +# @third-level: third level of memory side cache +# +# Since: 5.0 +## +{ 'enum': 'HmatLBMemoryHierarchy', + 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] } + +## +# @HmatLBDataType: +# +# Data type in the System Locality Latency and Bandwidth +# Information Structure of HMAT (Heterogeneous Memory Attribute Table) +# +# For more information about @HmatLBDataType see chapter +# 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec. +# +# @access-latency: access latency (nanoseconds) +# +# @read-latency: read latency (nanoseconds) +# +# @write-latency: write latency (nanoseconds) +# +# @access-bandwidth: access bandwidth (Bytes per second) +# +# @read-bandwidth: read bandwidth (Bytes per second) +# +# @write-bandwidth: write bandwidth (Bytes per second) +# +# Since: 5.0 +## +{ 'enum': 'HmatLBDataType', + 'data': [ 'access-latency', 'read-latency', 'write-latency', + 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] } + +## +# @NumaHmatLBOptions: +# +# Set the system locality latency and bandwidth information +# between Initiator and Target proximity Domains. +# +# For more information about @NumaHmatLBOptions see chapter +# 5.2.27.4: Table 5-146 of ACPI 6.3 spec. +# +# @initiator: the Initiator Proximity Domain. +# +# @target: the Target Proximity Domain. +# +# @hierarchy: the Memory Hierarchy. Indicates the performance +# of memory or side cache. +# +# @data-type: presents the type of data, access/read/write +# latency or hit latency. +# +# @latency: the value of latency from @initiator to @target +# proximity domain, the latency unit is "ns(nanosecond)". +# +# @bandwidth: the value of bandwidth between @initiator and @target +# proximity domain, the bandwidth unit is +# "Bytes per second". +# +# Since: 5.0 +## +{ 'struct': 'NumaHmatLBOptions', + 'data': { + 'initiator': 'uint16', + 'target': 'uint16', + 'hierarchy': 'HmatLBMemoryHierarchy', + 'data-type': 'HmatLBDataType', + '*latency': 'uint64', + '*bandwidth': 'size' }} + ## # @HostMemPolicy: # diff --git a/qemu-options.hx b/qemu-options.hx index 63f6b33322..23303fc7d7 100644 --- a/qemu-options.hx +++ b/qemu-options.hx @@ -168,16 +168,19 @@ DEF("numa", HAS_ARG, QEMU_OPTION_numa, "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n" "-numa dist,src=source,dst=destination,val=distance\n" - "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n", + "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n" + "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n", QEMU_ARCH_ALL) STEXI @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}] @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance} @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}] +@itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}] @findex -numa Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA distance from a source node to a destination node. +Set the ACPI Heterogeneous Memory Attributes for the given nodes. Legacy VCPU assignment uses @samp{cpus} option where @var{firstcpu} and @var{lastcpu} are CPU indexes. Each @@ -256,6 +259,49 @@ specified resources, it just assigns existing resources to NUMA nodes. This means that one still has to use the @option{-m}, @option{-smp} options to allocate RAM and VCPUs respectively. +Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information +between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT). +Initiator NUMA node can create memory requests, usually it has one or more processors. +Target NUMA node contains addressable memory. + +In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the memory +hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the structure +represents the memory performance; if @var{hierarchy} is 'first-level|second-level|third-level', +this structure represents aggregated performance of memory side caches for each domain. +@var{type} of 'data-type' is type of data represented by this structure instance: +if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or 'access|read|write' +bandwidth of the target memory; if 'hierarchy' is 'first-level|second-level|third-level', +'data-type' is 'access|read|write' hit latency or 'access|read|write' hit bandwidth of the +target memory side cache. + +@var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value, +the possible value and units are NUM[M|G|T], mean that the bandwidth value are +NUM byte per second (or MB/s, GB/s or TB/s depending on used suffix). +And if input bandwidth value without any unit, the unit will be byte per second. +Note that if latency or bandwidth value is 0, means the corresponding latency or +bandwidth information is not provided. + +For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and +a ram, node 1 has only a ram. The processors in node 0 access memory in node +0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s; +The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10 +nanoseconds, access-bandwidth is 100 MB/s. +@example +-machine hmat=on \ +-m 2G \ +-object memory-backend-ram,size=1G,id=m0 \ +-object memory-backend-ram,size=1G,id=m1 \ +-smp 2 \ +-numa node,nodeid=0,memdev=m0 \ +-numa node,nodeid=1,memdev=m1,initiator=0 \ +-numa cpu,node-id=0,socket-id=0 \ +-numa cpu,node-id=0,socket-id=1 \ +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \ +-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \ +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \ +-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M +@end example + ETEXI DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,