Message ID | 20191129213917.1301110-3-niklas.cassel@linaro.org (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Add support for QCOM Core Power Reduction | expand |
On Fri, 29 Nov 2019 at 22:39, Niklas Cassel <niklas.cassel@linaro.org> wrote: > > CPR (Core Power Reduction) is a technology that reduces core power on a > CPU or other device. It reads voltage settings in efuse from product > test process as initial settings. > Each OPP corresponds to a "corner" that has a range of valid voltages > for a particular frequency. While the device is running at a particular > frequency, CPR monitors dynamic factors such as temperature, etc. and > adjusts the voltage for that frequency accordingly to save power > and meet silicon characteristic requirements. > > This driver is based on an RFC by Stephen Boyd[1], which in turn is > based on work by others on codeaurora.org[2]. > > [1] https://lkml.org/lkml/2015/9/18/833 > [2] https://source.codeaurora.org/quic/la/kernel/msm-4.14/tree/drivers/regulator/cpr-regulator.c?h=msm-4.14 > > Co-developed-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> > Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> > Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org> > Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org> Thanks for addressing my earlier comments, this looks good to me! Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Kind regards Uffe > --- > Changes since v6: > -Picked up Bjorn's Reviewed-by. > -Initialize mutex later. > -Take the mutex in cpr_pd_attach_dev(), in case we ever > implement async attach in the future. > -Add comment regarding why we get the cpu clock rate. > -Add comment how we handle unlisted frequencies. > -Clarify comment regarding why things related to virtual corners > are performed in cpr_pd_attach_dev(). > -Removed the internal performance_state variable, the performance > state is instead calculated using the current corner pointer. > -Save a pointer to the first genpd dev that gets attached, > and use that rather than get_cpu_device(0), when getting the CPU > OPP table. > > MAINTAINERS | 8 + > drivers/power/avs/Kconfig | 15 + > drivers/power/avs/Makefile | 1 + > drivers/power/avs/qcom-cpr.c | 1792 ++++++++++++++++++++++++++++++++++ > 4 files changed, 1816 insertions(+) > create mode 100644 drivers/power/avs/qcom-cpr.c > > diff --git a/MAINTAINERS b/MAINTAINERS > index b8fa7652a736..3ab2bfb02b7d 100644 > --- a/MAINTAINERS > +++ b/MAINTAINERS > @@ -13674,6 +13674,14 @@ S: Maintained > F: Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt > F: drivers/cpufreq/qcom-cpufreq-nvmem.c > > +QUALCOMM CORE POWER REDUCTION (CPR) AVS DRIVER > +M: Niklas Cassel <nks@flawful.org> > +L: linux-pm@vger.kernel.org > +L: linux-arm-msm@vger.kernel.org > +S: Maintained > +F: Documentation/devicetree/bindings/power/avs/qcom,cpr.txt > +F: drivers/power/avs/qcom-cpr.c > + > QUALCOMM EMAC GIGABIT ETHERNET DRIVER > M: Timur Tabi <timur@kernel.org> > L: netdev@vger.kernel.org > diff --git a/drivers/power/avs/Kconfig b/drivers/power/avs/Kconfig > index b5a217b828dc..f4bf313257bb 100644 > --- a/drivers/power/avs/Kconfig > +++ b/drivers/power/avs/Kconfig > @@ -12,6 +12,21 @@ menuconfig POWER_AVS > > Say Y here to enable Adaptive Voltage Scaling class support. > > +config QCOM_CPR > + tristate "QCOM Core Power Reduction (CPR) support" > + depends on POWER_AVS > + select PM_OPP > + help > + Say Y here to enable support for the CPR hardware found on Qualcomm > + SoCs like QCS404. > + > + This driver populates CPU OPPs tables and makes adjustments to the > + tables based on feedback from the CPR hardware. If you want to do > + CPUfrequency scaling say Y here. > + > + To compile this driver as a module, choose M here: the module will > + be called qcom-cpr > + > config ROCKCHIP_IODOMAIN > tristate "Rockchip IO domain support" > depends on POWER_AVS && ARCH_ROCKCHIP && OF > diff --git a/drivers/power/avs/Makefile b/drivers/power/avs/Makefile > index a1b8cd453f19..9007d05853e2 100644 > --- a/drivers/power/avs/Makefile > +++ b/drivers/power/avs/Makefile > @@ -1,3 +1,4 @@ > # SPDX-License-Identifier: GPL-2.0-only > obj-$(CONFIG_POWER_AVS_OMAP) += smartreflex.o > +obj-$(CONFIG_QCOM_CPR) += qcom-cpr.o > obj-$(CONFIG_ROCKCHIP_IODOMAIN) += rockchip-io-domain.o > diff --git a/drivers/power/avs/qcom-cpr.c b/drivers/power/avs/qcom-cpr.c > new file mode 100644 > index 000000000000..a3187973bbb5 > --- /dev/null > +++ b/drivers/power/avs/qcom-cpr.c > @@ -0,0 +1,1792 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. > + * Copyright (c) 2019, Linaro Limited > + */ > + > +#include <linux/module.h> > +#include <linux/err.h> > +#include <linux/debugfs.h> > +#include <linux/string.h> > +#include <linux/kernel.h> > +#include <linux/list.h> > +#include <linux/init.h> > +#include <linux/io.h> > +#include <linux/bitops.h> > +#include <linux/slab.h> > +#include <linux/of.h> > +#include <linux/of_device.h> > +#include <linux/platform_device.h> > +#include <linux/pm_domain.h> > +#include <linux/pm_opp.h> > +#include <linux/interrupt.h> > +#include <linux/regmap.h> > +#include <linux/mfd/syscon.h> > +#include <linux/regulator/consumer.h> > +#include <linux/clk.h> > +#include <linux/nvmem-consumer.h> > +#include <linux/bitops.h> > + > +/* Register Offsets for RB-CPR and Bit Definitions */ > + > +/* RBCPR Version Register */ > +#define REG_RBCPR_VERSION 0 > +#define RBCPR_VER_2 0x02 > +#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0) > + > +/* RBCPR Gate Count and Target Registers */ > +#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n)) > + > +#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0 > +#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0) > +#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12 > +#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0) > + > +/* RBCPR Timer Control */ > +#define REG_RBCPR_TIMER_INTERVAL 0x44 > +#define REG_RBIF_TIMER_ADJUST 0x4c > + > +#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0) > +#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0 > +#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0) > +#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4 > +#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0) > +#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8 > + > +/* RBCPR Config Register */ > +#define REG_RBIF_LIMIT 0x48 > +#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0) > +#define RBIF_LIMIT_CEILING_SHIFT 6 > +#define RBIF_LIMIT_FLOOR_BITS 6 > +#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0) > + > +#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK > +#define RBIF_LIMIT_FLOOR_DEFAULT 0 > + > +#define REG_RBIF_SW_VLEVEL 0x94 > +#define RBIF_SW_VLEVEL_DEFAULT 0x20 > + > +#define REG_RBCPR_STEP_QUOT 0x80 > +#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0) > +#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0) > +#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8 > + > +/* RBCPR Control Register */ > +#define REG_RBCPR_CTL 0x90 > + > +#define RBCPR_CTL_LOOP_EN BIT(0) > +#define RBCPR_CTL_TIMER_EN BIT(3) > +#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5) > +#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6) > +#define RBCPR_CTL_COUNT_MODE BIT(10) > +#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0) > +#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24 > +#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0) > +#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28 > + > +/* RBCPR Ack/Nack Response */ > +#define REG_RBIF_CONT_ACK_CMD 0x98 > +#define REG_RBIF_CONT_NACK_CMD 0x9c > + > +/* RBCPR Result status Register */ > +#define REG_RBCPR_RESULT_0 0xa0 > + > +#define RBCPR_RESULT0_BUSY_SHIFT 19 > +#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT) > +#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18 > +#define RBCPR_RESULT0_ERROR_SHIFT 6 > +#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0) > +#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2 > +#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0) > +#define RBCPR_RESULT0_STEP_UP_SHIFT 1 > + > +/* RBCPR Interrupt Control Register */ > +#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n)) > +#define REG_RBIF_IRQ_CLEAR 0x110 > +#define REG_RBIF_IRQ_STATUS 0x114 > + > +#define CPR_INT_DONE BIT(0) > +#define CPR_INT_MIN BIT(1) > +#define CPR_INT_DOWN BIT(2) > +#define CPR_INT_MID BIT(3) > +#define CPR_INT_UP BIT(4) > +#define CPR_INT_MAX BIT(5) > +#define CPR_INT_CLAMP BIT(6) > +#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \ > + CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP) > +#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN) > + > +#define CPR_NUM_RING_OSC 8 > + > +/* CPR eFuse parameters */ > +#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0) > + > +#define CPR_FUSE_MIN_QUOT_DIFF 50 > + > +#define FUSE_REVISION_UNKNOWN (-1) > + > +enum voltage_change_dir { > + NO_CHANGE, > + DOWN, > + UP, > +}; > + > +struct cpr_fuse { > + char *ring_osc; > + char *init_voltage; > + char *quotient; > + char *quotient_offset; > +}; > + > +struct fuse_corner_data { > + int ref_uV; > + int max_uV; > + int min_uV; > + int max_volt_scale; > + int max_quot_scale; > + /* fuse quot */ > + int quot_offset; > + int quot_scale; > + int quot_adjust; > + /* fuse quot_offset */ > + int quot_offset_scale; > + int quot_offset_adjust; > +}; > + > +struct cpr_fuses { > + int init_voltage_step; > + int init_voltage_width; > + struct fuse_corner_data *fuse_corner_data; > +}; > + > +struct corner_data { > + unsigned int fuse_corner; > + unsigned long freq; > +}; > + > +struct cpr_desc { > + unsigned int num_fuse_corners; > + int min_diff_quot; > + int *step_quot; > + > + unsigned int timer_delay_us; > + unsigned int timer_cons_up; > + unsigned int timer_cons_down; > + unsigned int up_threshold; > + unsigned int down_threshold; > + unsigned int idle_clocks; > + unsigned int gcnt_us; > + unsigned int vdd_apc_step_up_limit; > + unsigned int vdd_apc_step_down_limit; > + unsigned int clamp_timer_interval; > + > + struct cpr_fuses cpr_fuses; > + bool reduce_to_fuse_uV; > + bool reduce_to_corner_uV; > +}; > + > +struct acc_desc { > + unsigned int enable_reg; > + u32 enable_mask; > + > + struct reg_sequence *config; > + struct reg_sequence *settings; > + int num_regs_per_fuse; > +}; > + > +struct cpr_acc_desc { > + const struct cpr_desc *cpr_desc; > + const struct acc_desc *acc_desc; > +}; > + > +struct fuse_corner { > + int min_uV; > + int max_uV; > + int uV; > + int quot; > + int step_quot; > + const struct reg_sequence *accs; > + int num_accs; > + unsigned long max_freq; > + u8 ring_osc_idx; > +}; > + > +struct corner { > + int min_uV; > + int max_uV; > + int uV; > + int last_uV; > + int quot_adjust; > + u32 save_ctl; > + u32 save_irq; > + unsigned long freq; > + struct fuse_corner *fuse_corner; > +}; > + > +struct cpr_drv { > + unsigned int num_corners; > + unsigned int ref_clk_khz; > + > + struct generic_pm_domain pd; > + struct device *dev; > + struct device *attached_cpu_dev; > + struct mutex lock; > + void __iomem *base; > + struct corner *corner; > + struct regulator *vdd_apc; > + struct clk *cpu_clk; > + struct regmap *tcsr; > + bool loop_disabled; > + u32 gcnt; > + unsigned long flags; > + > + struct fuse_corner *fuse_corners; > + struct corner *corners; > + > + const struct cpr_desc *desc; > + const struct acc_desc *acc_desc; > + const struct cpr_fuse *cpr_fuses; > + > + struct dentry *debugfs; > +}; > + > +static bool cpr_is_allowed(struct cpr_drv *drv) > +{ > + return !drv->loop_disabled; > +} > + > +static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value) > +{ > + writel_relaxed(value, drv->base + offset); > +} > + > +static u32 cpr_read(struct cpr_drv *drv, u32 offset) > +{ > + return readl_relaxed(drv->base + offset); > +} > + > +static void > +cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value) > +{ > + u32 val; > + > + val = readl_relaxed(drv->base + offset); > + val &= ~mask; > + val |= value & mask; > + writel_relaxed(val, drv->base + offset); > +} > + > +static void cpr_irq_clr(struct cpr_drv *drv) > +{ > + cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL); > +} > + > +static void cpr_irq_clr_nack(struct cpr_drv *drv) > +{ > + cpr_irq_clr(drv); > + cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); > +} > + > +static void cpr_irq_clr_ack(struct cpr_drv *drv) > +{ > + cpr_irq_clr(drv); > + cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); > +} > + > +static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits) > +{ > + cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits); > +} > + > +static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value) > +{ > + cpr_masked_write(drv, REG_RBCPR_CTL, mask, value); > +} > + > +static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner) > +{ > + u32 val, mask; > + const struct cpr_desc *desc = drv->desc; > + > + /* Program Consecutive Up & Down */ > + val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; > + val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; > + mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK; > + cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val); > + cpr_masked_write(drv, REG_RBCPR_CTL, > + RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | > + RBCPR_CTL_SW_AUTO_CONT_ACK_EN, > + corner->save_ctl); > + cpr_irq_set(drv, corner->save_irq); > + > + if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV) > + val = RBCPR_CTL_LOOP_EN; > + else > + val = 0; > + cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val); > +} > + > +static void cpr_ctl_disable(struct cpr_drv *drv) > +{ > + cpr_irq_set(drv, 0); > + cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | > + RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0); > + cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, > + RBIF_TIMER_ADJ_CONS_UP_MASK | > + RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0); > + cpr_irq_clr(drv); > + cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); > + cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); > + cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0); > +} > + > +static bool cpr_ctl_is_enabled(struct cpr_drv *drv) > +{ > + u32 reg_val; > + > + reg_val = cpr_read(drv, REG_RBCPR_CTL); > + return reg_val & RBCPR_CTL_LOOP_EN; > +} > + > +static bool cpr_ctl_is_busy(struct cpr_drv *drv) > +{ > + u32 reg_val; > + > + reg_val = cpr_read(drv, REG_RBCPR_RESULT_0); > + return reg_val & RBCPR_RESULT0_BUSY_MASK; > +} > + > +static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner) > +{ > + corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL); > + corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0)); > +} > + > +static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner) > +{ > + u32 gcnt, ctl, irq, ro_sel, step_quot; > + struct fuse_corner *fuse = corner->fuse_corner; > + const struct cpr_desc *desc = drv->desc; > + int i; > + > + ro_sel = fuse->ring_osc_idx; > + gcnt = drv->gcnt; > + gcnt |= fuse->quot - corner->quot_adjust; > + > + /* Program the step quotient and idle clocks */ > + step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT; > + step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK; > + cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot); > + > + /* Clear the target quotient value and gate count of all ROs */ > + for (i = 0; i < CPR_NUM_RING_OSC; i++) > + cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); > + > + cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt); > + ctl = corner->save_ctl; > + cpr_write(drv, REG_RBCPR_CTL, ctl); > + irq = corner->save_irq; > + cpr_irq_set(drv, irq); > + dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt, > + ctl, irq); > +} > + > +static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f, > + struct fuse_corner *end) > +{ > + if (f == end) > + return; > + > + if (f < end) { > + for (f += 1; f <= end; f++) > + regmap_multi_reg_write(tcsr, f->accs, f->num_accs); > + } else { > + for (f -= 1; f >= end; f--) > + regmap_multi_reg_write(tcsr, f->accs, f->num_accs); > + } > +} > + > +static int cpr_pre_voltage(struct cpr_drv *drv, > + struct fuse_corner *fuse_corner, > + enum voltage_change_dir dir) > +{ > + struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; > + > + if (drv->tcsr && dir == DOWN) > + cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); > + > + return 0; > +} > + > +static int cpr_post_voltage(struct cpr_drv *drv, > + struct fuse_corner *fuse_corner, > + enum voltage_change_dir dir) > +{ > + struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; > + > + if (drv->tcsr && dir == UP) > + cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); > + > + return 0; > +} > + > +static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner, > + int new_uV, enum voltage_change_dir dir) > +{ > + int ret; > + struct fuse_corner *fuse_corner = corner->fuse_corner; > + > + ret = cpr_pre_voltage(drv, fuse_corner, dir); > + if (ret) > + return ret; > + > + ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV); > + if (ret) { > + dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n", > + new_uV); > + return ret; > + } > + > + ret = cpr_post_voltage(drv, fuse_corner, dir); > + if (ret) > + return ret; > + > + return 0; > +} > + > +static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv) > +{ > + return drv->corner ? drv->corner - drv->corners + 1 : 0; > +} > + > +static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir) > +{ > + u32 val, error_steps, reg_mask; > + int last_uV, new_uV, step_uV, ret; > + struct corner *corner; > + const struct cpr_desc *desc = drv->desc; > + > + if (dir != UP && dir != DOWN) > + return 0; > + > + step_uV = regulator_get_linear_step(drv->vdd_apc); > + if (!step_uV) > + return -EINVAL; > + > + corner = drv->corner; > + > + val = cpr_read(drv, REG_RBCPR_RESULT_0); > + > + error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT; > + error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK; > + last_uV = corner->last_uV; > + > + if (dir == UP) { > + if (desc->clamp_timer_interval && > + error_steps < desc->up_threshold) { > + /* > + * Handle the case where another measurement started > + * after the interrupt was triggered due to a core > + * exiting from power collapse. > + */ > + error_steps = max(desc->up_threshold, > + desc->vdd_apc_step_up_limit); > + } > + > + if (last_uV >= corner->max_uV) { > + cpr_irq_clr_nack(drv); > + > + /* Maximize the UP threshold */ > + reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; > + reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; > + val = reg_mask; > + cpr_ctl_modify(drv, reg_mask, val); > + > + /* Disable UP interrupt */ > + cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP); > + > + return 0; > + } > + > + if (error_steps > desc->vdd_apc_step_up_limit) > + error_steps = desc->vdd_apc_step_up_limit; > + > + /* Calculate new voltage */ > + new_uV = last_uV + error_steps * step_uV; > + new_uV = min(new_uV, corner->max_uV); > + > + dev_dbg(drv->dev, > + "UP: -> new_uV: %d last_uV: %d perf state: %u\n", > + new_uV, last_uV, cpr_get_cur_perf_state(drv)); > + } else if (dir == DOWN) { > + if (desc->clamp_timer_interval && > + error_steps < desc->down_threshold) { > + /* > + * Handle the case where another measurement started > + * after the interrupt was triggered due to a core > + * exiting from power collapse. > + */ > + error_steps = max(desc->down_threshold, > + desc->vdd_apc_step_down_limit); > + } > + > + if (last_uV <= corner->min_uV) { > + cpr_irq_clr_nack(drv); > + > + /* Enable auto nack down */ > + reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; > + val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; > + > + cpr_ctl_modify(drv, reg_mask, val); > + > + /* Disable DOWN interrupt */ > + cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN); > + > + return 0; > + } > + > + if (error_steps > desc->vdd_apc_step_down_limit) > + error_steps = desc->vdd_apc_step_down_limit; > + > + /* Calculate new voltage */ > + new_uV = last_uV - error_steps * step_uV; > + new_uV = max(new_uV, corner->min_uV); > + > + dev_dbg(drv->dev, > + "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n", > + new_uV, last_uV, cpr_get_cur_perf_state(drv)); > + } > + > + ret = cpr_scale_voltage(drv, corner, new_uV, dir); > + if (ret) { > + cpr_irq_clr_nack(drv); > + return ret; > + } > + drv->corner->last_uV = new_uV; > + > + if (dir == UP) { > + /* Disable auto nack down */ > + reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; > + val = 0; > + } else if (dir == DOWN) { > + /* Restore default threshold for UP */ > + reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; > + reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; > + val = desc->up_threshold; > + val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; > + } > + > + cpr_ctl_modify(drv, reg_mask, val); > + > + /* Re-enable default interrupts */ > + cpr_irq_set(drv, CPR_INT_DEFAULT); > + > + /* Ack */ > + cpr_irq_clr_ack(drv); > + > + return 0; > +} > + > +static irqreturn_t cpr_irq_handler(int irq, void *dev) > +{ > + struct cpr_drv *drv = dev; > + const struct cpr_desc *desc = drv->desc; > + irqreturn_t ret = IRQ_HANDLED; > + u32 val; > + > + mutex_lock(&drv->lock); > + > + val = cpr_read(drv, REG_RBIF_IRQ_STATUS); > + if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS) > + val = cpr_read(drv, REG_RBIF_IRQ_STATUS); > + > + dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val); > + > + if (!cpr_ctl_is_enabled(drv)) { > + dev_dbg(drv->dev, "CPR is disabled\n"); > + ret = IRQ_NONE; > + } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) { > + dev_dbg(drv->dev, "CPR measurement is not ready\n"); > + } else if (!cpr_is_allowed(drv)) { > + val = cpr_read(drv, REG_RBCPR_CTL); > + dev_err_ratelimited(drv->dev, > + "Interrupt broken? RBCPR_CTL = %#02x\n", > + val); > + ret = IRQ_NONE; > + } else { > + /* > + * Following sequence of handling is as per each IRQ's > + * priority > + */ > + if (val & CPR_INT_UP) { > + cpr_scale(drv, UP); > + } else if (val & CPR_INT_DOWN) { > + cpr_scale(drv, DOWN); > + } else if (val & CPR_INT_MIN) { > + cpr_irq_clr_nack(drv); > + } else if (val & CPR_INT_MAX) { > + cpr_irq_clr_nack(drv); > + } else if (val & CPR_INT_MID) { > + /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */ > + dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n"); > + } else { > + dev_dbg(drv->dev, > + "IRQ occurred for unknown flag (%#08x)\n", val); > + } > + > + /* Save register values for the corner */ > + cpr_corner_save(drv, drv->corner); > + } > + > + mutex_unlock(&drv->lock); > + > + return ret; > +} > + > +static int cpr_enable(struct cpr_drv *drv) > +{ > + int ret; > + > + ret = regulator_enable(drv->vdd_apc); > + if (ret) > + return ret; > + > + mutex_lock(&drv->lock); > + > + if (cpr_is_allowed(drv) && drv->corner) { > + cpr_irq_clr(drv); > + cpr_corner_restore(drv, drv->corner); > + cpr_ctl_enable(drv, drv->corner); > + } > + > + mutex_unlock(&drv->lock); > + > + return 0; > +} > + > +static int cpr_disable(struct cpr_drv *drv) > +{ > + int ret; > + > + mutex_lock(&drv->lock); > + > + if (cpr_is_allowed(drv)) { > + cpr_ctl_disable(drv); > + cpr_irq_clr(drv); > + } > + > + mutex_unlock(&drv->lock); > + > + ret = regulator_disable(drv->vdd_apc); > + if (ret) > + return ret; > + > + return 0; > +} > + > +static int cpr_config(struct cpr_drv *drv) > +{ > + int i; > + u32 val, gcnt; > + struct corner *corner; > + const struct cpr_desc *desc = drv->desc; > + > + /* Disable interrupt and CPR */ > + cpr_write(drv, REG_RBIF_IRQ_EN(0), 0); > + cpr_write(drv, REG_RBCPR_CTL, 0); > + > + /* Program the default HW ceiling, floor and vlevel */ > + val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK) > + << RBIF_LIMIT_CEILING_SHIFT; > + val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK; > + cpr_write(drv, REG_RBIF_LIMIT, val); > + cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT); > + > + /* > + * Clear the target quotient value and gate count of all > + * ring oscillators > + */ > + for (i = 0; i < CPR_NUM_RING_OSC; i++) > + cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); > + > + /* Init and save gcnt */ > + gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000; > + gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK; > + gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT; > + drv->gcnt = gcnt; > + > + /* Program the delay count for the timer */ > + val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000; > + cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val); > + dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val, > + desc->timer_delay_us); > + > + /* Program Consecutive Up & Down */ > + val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; > + val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; > + val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT; > + cpr_write(drv, REG_RBIF_TIMER_ADJUST, val); > + > + /* Program the control register */ > + val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT; > + val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT; > + val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE; > + val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN; > + cpr_write(drv, REG_RBCPR_CTL, val); > + > + for (i = 0; i < drv->num_corners; i++) { > + corner = &drv->corners[i]; > + corner->save_ctl = val; > + corner->save_irq = CPR_INT_DEFAULT; > + } > + > + cpr_irq_set(drv, CPR_INT_DEFAULT); > + > + val = cpr_read(drv, REG_RBCPR_VERSION); > + if (val <= RBCPR_VER_2) > + drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS; > + > + return 0; > +} > + > +static int cpr_set_performance_state(struct generic_pm_domain *domain, > + unsigned int state) > +{ > + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); > + struct corner *corner, *end; > + enum voltage_change_dir dir; > + int ret = 0, new_uV; > + > + mutex_lock(&drv->lock); > + > + dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n", > + __func__, state, cpr_get_cur_perf_state(drv)); > + > + /* > + * Determine new corner we're going to. > + * Remove one since lowest performance state is 1. > + */ > + corner = drv->corners + state - 1; > + end = &drv->corners[drv->num_corners - 1]; > + if (corner > end || corner < drv->corners) { > + ret = -EINVAL; > + goto unlock; > + } > + > + /* Determine direction */ > + if (drv->corner > corner) > + dir = DOWN; > + else if (drv->corner < corner) > + dir = UP; > + else > + dir = NO_CHANGE; > + > + if (cpr_is_allowed(drv)) > + new_uV = corner->last_uV; > + else > + new_uV = corner->uV; > + > + if (cpr_is_allowed(drv)) > + cpr_ctl_disable(drv); > + > + ret = cpr_scale_voltage(drv, corner, new_uV, dir); > + if (ret) > + goto unlock; > + > + if (cpr_is_allowed(drv)) { > + cpr_irq_clr(drv); > + if (drv->corner != corner) > + cpr_corner_restore(drv, corner); > + cpr_ctl_enable(drv, corner); > + } > + > + drv->corner = corner; > + > +unlock: > + mutex_unlock(&drv->lock); > + > + return ret; > +} > + > +static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data) > +{ > + struct nvmem_cell *cell; > + ssize_t len; > + char *ret; > + int i; > + > + *data = 0; > + > + cell = nvmem_cell_get(dev, cname); > + if (IS_ERR(cell)) { > + if (PTR_ERR(cell) != -EPROBE_DEFER) > + dev_err(dev, "undefined cell %s\n", cname); > + return PTR_ERR(cell); > + } > + > + ret = nvmem_cell_read(cell, &len); > + nvmem_cell_put(cell); > + if (IS_ERR(ret)) { > + dev_err(dev, "can't read cell %s\n", cname); > + return PTR_ERR(ret); > + } > + > + for (i = 0; i < len; i++) > + *data |= ret[i] << (8 * i); > + > + kfree(ret); > + dev_dbg(dev, "efuse read(%s) = %x, bytes %ld\n", cname, *data, len); > + > + return 0; > +} > + > +static int > +cpr_populate_ring_osc_idx(struct cpr_drv *drv) > +{ > + struct fuse_corner *fuse = drv->fuse_corners; > + struct fuse_corner *end = fuse + drv->desc->num_fuse_corners; > + const struct cpr_fuse *fuses = drv->cpr_fuses; > + u32 data; > + int ret; > + > + for (; fuse < end; fuse++, fuses++) { > + ret = cpr_read_efuse(drv->dev, fuses->ring_osc, > + &data); > + if (ret) > + return ret; > + fuse->ring_osc_idx = data; > + } > + > + return 0; > +} > + > +static int cpr_read_fuse_uV(const struct cpr_desc *desc, > + const struct fuse_corner_data *fdata, > + const char *init_v_efuse, > + int step_volt, > + struct cpr_drv *drv) > +{ > + int step_size_uV, steps, uV; > + u32 bits = 0; > + int ret; > + > + ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits); > + if (ret) > + return ret; > + > + steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1); > + /* Not two's complement.. instead highest bit is sign bit */ > + if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1)) > + steps = -steps; > + > + step_size_uV = desc->cpr_fuses.init_voltage_step; > + > + uV = fdata->ref_uV + steps * step_size_uV; > + return DIV_ROUND_UP(uV, step_volt) * step_volt; > +} > + > +static int cpr_fuse_corner_init(struct cpr_drv *drv) > +{ > + const struct cpr_desc *desc = drv->desc; > + const struct cpr_fuse *fuses = drv->cpr_fuses; > + const struct acc_desc *acc_desc = drv->acc_desc; > + int i; > + unsigned int step_volt; > + struct fuse_corner_data *fdata; > + struct fuse_corner *fuse, *end, *prev; > + int uV; > + const struct reg_sequence *accs; > + int ret; > + > + accs = acc_desc->settings; > + > + step_volt = regulator_get_linear_step(drv->vdd_apc); > + if (!step_volt) > + return -EINVAL; > + > + /* Populate fuse_corner members */ > + fuse = drv->fuse_corners; > + end = &fuse[desc->num_fuse_corners - 1]; > + fdata = desc->cpr_fuses.fuse_corner_data; > + > + for (i = 0, prev = NULL; fuse <= end; fuse++, fuses++, i++, fdata++) { > + /* > + * Update SoC voltages: platforms might choose a different > + * regulators than the one used to characterize the algorithms > + * (ie, init_voltage_step). > + */ > + fdata->min_uV = roundup(fdata->min_uV, step_volt); > + fdata->max_uV = roundup(fdata->max_uV, step_volt); > + > + /* Populate uV */ > + uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage, > + step_volt, drv); > + if (uV < 0) > + return ret; > + > + fuse->min_uV = fdata->min_uV; > + fuse->max_uV = fdata->max_uV; > + fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV); > + > + if (fuse == end) { > + /* > + * Allow the highest fuse corner's PVS voltage to > + * define the ceiling voltage for that corner in order > + * to support SoC's in which variable ceiling values > + * are required. > + */ > + end->max_uV = max(end->max_uV, end->uV); > + } > + > + /* Populate target quotient by scaling */ > + ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot); > + if (ret) > + return ret; > + > + fuse->quot *= fdata->quot_scale; > + fuse->quot += fdata->quot_offset; > + fuse->quot += fdata->quot_adjust; > + fuse->step_quot = desc->step_quot[fuse->ring_osc_idx]; > + > + /* Populate acc settings */ > + fuse->accs = accs; > + fuse->num_accs = acc_desc->num_regs_per_fuse; > + accs += acc_desc->num_regs_per_fuse; > + } > + > + /* > + * Restrict all fuse corner PVS voltages based upon per corner > + * ceiling and floor voltages. > + */ > + for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) { > + if (fuse->uV > fuse->max_uV) > + fuse->uV = fuse->max_uV; > + else if (fuse->uV < fuse->min_uV) > + fuse->uV = fuse->min_uV; > + > + ret = regulator_is_supported_voltage(drv->vdd_apc, > + fuse->min_uV, > + fuse->min_uV); > + if (!ret) { > + dev_err(drv->dev, > + "min uV: %d (fuse corner: %d) not supported by regulator\n", > + fuse->min_uV, i); > + return -EINVAL; > + } > + > + ret = regulator_is_supported_voltage(drv->vdd_apc, > + fuse->max_uV, > + fuse->max_uV); > + if (!ret) { > + dev_err(drv->dev, > + "max uV: %d (fuse corner: %d) not supported by regulator\n", > + fuse->max_uV, i); > + return -EINVAL; > + } > + > + dev_dbg(drv->dev, > + "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n", > + i, fuse->min_uV, fuse->uV, fuse->max_uV, > + fuse->ring_osc_idx, fuse->quot, fuse->step_quot); > + } > + > + return 0; > +} > + > +static int cpr_calculate_scaling(const char *quot_offset, > + struct cpr_drv *drv, > + const struct fuse_corner_data *fdata, > + const struct corner *corner) > +{ > + u32 quot_diff = 0; > + unsigned long freq_diff; > + int scaling; > + const struct fuse_corner *fuse, *prev_fuse; > + int ret; > + > + fuse = corner->fuse_corner; > + prev_fuse = fuse - 1; > + > + if (quot_offset) { > + ret = cpr_read_efuse(drv->dev, quot_offset, "_diff); > + if (ret) > + return ret; > + > + quot_diff *= fdata->quot_offset_scale; > + quot_diff += fdata->quot_offset_adjust; > + } else { > + quot_diff = fuse->quot - prev_fuse->quot; > + } > + > + freq_diff = fuse->max_freq - prev_fuse->max_freq; > + freq_diff /= 1000000; /* Convert to MHz */ > + scaling = 1000 * quot_diff / freq_diff; > + return min(scaling, fdata->max_quot_scale); > +} > + > +static int cpr_interpolate(const struct corner *corner, int step_volt, > + const struct fuse_corner_data *fdata) > +{ > + unsigned long f_high, f_low, f_diff; > + int uV_high, uV_low, uV; > + u64 temp, temp_limit; > + const struct fuse_corner *fuse, *prev_fuse; > + > + fuse = corner->fuse_corner; > + prev_fuse = fuse - 1; > + > + f_high = fuse->max_freq; > + f_low = prev_fuse->max_freq; > + uV_high = fuse->uV; > + uV_low = prev_fuse->uV; > + f_diff = fuse->max_freq - corner->freq; > + > + /* > + * Don't interpolate in the wrong direction. This could happen > + * if the adjusted fuse voltage overlaps with the previous fuse's > + * adjusted voltage. > + */ > + if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq) > + return corner->uV; > + > + temp = f_diff * (uV_high - uV_low); > + do_div(temp, f_high - f_low); > + > + /* > + * max_volt_scale has units of uV/MHz while freq values > + * have units of Hz. Divide by 1000000 to convert to. > + */ > + temp_limit = f_diff * fdata->max_volt_scale; > + do_div(temp_limit, 1000000); > + > + uV = uV_high - min(temp, temp_limit); > + return roundup(uV, step_volt); > +} > + > +static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp) > +{ > + struct device_node *np; > + unsigned int fuse_corner = 0; > + > + np = dev_pm_opp_get_of_node(opp); > + if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner)) > + pr_err("%s: missing 'qcom,opp-fuse-level' property\n", > + __func__); > + > + of_node_put(np); > + > + return fuse_corner; > +} > + > +unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref, > + struct device *cpu_dev) > +{ > + u64 rate = 0; > + struct device_node *ref_np; > + struct device_node *desc_np; > + struct device_node *child_np = NULL; > + struct device_node *child_req_np = NULL; > + > + desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); > + if (!desc_np) > + return 0; > + > + ref_np = dev_pm_opp_get_of_node(ref); > + if (!ref_np) > + goto out_ref; > + > + do { > + of_node_put(child_req_np); > + child_np = of_get_next_available_child(desc_np, child_np); > + child_req_np = of_parse_phandle(child_np, "required-opps", 0); > + } while (child_np && child_req_np != ref_np); > + > + if (child_np && child_req_np == ref_np) > + of_property_read_u64(child_np, "opp-hz", &rate); > + > + of_node_put(child_req_np); > + of_node_put(child_np); > + of_node_put(ref_np); > +out_ref: > + of_node_put(desc_np); > + > + return (unsigned long) rate; > +} > + > +static int cpr_corner_init(struct cpr_drv *drv) > +{ > + const struct cpr_desc *desc = drv->desc; > + const struct cpr_fuse *fuses = drv->cpr_fuses; > + int i, level, scaling = 0; > + unsigned int fnum, fc; > + const char *quot_offset; > + struct fuse_corner *fuse, *prev_fuse; > + struct corner *corner, *end; > + struct corner_data *cdata; > + const struct fuse_corner_data *fdata; > + bool apply_scaling; > + unsigned long freq_diff, freq_diff_mhz; > + unsigned long freq; > + int step_volt = regulator_get_linear_step(drv->vdd_apc); > + struct dev_pm_opp *opp; > + > + if (!step_volt) > + return -EINVAL; > + > + corner = drv->corners; > + end = &corner[drv->num_corners - 1]; > + > + cdata = devm_kcalloc(drv->dev, drv->num_corners, > + sizeof(struct corner_data), > + GFP_KERNEL); > + if (!cdata) > + return -ENOMEM; > + > + /* > + * Store maximum frequency for each fuse corner based on the frequency > + * plan > + */ > + for (level = 1; level <= drv->num_corners; level++) { > + opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level); > + if (IS_ERR(opp)) > + return -EINVAL; > + fc = cpr_get_fuse_corner(opp); > + if (!fc) { > + dev_pm_opp_put(opp); > + return -EINVAL; > + } > + fnum = fc - 1; > + freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev); > + if (!freq) { > + dev_pm_opp_put(opp); > + return -EINVAL; > + } > + cdata[level - 1].fuse_corner = fnum; > + cdata[level - 1].freq = freq; > + > + fuse = &drv->fuse_corners[fnum]; > + dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n", > + freq, dev_pm_opp_get_level(opp) - 1, fnum); > + if (freq > fuse->max_freq) > + fuse->max_freq = freq; > + dev_pm_opp_put(opp); > + } > + > + /* > + * Get the quotient adjustment scaling factor, according to: > + * > + * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1)) > + * / (freq(corner_N) - freq(corner_N-1)), max_factor) > + * > + * QUOT(corner_N): quotient read from fuse for fuse corner N > + * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1) > + * freq(corner_N): max frequency in MHz supported by fuse corner N > + * freq(corner_N-1): max frequency in MHz supported by fuse corner > + * (N - 1) > + * > + * Then walk through the corners mapped to each fuse corner > + * and calculate the quotient adjustment for each one using the > + * following formula: > + * > + * quot_adjust = (freq_max - freq_corner) * scaling / 1000 > + * > + * freq_max: max frequency in MHz supported by the fuse corner > + * freq_corner: frequency in MHz corresponding to the corner > + * scaling: calculated from above equation > + * > + * > + * + + > + * | v | > + * q | f c o | f c > + * u | c l | c > + * o | f t | f > + * t | c a | c > + * | c f g | c f > + * | e | > + * +--------------- +---------------- > + * 0 1 2 3 4 5 6 0 1 2 3 4 5 6 > + * corner corner > + * > + * c = corner > + * f = fuse corner > + * > + */ > + for (apply_scaling = false, i = 0; corner <= end; corner++, i++) { > + fnum = cdata[i].fuse_corner; > + fdata = &desc->cpr_fuses.fuse_corner_data[fnum]; > + quot_offset = fuses[fnum].quotient_offset; > + fuse = &drv->fuse_corners[fnum]; > + if (fnum) > + prev_fuse = &drv->fuse_corners[fnum - 1]; > + else > + prev_fuse = NULL; > + > + corner->fuse_corner = fuse; > + corner->freq = cdata[i].freq; > + corner->uV = fuse->uV; > + > + if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) { > + scaling = cpr_calculate_scaling(quot_offset, drv, > + fdata, corner); > + if (scaling < 0) > + return scaling; > + > + apply_scaling = true; > + } else if (corner->freq == fuse->max_freq) { > + /* This is a fuse corner; don't scale anything */ > + apply_scaling = false; > + } > + > + if (apply_scaling) { > + freq_diff = fuse->max_freq - corner->freq; > + freq_diff_mhz = freq_diff / 1000000; > + corner->quot_adjust = scaling * freq_diff_mhz / 1000; > + > + corner->uV = cpr_interpolate(corner, step_volt, fdata); > + } > + > + corner->max_uV = fuse->max_uV; > + corner->min_uV = fuse->min_uV; > + corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV); > + corner->last_uV = corner->uV; > + > + /* Reduce the ceiling voltage if needed */ > + if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV) > + corner->max_uV = corner->uV; > + else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV) > + corner->max_uV = max(corner->min_uV, fuse->uV); > + > + dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i, > + corner->min_uV, corner->uV, corner->max_uV, > + fuse->quot - corner->quot_adjust); > + } > + > + return 0; > +} > + > +static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv) > +{ > + const struct cpr_desc *desc = drv->desc; > + struct cpr_fuse *fuses; > + int i; > + > + fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners, > + sizeof(struct cpr_fuse), > + GFP_KERNEL); > + if (!fuses) > + return ERR_PTR(-ENOMEM); > + > + for (i = 0; i < desc->num_fuse_corners; i++) { > + char tbuf[32]; > + > + snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1); > + fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); > + if (!fuses[i].ring_osc) > + return ERR_PTR(-ENOMEM); > + > + snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1); > + fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf, > + GFP_KERNEL); > + if (!fuses[i].init_voltage) > + return ERR_PTR(-ENOMEM); > + > + snprintf(tbuf, 32, "cpr_quotient%d", i + 1); > + fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); > + if (!fuses[i].quotient) > + return ERR_PTR(-ENOMEM); > + > + snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1); > + fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf, > + GFP_KERNEL); > + if (!fuses[i].quotient_offset) > + return ERR_PTR(-ENOMEM); > + } > + > + return fuses; > +} > + > +static void cpr_set_loop_allowed(struct cpr_drv *drv) > +{ > + drv->loop_disabled = false; > +} > + > +static int cpr_init_parameters(struct cpr_drv *drv) > +{ > + const struct cpr_desc *desc = drv->desc; > + struct clk *clk; > + > + clk = clk_get(drv->dev, "ref"); > + if (IS_ERR(clk)) > + return PTR_ERR(clk); > + > + drv->ref_clk_khz = clk_get_rate(clk) / 1000; > + clk_put(clk); > + > + if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK || > + desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK || > + desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK || > + desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK || > + desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK || > + desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK) > + return -EINVAL; > + > + dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n", > + desc->up_threshold, desc->down_threshold); > + > + return 0; > +} > + > +static int cpr_find_initial_corner(struct cpr_drv *drv) > +{ > + unsigned long rate; > + const struct corner *end; > + struct corner *iter; > + unsigned int i = 0; > + > + if (!drv->cpu_clk) { > + dev_err(drv->dev, "cannot get rate from NULL clk\n"); > + return -EINVAL; > + } > + > + end = &drv->corners[drv->num_corners - 1]; > + rate = clk_get_rate(drv->cpu_clk); > + > + /* > + * Some bootloaders set a CPU clock frequency that is not defined > + * in the OPP table. When running at an unlisted frequency, > + * cpufreq_online() will change to the OPP which has the lowest > + * frequency, at or above the unlisted frequency. > + * Since cpufreq_online() always "rounds up" in the case of an > + * unlisted frequency, this function always "rounds down" in case > + * of an unlisted frequency. That way, when cpufreq_online() > + * triggers the first ever call to cpr_set_performance_state(), > + * it will correctly determine the direction as UP. > + */ > + for (iter = drv->corners; iter <= end; iter++) { > + if (iter->freq > rate) > + break; > + i++; > + if (iter->freq == rate) { > + drv->corner = iter; > + break; > + } > + if (iter->freq < rate) > + drv->corner = iter; > + } > + > + if (!drv->corner) { > + dev_err(drv->dev, "boot up corner not found\n"); > + return -EINVAL; > + } > + > + dev_dbg(drv->dev, "boot up perf state: %u\n", i); > + > + return 0; > +} > + > +static const struct cpr_desc qcs404_cpr_desc = { > + .num_fuse_corners = 3, > + .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF, > + .step_quot = (int []){ 25, 25, 25, }, > + .timer_delay_us = 5000, > + .timer_cons_up = 0, > + .timer_cons_down = 2, > + .up_threshold = 1, > + .down_threshold = 3, > + .idle_clocks = 15, > + .gcnt_us = 1, > + .vdd_apc_step_up_limit = 1, > + .vdd_apc_step_down_limit = 1, > + .cpr_fuses = { > + .init_voltage_step = 8000, > + .init_voltage_width = 6, > + .fuse_corner_data = (struct fuse_corner_data[]){ > + /* fuse corner 0 */ > + { > + .ref_uV = 1224000, > + .max_uV = 1224000, > + .min_uV = 1048000, > + .max_volt_scale = 0, > + .max_quot_scale = 0, > + .quot_offset = 0, > + .quot_scale = 1, > + .quot_adjust = 0, > + .quot_offset_scale = 5, > + .quot_offset_adjust = 0, > + }, > + /* fuse corner 1 */ > + { > + .ref_uV = 1288000, > + .max_uV = 1288000, > + .min_uV = 1048000, > + .max_volt_scale = 2000, > + .max_quot_scale = 1400, > + .quot_offset = 0, > + .quot_scale = 1, > + .quot_adjust = -20, > + .quot_offset_scale = 5, > + .quot_offset_adjust = 0, > + }, > + /* fuse corner 2 */ > + { > + .ref_uV = 1352000, > + .max_uV = 1384000, > + .min_uV = 1088000, > + .max_volt_scale = 2000, > + .max_quot_scale = 1400, > + .quot_offset = 0, > + .quot_scale = 1, > + .quot_adjust = 0, > + .quot_offset_scale = 5, > + .quot_offset_adjust = 0, > + }, > + }, > + }, > +}; > + > +static const struct acc_desc qcs404_acc_desc = { > + .settings = (struct reg_sequence[]){ > + { 0xb120, 0x1041040 }, > + { 0xb124, 0x41 }, > + { 0xb120, 0x0 }, > + { 0xb124, 0x0 }, > + { 0xb120, 0x0 }, > + { 0xb124, 0x0 }, > + }, > + .config = (struct reg_sequence[]){ > + { 0xb138, 0xff }, > + { 0xb130, 0x5555 }, > + }, > + .num_regs_per_fuse = 2, > +}; > + > +static const struct cpr_acc_desc qcs404_cpr_acc_desc = { > + .cpr_desc = &qcs404_cpr_desc, > + .acc_desc = &qcs404_acc_desc, > +}; > + > +static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd, > + struct dev_pm_opp *opp) > +{ > + return dev_pm_opp_get_level(opp); > +} > + > +static int cpr_power_off(struct generic_pm_domain *domain) > +{ > + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); > + > + return cpr_disable(drv); > +} > + > +static int cpr_power_on(struct generic_pm_domain *domain) > +{ > + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); > + > + return cpr_enable(drv); > +} > + > +static int cpr_pd_attach_dev(struct generic_pm_domain *domain, > + struct device *dev) > +{ > + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); > + const struct acc_desc *acc_desc = drv->acc_desc; > + int ret = 0; > + > + mutex_lock(&drv->lock); > + > + dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev)); > + > + /* > + * This driver only supports scaling voltage for a CPU cluster > + * where all CPUs in the cluster share a single regulator. > + * Therefore, save the struct device pointer only for the first > + * CPU device that gets attached. There is no need to do any > + * additional initialization when further CPUs get attached. > + */ > + if (drv->attached_cpu_dev) > + goto unlock; > + > + /* > + * cpr_scale_voltage() requires the direction (if we are changing > + * to a higher or lower OPP). The first time > + * cpr_set_performance_state() is called, there is no previous > + * performance state defined. Therefore, we call > + * cpr_find_initial_corner() that gets the CPU clock frequency > + * set by the bootloader, so that we can determine the direction > + * the first time cpr_set_performance_state() is called. > + */ > + drv->cpu_clk = devm_clk_get(dev, NULL); > + if (IS_ERR(drv->cpu_clk)) { > + ret = PTR_ERR(drv->cpu_clk); > + if (ret != -EPROBE_DEFER) > + dev_err(drv->dev, "could not get cpu clk: %d\n", ret); > + goto unlock; > + } > + drv->attached_cpu_dev = dev; > + > + dev_dbg(drv->dev, "using cpu clk from: %s\n", > + dev_name(drv->attached_cpu_dev)); > + > + /* > + * Everything related to (virtual) corners has to be initialized > + * here, when attaching to the power domain, since we need to know > + * the maximum frequency for each fuse corner, and this is only > + * available after the cpufreq driver has attached to us. > + * The reason for this is that we need to know the highest > + * frequency associated with each fuse corner. > + */ > + drv->num_corners = dev_pm_opp_get_opp_count(&drv->pd.dev); > + if (drv->num_corners < 0) { > + ret = drv->num_corners; > + goto unlock; > + } > + if (drv->num_corners < 2) { > + dev_err(drv->dev, "need at least 2 OPPs to use CPR\n"); > + ret = -EINVAL; > + goto unlock; > + } > + > + dev_dbg(drv->dev, "number of OPPs: %d\n", drv->num_corners); > + > + drv->corners = devm_kcalloc(drv->dev, drv->num_corners, > + sizeof(*drv->corners), > + GFP_KERNEL); > + if (!drv->corners) { > + ret = -ENOMEM; > + goto unlock; > + } > + > + ret = cpr_corner_init(drv); > + if (ret) > + goto unlock; > + > + cpr_set_loop_allowed(drv); > + > + ret = cpr_init_parameters(drv); > + if (ret) > + goto unlock; > + > + /* Configure CPR HW but keep it disabled */ > + ret = cpr_config(drv); > + if (ret) > + goto unlock; > + > + ret = cpr_find_initial_corner(drv); > + if (ret) > + goto unlock; > + > + if (acc_desc->config) > + regmap_multi_reg_write(drv->tcsr, acc_desc->config, > + acc_desc->num_regs_per_fuse); > + > + /* Enable ACC if required */ > + if (acc_desc->enable_mask) > + regmap_update_bits(drv->tcsr, acc_desc->enable_reg, > + acc_desc->enable_mask, > + acc_desc->enable_mask); > + > +unlock: > + mutex_unlock(&drv->lock); > + > + return ret; > +} > + > +static int cpr_debug_info_show(struct seq_file *s, void *unused) > +{ > + u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps; > + u32 step_dn, step_up, error, error_lt0, busy; > + struct cpr_drv *drv = s->private; > + struct fuse_corner *fuse_corner; > + struct corner *corner; > + > + corner = drv->corner; > + fuse_corner = corner->fuse_corner; > + > + seq_printf(s, "corner, current_volt = %d uV\n", > + corner->last_uV); > + > + ro_sel = fuse_corner->ring_osc_idx; > + gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel)); > + seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt); > + > + ctl = cpr_read(drv, REG_RBCPR_CTL); > + seq_printf(s, "rbcpr_ctl = %#02X\n", ctl); > + > + irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS); > + seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status); > + > + reg = cpr_read(drv, REG_RBCPR_RESULT_0); > + seq_printf(s, "rbcpr_result_0 = %#02X\n", reg); > + > + step_dn = reg & 0x01; > + step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01; > + seq_printf(s, " [step_dn = %u", step_dn); > + > + seq_printf(s, ", step_up = %u", step_up); > + > + error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT) > + & RBCPR_RESULT0_ERROR_STEPS_MASK; > + seq_printf(s, ", error_steps = %u", error_steps); > + > + error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK; > + seq_printf(s, ", error = %u", error); > + > + error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01; > + seq_printf(s, ", error_lt_0 = %u", error_lt0); > + > + busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01; > + seq_printf(s, ", busy = %u]\n", busy); > + > + return 0; > +} > +DEFINE_SHOW_ATTRIBUTE(cpr_debug_info); > + > +static void cpr_debugfs_init(struct cpr_drv *drv) > +{ > + drv->debugfs = debugfs_create_dir("qcom_cpr", NULL); > + > + debugfs_create_file("debug_info", 0444, drv->debugfs, > + drv, &cpr_debug_info_fops); > +} > + > +static int cpr_probe(struct platform_device *pdev) > +{ > + struct resource *res; > + struct device *dev = &pdev->dev; > + struct cpr_drv *drv; > + int irq, ret; > + const struct cpr_acc_desc *data; > + struct device_node *np; > + u32 cpr_rev = FUSE_REVISION_UNKNOWN; > + > + data = of_device_get_match_data(dev); > + if (!data || !data->cpr_desc || !data->acc_desc) > + return -EINVAL; > + > + drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); > + if (!drv) > + return -ENOMEM; > + drv->dev = dev; > + drv->desc = data->cpr_desc; > + drv->acc_desc = data->acc_desc; > + > + drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners, > + sizeof(*drv->fuse_corners), > + GFP_KERNEL); > + if (!drv->fuse_corners) > + return -ENOMEM; > + > + np = of_parse_phandle(dev->of_node, "acc-syscon", 0); > + if (!np) > + return -ENODEV; > + > + drv->tcsr = syscon_node_to_regmap(np); > + of_node_put(np); > + if (IS_ERR(drv->tcsr)) > + return PTR_ERR(drv->tcsr); > + > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > + drv->base = devm_ioremap_resource(dev, res); > + if (IS_ERR(drv->base)) > + return PTR_ERR(drv->base); > + > + irq = platform_get_irq(pdev, 0); > + if (irq < 0) > + return -EINVAL; > + > + drv->vdd_apc = devm_regulator_get(dev, "vdd-apc"); > + if (IS_ERR(drv->vdd_apc)) > + return PTR_ERR(drv->vdd_apc); > + > + /* > + * Initialize fuse corners, since it simply depends > + * on data in efuses. > + * Everything related to (virtual) corners has to be > + * initialized after attaching to the power domain, > + * since it depends on the CPU's OPP table. > + */ > + ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev); > + if (ret) > + return ret; > + > + drv->cpr_fuses = cpr_get_fuses(drv); > + if (IS_ERR(drv->cpr_fuses)) > + return PTR_ERR(drv->cpr_fuses); > + > + ret = cpr_populate_ring_osc_idx(drv); > + if (ret) > + return ret; > + > + ret = cpr_fuse_corner_init(drv); > + if (ret) > + return ret; > + > + mutex_init(&drv->lock); > + > + ret = devm_request_threaded_irq(dev, irq, NULL, > + cpr_irq_handler, > + IRQF_ONESHOT | IRQF_TRIGGER_RISING, > + "cpr", drv); > + if (ret) > + return ret; > + > + drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name, > + GFP_KERNEL); > + if (!drv->pd.name) > + return -EINVAL; > + > + drv->pd.power_off = cpr_power_off; > + drv->pd.power_on = cpr_power_on; > + drv->pd.set_performance_state = cpr_set_performance_state; > + drv->pd.opp_to_performance_state = cpr_get_performance_state; > + drv->pd.attach_dev = cpr_pd_attach_dev; > + > + ret = pm_genpd_init(&drv->pd, NULL, true); > + if (ret) > + return ret; > + > + ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd); > + if (ret) > + return ret; > + > + platform_set_drvdata(pdev, drv); > + cpr_debugfs_init(drv); > + > + return 0; > +} > + > +static int cpr_remove(struct platform_device *pdev) > +{ > + struct cpr_drv *drv = platform_get_drvdata(pdev); > + > + if (cpr_is_allowed(drv)) { > + cpr_ctl_disable(drv); > + cpr_irq_set(drv, 0); > + } > + > + of_genpd_del_provider(pdev->dev.of_node); > + pm_genpd_remove(&drv->pd); > + > + debugfs_remove_recursive(drv->debugfs); > + > + return 0; > +} > + > +static const struct of_device_id cpr_match_table[] = { > + { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc }, > + { } > +}; > +MODULE_DEVICE_TABLE(of, cpr_match_table); > + > +static struct platform_driver cpr_driver = { > + .probe = cpr_probe, > + .remove = cpr_remove, > + .driver = { > + .name = "qcom-cpr", > + .of_match_table = cpr_match_table, > + }, > +}; > +module_platform_driver(cpr_driver); > + > +MODULE_DESCRIPTION("Core Power Reduction (CPR) driver"); > +MODULE_LICENSE("GPL v2"); > -- > 2.23.0 >
diff --git a/MAINTAINERS b/MAINTAINERS index b8fa7652a736..3ab2bfb02b7d 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -13674,6 +13674,14 @@ S: Maintained F: Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt F: drivers/cpufreq/qcom-cpufreq-nvmem.c +QUALCOMM CORE POWER REDUCTION (CPR) AVS DRIVER +M: Niklas Cassel <nks@flawful.org> +L: linux-pm@vger.kernel.org +L: linux-arm-msm@vger.kernel.org +S: Maintained +F: Documentation/devicetree/bindings/power/avs/qcom,cpr.txt +F: drivers/power/avs/qcom-cpr.c + QUALCOMM EMAC GIGABIT ETHERNET DRIVER M: Timur Tabi <timur@kernel.org> L: netdev@vger.kernel.org diff --git a/drivers/power/avs/Kconfig b/drivers/power/avs/Kconfig index b5a217b828dc..f4bf313257bb 100644 --- a/drivers/power/avs/Kconfig +++ b/drivers/power/avs/Kconfig @@ -12,6 +12,21 @@ menuconfig POWER_AVS Say Y here to enable Adaptive Voltage Scaling class support. +config QCOM_CPR + tristate "QCOM Core Power Reduction (CPR) support" + depends on POWER_AVS + select PM_OPP + help + Say Y here to enable support for the CPR hardware found on Qualcomm + SoCs like QCS404. + + This driver populates CPU OPPs tables and makes adjustments to the + tables based on feedback from the CPR hardware. If you want to do + CPUfrequency scaling say Y here. + + To compile this driver as a module, choose M here: the module will + be called qcom-cpr + config ROCKCHIP_IODOMAIN tristate "Rockchip IO domain support" depends on POWER_AVS && ARCH_ROCKCHIP && OF diff --git a/drivers/power/avs/Makefile b/drivers/power/avs/Makefile index a1b8cd453f19..9007d05853e2 100644 --- a/drivers/power/avs/Makefile +++ b/drivers/power/avs/Makefile @@ -1,3 +1,4 @@ # SPDX-License-Identifier: GPL-2.0-only obj-$(CONFIG_POWER_AVS_OMAP) += smartreflex.o +obj-$(CONFIG_QCOM_CPR) += qcom-cpr.o obj-$(CONFIG_ROCKCHIP_IODOMAIN) += rockchip-io-domain.o diff --git a/drivers/power/avs/qcom-cpr.c b/drivers/power/avs/qcom-cpr.c new file mode 100644 index 000000000000..a3187973bbb5 --- /dev/null +++ b/drivers/power/avs/qcom-cpr.c @@ -0,0 +1,1792 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. + * Copyright (c) 2019, Linaro Limited + */ + +#include <linux/module.h> +#include <linux/err.h> +#include <linux/debugfs.h> +#include <linux/string.h> +#include <linux/kernel.h> +#include <linux/list.h> +#include <linux/init.h> +#include <linux/io.h> +#include <linux/bitops.h> +#include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/pm_domain.h> +#include <linux/pm_opp.h> +#include <linux/interrupt.h> +#include <linux/regmap.h> +#include <linux/mfd/syscon.h> +#include <linux/regulator/consumer.h> +#include <linux/clk.h> +#include <linux/nvmem-consumer.h> +#include <linux/bitops.h> + +/* Register Offsets for RB-CPR and Bit Definitions */ + +/* RBCPR Version Register */ +#define REG_RBCPR_VERSION 0 +#define RBCPR_VER_2 0x02 +#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0) + +/* RBCPR Gate Count and Target Registers */ +#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n)) + +#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0 +#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0) +#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12 +#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0) + +/* RBCPR Timer Control */ +#define REG_RBCPR_TIMER_INTERVAL 0x44 +#define REG_RBIF_TIMER_ADJUST 0x4c + +#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0) +#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0 +#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0) +#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4 +#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0) +#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8 + +/* RBCPR Config Register */ +#define REG_RBIF_LIMIT 0x48 +#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0) +#define RBIF_LIMIT_CEILING_SHIFT 6 +#define RBIF_LIMIT_FLOOR_BITS 6 +#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0) + +#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK +#define RBIF_LIMIT_FLOOR_DEFAULT 0 + +#define REG_RBIF_SW_VLEVEL 0x94 +#define RBIF_SW_VLEVEL_DEFAULT 0x20 + +#define REG_RBCPR_STEP_QUOT 0x80 +#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0) +#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0) +#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8 + +/* RBCPR Control Register */ +#define REG_RBCPR_CTL 0x90 + +#define RBCPR_CTL_LOOP_EN BIT(0) +#define RBCPR_CTL_TIMER_EN BIT(3) +#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5) +#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6) +#define RBCPR_CTL_COUNT_MODE BIT(10) +#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0) +#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24 +#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0) +#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28 + +/* RBCPR Ack/Nack Response */ +#define REG_RBIF_CONT_ACK_CMD 0x98 +#define REG_RBIF_CONT_NACK_CMD 0x9c + +/* RBCPR Result status Register */ +#define REG_RBCPR_RESULT_0 0xa0 + +#define RBCPR_RESULT0_BUSY_SHIFT 19 +#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT) +#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18 +#define RBCPR_RESULT0_ERROR_SHIFT 6 +#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0) +#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2 +#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0) +#define RBCPR_RESULT0_STEP_UP_SHIFT 1 + +/* RBCPR Interrupt Control Register */ +#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n)) +#define REG_RBIF_IRQ_CLEAR 0x110 +#define REG_RBIF_IRQ_STATUS 0x114 + +#define CPR_INT_DONE BIT(0) +#define CPR_INT_MIN BIT(1) +#define CPR_INT_DOWN BIT(2) +#define CPR_INT_MID BIT(3) +#define CPR_INT_UP BIT(4) +#define CPR_INT_MAX BIT(5) +#define CPR_INT_CLAMP BIT(6) +#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \ + CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP) +#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN) + +#define CPR_NUM_RING_OSC 8 + +/* CPR eFuse parameters */ +#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0) + +#define CPR_FUSE_MIN_QUOT_DIFF 50 + +#define FUSE_REVISION_UNKNOWN (-1) + +enum voltage_change_dir { + NO_CHANGE, + DOWN, + UP, +}; + +struct cpr_fuse { + char *ring_osc; + char *init_voltage; + char *quotient; + char *quotient_offset; +}; + +struct fuse_corner_data { + int ref_uV; + int max_uV; + int min_uV; + int max_volt_scale; + int max_quot_scale; + /* fuse quot */ + int quot_offset; + int quot_scale; + int quot_adjust; + /* fuse quot_offset */ + int quot_offset_scale; + int quot_offset_adjust; +}; + +struct cpr_fuses { + int init_voltage_step; + int init_voltage_width; + struct fuse_corner_data *fuse_corner_data; +}; + +struct corner_data { + unsigned int fuse_corner; + unsigned long freq; +}; + +struct cpr_desc { + unsigned int num_fuse_corners; + int min_diff_quot; + int *step_quot; + + unsigned int timer_delay_us; + unsigned int timer_cons_up; + unsigned int timer_cons_down; + unsigned int up_threshold; + unsigned int down_threshold; + unsigned int idle_clocks; + unsigned int gcnt_us; + unsigned int vdd_apc_step_up_limit; + unsigned int vdd_apc_step_down_limit; + unsigned int clamp_timer_interval; + + struct cpr_fuses cpr_fuses; + bool reduce_to_fuse_uV; + bool reduce_to_corner_uV; +}; + +struct acc_desc { + unsigned int enable_reg; + u32 enable_mask; + + struct reg_sequence *config; + struct reg_sequence *settings; + int num_regs_per_fuse; +}; + +struct cpr_acc_desc { + const struct cpr_desc *cpr_desc; + const struct acc_desc *acc_desc; +}; + +struct fuse_corner { + int min_uV; + int max_uV; + int uV; + int quot; + int step_quot; + const struct reg_sequence *accs; + int num_accs; + unsigned long max_freq; + u8 ring_osc_idx; +}; + +struct corner { + int min_uV; + int max_uV; + int uV; + int last_uV; + int quot_adjust; + u32 save_ctl; + u32 save_irq; + unsigned long freq; + struct fuse_corner *fuse_corner; +}; + +struct cpr_drv { + unsigned int num_corners; + unsigned int ref_clk_khz; + + struct generic_pm_domain pd; + struct device *dev; + struct device *attached_cpu_dev; + struct mutex lock; + void __iomem *base; + struct corner *corner; + struct regulator *vdd_apc; + struct clk *cpu_clk; + struct regmap *tcsr; + bool loop_disabled; + u32 gcnt; + unsigned long flags; + + struct fuse_corner *fuse_corners; + struct corner *corners; + + const struct cpr_desc *desc; + const struct acc_desc *acc_desc; + const struct cpr_fuse *cpr_fuses; + + struct dentry *debugfs; +}; + +static bool cpr_is_allowed(struct cpr_drv *drv) +{ + return !drv->loop_disabled; +} + +static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value) +{ + writel_relaxed(value, drv->base + offset); +} + +static u32 cpr_read(struct cpr_drv *drv, u32 offset) +{ + return readl_relaxed(drv->base + offset); +} + +static void +cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value) +{ + u32 val; + + val = readl_relaxed(drv->base + offset); + val &= ~mask; + val |= value & mask; + writel_relaxed(val, drv->base + offset); +} + +static void cpr_irq_clr(struct cpr_drv *drv) +{ + cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL); +} + +static void cpr_irq_clr_nack(struct cpr_drv *drv) +{ + cpr_irq_clr(drv); + cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); +} + +static void cpr_irq_clr_ack(struct cpr_drv *drv) +{ + cpr_irq_clr(drv); + cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); +} + +static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits) +{ + cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits); +} + +static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value) +{ + cpr_masked_write(drv, REG_RBCPR_CTL, mask, value); +} + +static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner) +{ + u32 val, mask; + const struct cpr_desc *desc = drv->desc; + + /* Program Consecutive Up & Down */ + val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; + val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; + mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK; + cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val); + cpr_masked_write(drv, REG_RBCPR_CTL, + RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | + RBCPR_CTL_SW_AUTO_CONT_ACK_EN, + corner->save_ctl); + cpr_irq_set(drv, corner->save_irq); + + if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV) + val = RBCPR_CTL_LOOP_EN; + else + val = 0; + cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val); +} + +static void cpr_ctl_disable(struct cpr_drv *drv) +{ + cpr_irq_set(drv, 0); + cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | + RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0); + cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, + RBIF_TIMER_ADJ_CONS_UP_MASK | + RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0); + cpr_irq_clr(drv); + cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); + cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); + cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0); +} + +static bool cpr_ctl_is_enabled(struct cpr_drv *drv) +{ + u32 reg_val; + + reg_val = cpr_read(drv, REG_RBCPR_CTL); + return reg_val & RBCPR_CTL_LOOP_EN; +} + +static bool cpr_ctl_is_busy(struct cpr_drv *drv) +{ + u32 reg_val; + + reg_val = cpr_read(drv, REG_RBCPR_RESULT_0); + return reg_val & RBCPR_RESULT0_BUSY_MASK; +} + +static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner) +{ + corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL); + corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0)); +} + +static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner) +{ + u32 gcnt, ctl, irq, ro_sel, step_quot; + struct fuse_corner *fuse = corner->fuse_corner; + const struct cpr_desc *desc = drv->desc; + int i; + + ro_sel = fuse->ring_osc_idx; + gcnt = drv->gcnt; + gcnt |= fuse->quot - corner->quot_adjust; + + /* Program the step quotient and idle clocks */ + step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT; + step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK; + cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot); + + /* Clear the target quotient value and gate count of all ROs */ + for (i = 0; i < CPR_NUM_RING_OSC; i++) + cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); + + cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt); + ctl = corner->save_ctl; + cpr_write(drv, REG_RBCPR_CTL, ctl); + irq = corner->save_irq; + cpr_irq_set(drv, irq); + dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt, + ctl, irq); +} + +static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f, + struct fuse_corner *end) +{ + if (f == end) + return; + + if (f < end) { + for (f += 1; f <= end; f++) + regmap_multi_reg_write(tcsr, f->accs, f->num_accs); + } else { + for (f -= 1; f >= end; f--) + regmap_multi_reg_write(tcsr, f->accs, f->num_accs); + } +} + +static int cpr_pre_voltage(struct cpr_drv *drv, + struct fuse_corner *fuse_corner, + enum voltage_change_dir dir) +{ + struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; + + if (drv->tcsr && dir == DOWN) + cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); + + return 0; +} + +static int cpr_post_voltage(struct cpr_drv *drv, + struct fuse_corner *fuse_corner, + enum voltage_change_dir dir) +{ + struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; + + if (drv->tcsr && dir == UP) + cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); + + return 0; +} + +static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner, + int new_uV, enum voltage_change_dir dir) +{ + int ret; + struct fuse_corner *fuse_corner = corner->fuse_corner; + + ret = cpr_pre_voltage(drv, fuse_corner, dir); + if (ret) + return ret; + + ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV); + if (ret) { + dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n", + new_uV); + return ret; + } + + ret = cpr_post_voltage(drv, fuse_corner, dir); + if (ret) + return ret; + + return 0; +} + +static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv) +{ + return drv->corner ? drv->corner - drv->corners + 1 : 0; +} + +static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir) +{ + u32 val, error_steps, reg_mask; + int last_uV, new_uV, step_uV, ret; + struct corner *corner; + const struct cpr_desc *desc = drv->desc; + + if (dir != UP && dir != DOWN) + return 0; + + step_uV = regulator_get_linear_step(drv->vdd_apc); + if (!step_uV) + return -EINVAL; + + corner = drv->corner; + + val = cpr_read(drv, REG_RBCPR_RESULT_0); + + error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT; + error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK; + last_uV = corner->last_uV; + + if (dir == UP) { + if (desc->clamp_timer_interval && + error_steps < desc->up_threshold) { + /* + * Handle the case where another measurement started + * after the interrupt was triggered due to a core + * exiting from power collapse. + */ + error_steps = max(desc->up_threshold, + desc->vdd_apc_step_up_limit); + } + + if (last_uV >= corner->max_uV) { + cpr_irq_clr_nack(drv); + + /* Maximize the UP threshold */ + reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; + reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; + val = reg_mask; + cpr_ctl_modify(drv, reg_mask, val); + + /* Disable UP interrupt */ + cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP); + + return 0; + } + + if (error_steps > desc->vdd_apc_step_up_limit) + error_steps = desc->vdd_apc_step_up_limit; + + /* Calculate new voltage */ + new_uV = last_uV + error_steps * step_uV; + new_uV = min(new_uV, corner->max_uV); + + dev_dbg(drv->dev, + "UP: -> new_uV: %d last_uV: %d perf state: %u\n", + new_uV, last_uV, cpr_get_cur_perf_state(drv)); + } else if (dir == DOWN) { + if (desc->clamp_timer_interval && + error_steps < desc->down_threshold) { + /* + * Handle the case where another measurement started + * after the interrupt was triggered due to a core + * exiting from power collapse. + */ + error_steps = max(desc->down_threshold, + desc->vdd_apc_step_down_limit); + } + + if (last_uV <= corner->min_uV) { + cpr_irq_clr_nack(drv); + + /* Enable auto nack down */ + reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; + val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; + + cpr_ctl_modify(drv, reg_mask, val); + + /* Disable DOWN interrupt */ + cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN); + + return 0; + } + + if (error_steps > desc->vdd_apc_step_down_limit) + error_steps = desc->vdd_apc_step_down_limit; + + /* Calculate new voltage */ + new_uV = last_uV - error_steps * step_uV; + new_uV = max(new_uV, corner->min_uV); + + dev_dbg(drv->dev, + "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n", + new_uV, last_uV, cpr_get_cur_perf_state(drv)); + } + + ret = cpr_scale_voltage(drv, corner, new_uV, dir); + if (ret) { + cpr_irq_clr_nack(drv); + return ret; + } + drv->corner->last_uV = new_uV; + + if (dir == UP) { + /* Disable auto nack down */ + reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; + val = 0; + } else if (dir == DOWN) { + /* Restore default threshold for UP */ + reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; + reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; + val = desc->up_threshold; + val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; + } + + cpr_ctl_modify(drv, reg_mask, val); + + /* Re-enable default interrupts */ + cpr_irq_set(drv, CPR_INT_DEFAULT); + + /* Ack */ + cpr_irq_clr_ack(drv); + + return 0; +} + +static irqreturn_t cpr_irq_handler(int irq, void *dev) +{ + struct cpr_drv *drv = dev; + const struct cpr_desc *desc = drv->desc; + irqreturn_t ret = IRQ_HANDLED; + u32 val; + + mutex_lock(&drv->lock); + + val = cpr_read(drv, REG_RBIF_IRQ_STATUS); + if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS) + val = cpr_read(drv, REG_RBIF_IRQ_STATUS); + + dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val); + + if (!cpr_ctl_is_enabled(drv)) { + dev_dbg(drv->dev, "CPR is disabled\n"); + ret = IRQ_NONE; + } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) { + dev_dbg(drv->dev, "CPR measurement is not ready\n"); + } else if (!cpr_is_allowed(drv)) { + val = cpr_read(drv, REG_RBCPR_CTL); + dev_err_ratelimited(drv->dev, + "Interrupt broken? RBCPR_CTL = %#02x\n", + val); + ret = IRQ_NONE; + } else { + /* + * Following sequence of handling is as per each IRQ's + * priority + */ + if (val & CPR_INT_UP) { + cpr_scale(drv, UP); + } else if (val & CPR_INT_DOWN) { + cpr_scale(drv, DOWN); + } else if (val & CPR_INT_MIN) { + cpr_irq_clr_nack(drv); + } else if (val & CPR_INT_MAX) { + cpr_irq_clr_nack(drv); + } else if (val & CPR_INT_MID) { + /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */ + dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n"); + } else { + dev_dbg(drv->dev, + "IRQ occurred for unknown flag (%#08x)\n", val); + } + + /* Save register values for the corner */ + cpr_corner_save(drv, drv->corner); + } + + mutex_unlock(&drv->lock); + + return ret; +} + +static int cpr_enable(struct cpr_drv *drv) +{ + int ret; + + ret = regulator_enable(drv->vdd_apc); + if (ret) + return ret; + + mutex_lock(&drv->lock); + + if (cpr_is_allowed(drv) && drv->corner) { + cpr_irq_clr(drv); + cpr_corner_restore(drv, drv->corner); + cpr_ctl_enable(drv, drv->corner); + } + + mutex_unlock(&drv->lock); + + return 0; +} + +static int cpr_disable(struct cpr_drv *drv) +{ + int ret; + + mutex_lock(&drv->lock); + + if (cpr_is_allowed(drv)) { + cpr_ctl_disable(drv); + cpr_irq_clr(drv); + } + + mutex_unlock(&drv->lock); + + ret = regulator_disable(drv->vdd_apc); + if (ret) + return ret; + + return 0; +} + +static int cpr_config(struct cpr_drv *drv) +{ + int i; + u32 val, gcnt; + struct corner *corner; + const struct cpr_desc *desc = drv->desc; + + /* Disable interrupt and CPR */ + cpr_write(drv, REG_RBIF_IRQ_EN(0), 0); + cpr_write(drv, REG_RBCPR_CTL, 0); + + /* Program the default HW ceiling, floor and vlevel */ + val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK) + << RBIF_LIMIT_CEILING_SHIFT; + val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK; + cpr_write(drv, REG_RBIF_LIMIT, val); + cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT); + + /* + * Clear the target quotient value and gate count of all + * ring oscillators + */ + for (i = 0; i < CPR_NUM_RING_OSC; i++) + cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); + + /* Init and save gcnt */ + gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000; + gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK; + gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT; + drv->gcnt = gcnt; + + /* Program the delay count for the timer */ + val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000; + cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val); + dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val, + desc->timer_delay_us); + + /* Program Consecutive Up & Down */ + val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; + val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; + val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT; + cpr_write(drv, REG_RBIF_TIMER_ADJUST, val); + + /* Program the control register */ + val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT; + val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT; + val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE; + val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN; + cpr_write(drv, REG_RBCPR_CTL, val); + + for (i = 0; i < drv->num_corners; i++) { + corner = &drv->corners[i]; + corner->save_ctl = val; + corner->save_irq = CPR_INT_DEFAULT; + } + + cpr_irq_set(drv, CPR_INT_DEFAULT); + + val = cpr_read(drv, REG_RBCPR_VERSION); + if (val <= RBCPR_VER_2) + drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS; + + return 0; +} + +static int cpr_set_performance_state(struct generic_pm_domain *domain, + unsigned int state) +{ + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); + struct corner *corner, *end; + enum voltage_change_dir dir; + int ret = 0, new_uV; + + mutex_lock(&drv->lock); + + dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n", + __func__, state, cpr_get_cur_perf_state(drv)); + + /* + * Determine new corner we're going to. + * Remove one since lowest performance state is 1. + */ + corner = drv->corners + state - 1; + end = &drv->corners[drv->num_corners - 1]; + if (corner > end || corner < drv->corners) { + ret = -EINVAL; + goto unlock; + } + + /* Determine direction */ + if (drv->corner > corner) + dir = DOWN; + else if (drv->corner < corner) + dir = UP; + else + dir = NO_CHANGE; + + if (cpr_is_allowed(drv)) + new_uV = corner->last_uV; + else + new_uV = corner->uV; + + if (cpr_is_allowed(drv)) + cpr_ctl_disable(drv); + + ret = cpr_scale_voltage(drv, corner, new_uV, dir); + if (ret) + goto unlock; + + if (cpr_is_allowed(drv)) { + cpr_irq_clr(drv); + if (drv->corner != corner) + cpr_corner_restore(drv, corner); + cpr_ctl_enable(drv, corner); + } + + drv->corner = corner; + +unlock: + mutex_unlock(&drv->lock); + + return ret; +} + +static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data) +{ + struct nvmem_cell *cell; + ssize_t len; + char *ret; + int i; + + *data = 0; + + cell = nvmem_cell_get(dev, cname); + if (IS_ERR(cell)) { + if (PTR_ERR(cell) != -EPROBE_DEFER) + dev_err(dev, "undefined cell %s\n", cname); + return PTR_ERR(cell); + } + + ret = nvmem_cell_read(cell, &len); + nvmem_cell_put(cell); + if (IS_ERR(ret)) { + dev_err(dev, "can't read cell %s\n", cname); + return PTR_ERR(ret); + } + + for (i = 0; i < len; i++) + *data |= ret[i] << (8 * i); + + kfree(ret); + dev_dbg(dev, "efuse read(%s) = %x, bytes %ld\n", cname, *data, len); + + return 0; +} + +static int +cpr_populate_ring_osc_idx(struct cpr_drv *drv) +{ + struct fuse_corner *fuse = drv->fuse_corners; + struct fuse_corner *end = fuse + drv->desc->num_fuse_corners; + const struct cpr_fuse *fuses = drv->cpr_fuses; + u32 data; + int ret; + + for (; fuse < end; fuse++, fuses++) { + ret = cpr_read_efuse(drv->dev, fuses->ring_osc, + &data); + if (ret) + return ret; + fuse->ring_osc_idx = data; + } + + return 0; +} + +static int cpr_read_fuse_uV(const struct cpr_desc *desc, + const struct fuse_corner_data *fdata, + const char *init_v_efuse, + int step_volt, + struct cpr_drv *drv) +{ + int step_size_uV, steps, uV; + u32 bits = 0; + int ret; + + ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits); + if (ret) + return ret; + + steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1); + /* Not two's complement.. instead highest bit is sign bit */ + if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1)) + steps = -steps; + + step_size_uV = desc->cpr_fuses.init_voltage_step; + + uV = fdata->ref_uV + steps * step_size_uV; + return DIV_ROUND_UP(uV, step_volt) * step_volt; +} + +static int cpr_fuse_corner_init(struct cpr_drv *drv) +{ + const struct cpr_desc *desc = drv->desc; + const struct cpr_fuse *fuses = drv->cpr_fuses; + const struct acc_desc *acc_desc = drv->acc_desc; + int i; + unsigned int step_volt; + struct fuse_corner_data *fdata; + struct fuse_corner *fuse, *end, *prev; + int uV; + const struct reg_sequence *accs; + int ret; + + accs = acc_desc->settings; + + step_volt = regulator_get_linear_step(drv->vdd_apc); + if (!step_volt) + return -EINVAL; + + /* Populate fuse_corner members */ + fuse = drv->fuse_corners; + end = &fuse[desc->num_fuse_corners - 1]; + fdata = desc->cpr_fuses.fuse_corner_data; + + for (i = 0, prev = NULL; fuse <= end; fuse++, fuses++, i++, fdata++) { + /* + * Update SoC voltages: platforms might choose a different + * regulators than the one used to characterize the algorithms + * (ie, init_voltage_step). + */ + fdata->min_uV = roundup(fdata->min_uV, step_volt); + fdata->max_uV = roundup(fdata->max_uV, step_volt); + + /* Populate uV */ + uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage, + step_volt, drv); + if (uV < 0) + return ret; + + fuse->min_uV = fdata->min_uV; + fuse->max_uV = fdata->max_uV; + fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV); + + if (fuse == end) { + /* + * Allow the highest fuse corner's PVS voltage to + * define the ceiling voltage for that corner in order + * to support SoC's in which variable ceiling values + * are required. + */ + end->max_uV = max(end->max_uV, end->uV); + } + + /* Populate target quotient by scaling */ + ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot); + if (ret) + return ret; + + fuse->quot *= fdata->quot_scale; + fuse->quot += fdata->quot_offset; + fuse->quot += fdata->quot_adjust; + fuse->step_quot = desc->step_quot[fuse->ring_osc_idx]; + + /* Populate acc settings */ + fuse->accs = accs; + fuse->num_accs = acc_desc->num_regs_per_fuse; + accs += acc_desc->num_regs_per_fuse; + } + + /* + * Restrict all fuse corner PVS voltages based upon per corner + * ceiling and floor voltages. + */ + for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) { + if (fuse->uV > fuse->max_uV) + fuse->uV = fuse->max_uV; + else if (fuse->uV < fuse->min_uV) + fuse->uV = fuse->min_uV; + + ret = regulator_is_supported_voltage(drv->vdd_apc, + fuse->min_uV, + fuse->min_uV); + if (!ret) { + dev_err(drv->dev, + "min uV: %d (fuse corner: %d) not supported by regulator\n", + fuse->min_uV, i); + return -EINVAL; + } + + ret = regulator_is_supported_voltage(drv->vdd_apc, + fuse->max_uV, + fuse->max_uV); + if (!ret) { + dev_err(drv->dev, + "max uV: %d (fuse corner: %d) not supported by regulator\n", + fuse->max_uV, i); + return -EINVAL; + } + + dev_dbg(drv->dev, + "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n", + i, fuse->min_uV, fuse->uV, fuse->max_uV, + fuse->ring_osc_idx, fuse->quot, fuse->step_quot); + } + + return 0; +} + +static int cpr_calculate_scaling(const char *quot_offset, + struct cpr_drv *drv, + const struct fuse_corner_data *fdata, + const struct corner *corner) +{ + u32 quot_diff = 0; + unsigned long freq_diff; + int scaling; + const struct fuse_corner *fuse, *prev_fuse; + int ret; + + fuse = corner->fuse_corner; + prev_fuse = fuse - 1; + + if (quot_offset) { + ret = cpr_read_efuse(drv->dev, quot_offset, "_diff); + if (ret) + return ret; + + quot_diff *= fdata->quot_offset_scale; + quot_diff += fdata->quot_offset_adjust; + } else { + quot_diff = fuse->quot - prev_fuse->quot; + } + + freq_diff = fuse->max_freq - prev_fuse->max_freq; + freq_diff /= 1000000; /* Convert to MHz */ + scaling = 1000 * quot_diff / freq_diff; + return min(scaling, fdata->max_quot_scale); +} + +static int cpr_interpolate(const struct corner *corner, int step_volt, + const struct fuse_corner_data *fdata) +{ + unsigned long f_high, f_low, f_diff; + int uV_high, uV_low, uV; + u64 temp, temp_limit; + const struct fuse_corner *fuse, *prev_fuse; + + fuse = corner->fuse_corner; + prev_fuse = fuse - 1; + + f_high = fuse->max_freq; + f_low = prev_fuse->max_freq; + uV_high = fuse->uV; + uV_low = prev_fuse->uV; + f_diff = fuse->max_freq - corner->freq; + + /* + * Don't interpolate in the wrong direction. This could happen + * if the adjusted fuse voltage overlaps with the previous fuse's + * adjusted voltage. + */ + if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq) + return corner->uV; + + temp = f_diff * (uV_high - uV_low); + do_div(temp, f_high - f_low); + + /* + * max_volt_scale has units of uV/MHz while freq values + * have units of Hz. Divide by 1000000 to convert to. + */ + temp_limit = f_diff * fdata->max_volt_scale; + do_div(temp_limit, 1000000); + + uV = uV_high - min(temp, temp_limit); + return roundup(uV, step_volt); +} + +static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp) +{ + struct device_node *np; + unsigned int fuse_corner = 0; + + np = dev_pm_opp_get_of_node(opp); + if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner)) + pr_err("%s: missing 'qcom,opp-fuse-level' property\n", + __func__); + + of_node_put(np); + + return fuse_corner; +} + +unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref, + struct device *cpu_dev) +{ + u64 rate = 0; + struct device_node *ref_np; + struct device_node *desc_np; + struct device_node *child_np = NULL; + struct device_node *child_req_np = NULL; + + desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); + if (!desc_np) + return 0; + + ref_np = dev_pm_opp_get_of_node(ref); + if (!ref_np) + goto out_ref; + + do { + of_node_put(child_req_np); + child_np = of_get_next_available_child(desc_np, child_np); + child_req_np = of_parse_phandle(child_np, "required-opps", 0); + } while (child_np && child_req_np != ref_np); + + if (child_np && child_req_np == ref_np) + of_property_read_u64(child_np, "opp-hz", &rate); + + of_node_put(child_req_np); + of_node_put(child_np); + of_node_put(ref_np); +out_ref: + of_node_put(desc_np); + + return (unsigned long) rate; +} + +static int cpr_corner_init(struct cpr_drv *drv) +{ + const struct cpr_desc *desc = drv->desc; + const struct cpr_fuse *fuses = drv->cpr_fuses; + int i, level, scaling = 0; + unsigned int fnum, fc; + const char *quot_offset; + struct fuse_corner *fuse, *prev_fuse; + struct corner *corner, *end; + struct corner_data *cdata; + const struct fuse_corner_data *fdata; + bool apply_scaling; + unsigned long freq_diff, freq_diff_mhz; + unsigned long freq; + int step_volt = regulator_get_linear_step(drv->vdd_apc); + struct dev_pm_opp *opp; + + if (!step_volt) + return -EINVAL; + + corner = drv->corners; + end = &corner[drv->num_corners - 1]; + + cdata = devm_kcalloc(drv->dev, drv->num_corners, + sizeof(struct corner_data), + GFP_KERNEL); + if (!cdata) + return -ENOMEM; + + /* + * Store maximum frequency for each fuse corner based on the frequency + * plan + */ + for (level = 1; level <= drv->num_corners; level++) { + opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level); + if (IS_ERR(opp)) + return -EINVAL; + fc = cpr_get_fuse_corner(opp); + if (!fc) { + dev_pm_opp_put(opp); + return -EINVAL; + } + fnum = fc - 1; + freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev); + if (!freq) { + dev_pm_opp_put(opp); + return -EINVAL; + } + cdata[level - 1].fuse_corner = fnum; + cdata[level - 1].freq = freq; + + fuse = &drv->fuse_corners[fnum]; + dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n", + freq, dev_pm_opp_get_level(opp) - 1, fnum); + if (freq > fuse->max_freq) + fuse->max_freq = freq; + dev_pm_opp_put(opp); + } + + /* + * Get the quotient adjustment scaling factor, according to: + * + * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1)) + * / (freq(corner_N) - freq(corner_N-1)), max_factor) + * + * QUOT(corner_N): quotient read from fuse for fuse corner N + * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1) + * freq(corner_N): max frequency in MHz supported by fuse corner N + * freq(corner_N-1): max frequency in MHz supported by fuse corner + * (N - 1) + * + * Then walk through the corners mapped to each fuse corner + * and calculate the quotient adjustment for each one using the + * following formula: + * + * quot_adjust = (freq_max - freq_corner) * scaling / 1000 + * + * freq_max: max frequency in MHz supported by the fuse corner + * freq_corner: frequency in MHz corresponding to the corner + * scaling: calculated from above equation + * + * + * + + + * | v | + * q | f c o | f c + * u | c l | c + * o | f t | f + * t | c a | c + * | c f g | c f + * | e | + * +--------------- +---------------- + * 0 1 2 3 4 5 6 0 1 2 3 4 5 6 + * corner corner + * + * c = corner + * f = fuse corner + * + */ + for (apply_scaling = false, i = 0; corner <= end; corner++, i++) { + fnum = cdata[i].fuse_corner; + fdata = &desc->cpr_fuses.fuse_corner_data[fnum]; + quot_offset = fuses[fnum].quotient_offset; + fuse = &drv->fuse_corners[fnum]; + if (fnum) + prev_fuse = &drv->fuse_corners[fnum - 1]; + else + prev_fuse = NULL; + + corner->fuse_corner = fuse; + corner->freq = cdata[i].freq; + corner->uV = fuse->uV; + + if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) { + scaling = cpr_calculate_scaling(quot_offset, drv, + fdata, corner); + if (scaling < 0) + return scaling; + + apply_scaling = true; + } else if (corner->freq == fuse->max_freq) { + /* This is a fuse corner; don't scale anything */ + apply_scaling = false; + } + + if (apply_scaling) { + freq_diff = fuse->max_freq - corner->freq; + freq_diff_mhz = freq_diff / 1000000; + corner->quot_adjust = scaling * freq_diff_mhz / 1000; + + corner->uV = cpr_interpolate(corner, step_volt, fdata); + } + + corner->max_uV = fuse->max_uV; + corner->min_uV = fuse->min_uV; + corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV); + corner->last_uV = corner->uV; + + /* Reduce the ceiling voltage if needed */ + if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV) + corner->max_uV = corner->uV; + else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV) + corner->max_uV = max(corner->min_uV, fuse->uV); + + dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i, + corner->min_uV, corner->uV, corner->max_uV, + fuse->quot - corner->quot_adjust); + } + + return 0; +} + +static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv) +{ + const struct cpr_desc *desc = drv->desc; + struct cpr_fuse *fuses; + int i; + + fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners, + sizeof(struct cpr_fuse), + GFP_KERNEL); + if (!fuses) + return ERR_PTR(-ENOMEM); + + for (i = 0; i < desc->num_fuse_corners; i++) { + char tbuf[32]; + + snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1); + fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); + if (!fuses[i].ring_osc) + return ERR_PTR(-ENOMEM); + + snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1); + fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf, + GFP_KERNEL); + if (!fuses[i].init_voltage) + return ERR_PTR(-ENOMEM); + + snprintf(tbuf, 32, "cpr_quotient%d", i + 1); + fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); + if (!fuses[i].quotient) + return ERR_PTR(-ENOMEM); + + snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1); + fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf, + GFP_KERNEL); + if (!fuses[i].quotient_offset) + return ERR_PTR(-ENOMEM); + } + + return fuses; +} + +static void cpr_set_loop_allowed(struct cpr_drv *drv) +{ + drv->loop_disabled = false; +} + +static int cpr_init_parameters(struct cpr_drv *drv) +{ + const struct cpr_desc *desc = drv->desc; + struct clk *clk; + + clk = clk_get(drv->dev, "ref"); + if (IS_ERR(clk)) + return PTR_ERR(clk); + + drv->ref_clk_khz = clk_get_rate(clk) / 1000; + clk_put(clk); + + if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK || + desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK || + desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK || + desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK || + desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK || + desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK) + return -EINVAL; + + dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n", + desc->up_threshold, desc->down_threshold); + + return 0; +} + +static int cpr_find_initial_corner(struct cpr_drv *drv) +{ + unsigned long rate; + const struct corner *end; + struct corner *iter; + unsigned int i = 0; + + if (!drv->cpu_clk) { + dev_err(drv->dev, "cannot get rate from NULL clk\n"); + return -EINVAL; + } + + end = &drv->corners[drv->num_corners - 1]; + rate = clk_get_rate(drv->cpu_clk); + + /* + * Some bootloaders set a CPU clock frequency that is not defined + * in the OPP table. When running at an unlisted frequency, + * cpufreq_online() will change to the OPP which has the lowest + * frequency, at or above the unlisted frequency. + * Since cpufreq_online() always "rounds up" in the case of an + * unlisted frequency, this function always "rounds down" in case + * of an unlisted frequency. That way, when cpufreq_online() + * triggers the first ever call to cpr_set_performance_state(), + * it will correctly determine the direction as UP. + */ + for (iter = drv->corners; iter <= end; iter++) { + if (iter->freq > rate) + break; + i++; + if (iter->freq == rate) { + drv->corner = iter; + break; + } + if (iter->freq < rate) + drv->corner = iter; + } + + if (!drv->corner) { + dev_err(drv->dev, "boot up corner not found\n"); + return -EINVAL; + } + + dev_dbg(drv->dev, "boot up perf state: %u\n", i); + + return 0; +} + +static const struct cpr_desc qcs404_cpr_desc = { + .num_fuse_corners = 3, + .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF, + .step_quot = (int []){ 25, 25, 25, }, + .timer_delay_us = 5000, + .timer_cons_up = 0, + .timer_cons_down = 2, + .up_threshold = 1, + .down_threshold = 3, + .idle_clocks = 15, + .gcnt_us = 1, + .vdd_apc_step_up_limit = 1, + .vdd_apc_step_down_limit = 1, + .cpr_fuses = { + .init_voltage_step = 8000, + .init_voltage_width = 6, + .fuse_corner_data = (struct fuse_corner_data[]){ + /* fuse corner 0 */ + { + .ref_uV = 1224000, + .max_uV = 1224000, + .min_uV = 1048000, + .max_volt_scale = 0, + .max_quot_scale = 0, + .quot_offset = 0, + .quot_scale = 1, + .quot_adjust = 0, + .quot_offset_scale = 5, + .quot_offset_adjust = 0, + }, + /* fuse corner 1 */ + { + .ref_uV = 1288000, + .max_uV = 1288000, + .min_uV = 1048000, + .max_volt_scale = 2000, + .max_quot_scale = 1400, + .quot_offset = 0, + .quot_scale = 1, + .quot_adjust = -20, + .quot_offset_scale = 5, + .quot_offset_adjust = 0, + }, + /* fuse corner 2 */ + { + .ref_uV = 1352000, + .max_uV = 1384000, + .min_uV = 1088000, + .max_volt_scale = 2000, + .max_quot_scale = 1400, + .quot_offset = 0, + .quot_scale = 1, + .quot_adjust = 0, + .quot_offset_scale = 5, + .quot_offset_adjust = 0, + }, + }, + }, +}; + +static const struct acc_desc qcs404_acc_desc = { + .settings = (struct reg_sequence[]){ + { 0xb120, 0x1041040 }, + { 0xb124, 0x41 }, + { 0xb120, 0x0 }, + { 0xb124, 0x0 }, + { 0xb120, 0x0 }, + { 0xb124, 0x0 }, + }, + .config = (struct reg_sequence[]){ + { 0xb138, 0xff }, + { 0xb130, 0x5555 }, + }, + .num_regs_per_fuse = 2, +}; + +static const struct cpr_acc_desc qcs404_cpr_acc_desc = { + .cpr_desc = &qcs404_cpr_desc, + .acc_desc = &qcs404_acc_desc, +}; + +static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd, + struct dev_pm_opp *opp) +{ + return dev_pm_opp_get_level(opp); +} + +static int cpr_power_off(struct generic_pm_domain *domain) +{ + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); + + return cpr_disable(drv); +} + +static int cpr_power_on(struct generic_pm_domain *domain) +{ + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); + + return cpr_enable(drv); +} + +static int cpr_pd_attach_dev(struct generic_pm_domain *domain, + struct device *dev) +{ + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); + const struct acc_desc *acc_desc = drv->acc_desc; + int ret = 0; + + mutex_lock(&drv->lock); + + dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev)); + + /* + * This driver only supports scaling voltage for a CPU cluster + * where all CPUs in the cluster share a single regulator. + * Therefore, save the struct device pointer only for the first + * CPU device that gets attached. There is no need to do any + * additional initialization when further CPUs get attached. + */ + if (drv->attached_cpu_dev) + goto unlock; + + /* + * cpr_scale_voltage() requires the direction (if we are changing + * to a higher or lower OPP). The first time + * cpr_set_performance_state() is called, there is no previous + * performance state defined. Therefore, we call + * cpr_find_initial_corner() that gets the CPU clock frequency + * set by the bootloader, so that we can determine the direction + * the first time cpr_set_performance_state() is called. + */ + drv->cpu_clk = devm_clk_get(dev, NULL); + if (IS_ERR(drv->cpu_clk)) { + ret = PTR_ERR(drv->cpu_clk); + if (ret != -EPROBE_DEFER) + dev_err(drv->dev, "could not get cpu clk: %d\n", ret); + goto unlock; + } + drv->attached_cpu_dev = dev; + + dev_dbg(drv->dev, "using cpu clk from: %s\n", + dev_name(drv->attached_cpu_dev)); + + /* + * Everything related to (virtual) corners has to be initialized + * here, when attaching to the power domain, since we need to know + * the maximum frequency for each fuse corner, and this is only + * available after the cpufreq driver has attached to us. + * The reason for this is that we need to know the highest + * frequency associated with each fuse corner. + */ + drv->num_corners = dev_pm_opp_get_opp_count(&drv->pd.dev); + if (drv->num_corners < 0) { + ret = drv->num_corners; + goto unlock; + } + if (drv->num_corners < 2) { + dev_err(drv->dev, "need at least 2 OPPs to use CPR\n"); + ret = -EINVAL; + goto unlock; + } + + dev_dbg(drv->dev, "number of OPPs: %d\n", drv->num_corners); + + drv->corners = devm_kcalloc(drv->dev, drv->num_corners, + sizeof(*drv->corners), + GFP_KERNEL); + if (!drv->corners) { + ret = -ENOMEM; + goto unlock; + } + + ret = cpr_corner_init(drv); + if (ret) + goto unlock; + + cpr_set_loop_allowed(drv); + + ret = cpr_init_parameters(drv); + if (ret) + goto unlock; + + /* Configure CPR HW but keep it disabled */ + ret = cpr_config(drv); + if (ret) + goto unlock; + + ret = cpr_find_initial_corner(drv); + if (ret) + goto unlock; + + if (acc_desc->config) + regmap_multi_reg_write(drv->tcsr, acc_desc->config, + acc_desc->num_regs_per_fuse); + + /* Enable ACC if required */ + if (acc_desc->enable_mask) + regmap_update_bits(drv->tcsr, acc_desc->enable_reg, + acc_desc->enable_mask, + acc_desc->enable_mask); + +unlock: + mutex_unlock(&drv->lock); + + return ret; +} + +static int cpr_debug_info_show(struct seq_file *s, void *unused) +{ + u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps; + u32 step_dn, step_up, error, error_lt0, busy; + struct cpr_drv *drv = s->private; + struct fuse_corner *fuse_corner; + struct corner *corner; + + corner = drv->corner; + fuse_corner = corner->fuse_corner; + + seq_printf(s, "corner, current_volt = %d uV\n", + corner->last_uV); + + ro_sel = fuse_corner->ring_osc_idx; + gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel)); + seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt); + + ctl = cpr_read(drv, REG_RBCPR_CTL); + seq_printf(s, "rbcpr_ctl = %#02X\n", ctl); + + irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS); + seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status); + + reg = cpr_read(drv, REG_RBCPR_RESULT_0); + seq_printf(s, "rbcpr_result_0 = %#02X\n", reg); + + step_dn = reg & 0x01; + step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01; + seq_printf(s, " [step_dn = %u", step_dn); + + seq_printf(s, ", step_up = %u", step_up); + + error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT) + & RBCPR_RESULT0_ERROR_STEPS_MASK; + seq_printf(s, ", error_steps = %u", error_steps); + + error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK; + seq_printf(s, ", error = %u", error); + + error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01; + seq_printf(s, ", error_lt_0 = %u", error_lt0); + + busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01; + seq_printf(s, ", busy = %u]\n", busy); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(cpr_debug_info); + +static void cpr_debugfs_init(struct cpr_drv *drv) +{ + drv->debugfs = debugfs_create_dir("qcom_cpr", NULL); + + debugfs_create_file("debug_info", 0444, drv->debugfs, + drv, &cpr_debug_info_fops); +} + +static int cpr_probe(struct platform_device *pdev) +{ + struct resource *res; + struct device *dev = &pdev->dev; + struct cpr_drv *drv; + int irq, ret; + const struct cpr_acc_desc *data; + struct device_node *np; + u32 cpr_rev = FUSE_REVISION_UNKNOWN; + + data = of_device_get_match_data(dev); + if (!data || !data->cpr_desc || !data->acc_desc) + return -EINVAL; + + drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); + if (!drv) + return -ENOMEM; + drv->dev = dev; + drv->desc = data->cpr_desc; + drv->acc_desc = data->acc_desc; + + drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners, + sizeof(*drv->fuse_corners), + GFP_KERNEL); + if (!drv->fuse_corners) + return -ENOMEM; + + np = of_parse_phandle(dev->of_node, "acc-syscon", 0); + if (!np) + return -ENODEV; + + drv->tcsr = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(drv->tcsr)) + return PTR_ERR(drv->tcsr); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + drv->base = devm_ioremap_resource(dev, res); + if (IS_ERR(drv->base)) + return PTR_ERR(drv->base); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return -EINVAL; + + drv->vdd_apc = devm_regulator_get(dev, "vdd-apc"); + if (IS_ERR(drv->vdd_apc)) + return PTR_ERR(drv->vdd_apc); + + /* + * Initialize fuse corners, since it simply depends + * on data in efuses. + * Everything related to (virtual) corners has to be + * initialized after attaching to the power domain, + * since it depends on the CPU's OPP table. + */ + ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev); + if (ret) + return ret; + + drv->cpr_fuses = cpr_get_fuses(drv); + if (IS_ERR(drv->cpr_fuses)) + return PTR_ERR(drv->cpr_fuses); + + ret = cpr_populate_ring_osc_idx(drv); + if (ret) + return ret; + + ret = cpr_fuse_corner_init(drv); + if (ret) + return ret; + + mutex_init(&drv->lock); + + ret = devm_request_threaded_irq(dev, irq, NULL, + cpr_irq_handler, + IRQF_ONESHOT | IRQF_TRIGGER_RISING, + "cpr", drv); + if (ret) + return ret; + + drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name, + GFP_KERNEL); + if (!drv->pd.name) + return -EINVAL; + + drv->pd.power_off = cpr_power_off; + drv->pd.power_on = cpr_power_on; + drv->pd.set_performance_state = cpr_set_performance_state; + drv->pd.opp_to_performance_state = cpr_get_performance_state; + drv->pd.attach_dev = cpr_pd_attach_dev; + + ret = pm_genpd_init(&drv->pd, NULL, true); + if (ret) + return ret; + + ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd); + if (ret) + return ret; + + platform_set_drvdata(pdev, drv); + cpr_debugfs_init(drv); + + return 0; +} + +static int cpr_remove(struct platform_device *pdev) +{ + struct cpr_drv *drv = platform_get_drvdata(pdev); + + if (cpr_is_allowed(drv)) { + cpr_ctl_disable(drv); + cpr_irq_set(drv, 0); + } + + of_genpd_del_provider(pdev->dev.of_node); + pm_genpd_remove(&drv->pd); + + debugfs_remove_recursive(drv->debugfs); + + return 0; +} + +static const struct of_device_id cpr_match_table[] = { + { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc }, + { } +}; +MODULE_DEVICE_TABLE(of, cpr_match_table); + +static struct platform_driver cpr_driver = { + .probe = cpr_probe, + .remove = cpr_remove, + .driver = { + .name = "qcom-cpr", + .of_match_table = cpr_match_table, + }, +}; +module_platform_driver(cpr_driver); + +MODULE_DESCRIPTION("Core Power Reduction (CPR) driver"); +MODULE_LICENSE("GPL v2");