diff mbox series

[v2,1/2] drm/bridge: ti-sn65dsi86: Implement lane reordering + polarity

Message ID 20200506140208.v2.1.Ibc8eeddcee94984a608d6900b46f9ffde4045da4@changeid (mailing list archive)
State New, archived
Headers show
Series [v2,1/2] drm/bridge: ti-sn65dsi86: Implement lane reordering + polarity | expand

Commit Message

Doug Anderson May 6, 2020, 9:02 p.m. UTC
The ti-sn65dsi86 MIPI DSI to eDP bridge chip supports arbitrary
remapping of eDP lanes and also polarity inversion.  Both of these
features have been described in the device tree bindings for the
device since the beginning but were never implemented in the driver.
Implement both of them.

Part of this change also allows you to (via the same device tree
bindings) specify to use fewer than the max number of DP lanes that
the panel reports.  This could be useful if your display supports more
lanes but only a few are hooked up on your board.

Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
---
This patch is based upon my my outstanding series[1] not because there
is any real requirement but simply to avoid merge conflicts.  I
believe that my previous series is ready to land.  If, however, you'd
prefer that I rebase this patch somewhere atop something else then
please shout.

[1] https://lore.kernel.org/r/20200430194617.197510-1-dianders@chromium.org

Changes in v2:
- Use SN_MAX_DP_LANES instead of 4 in one place.
- Comment that we aren't doing full validation of dts params.
- Check dp_lanes <= SN_MAX_DP_LANES to avoid buffer overrun.
- Add missing of_node_put()

 drivers/gpu/drm/bridge/ti-sn65dsi86.c | 82 ++++++++++++++++++++++-----
 1 file changed, 68 insertions(+), 14 deletions(-)

Comments

Rob Clark May 15, 2020, 9:43 p.m. UTC | #1
On Wed, May 6, 2020 at 2:03 PM Douglas Anderson <dianders@chromium.org> wrote:
>
> The ti-sn65dsi86 MIPI DSI to eDP bridge chip supports arbitrary
> remapping of eDP lanes and also polarity inversion.  Both of these
> features have been described in the device tree bindings for the
> device since the beginning but were never implemented in the driver.
> Implement both of them.
>
> Part of this change also allows you to (via the same device tree
> bindings) specify to use fewer than the max number of DP lanes that
> the panel reports.  This could be useful if your display supports more
> lanes but only a few are hooked up on your board.
>
> Signed-off-by: Douglas Anderson <dianders@chromium.org>
> Reviewed-by: Stephen Boyd <swboyd@chromium.org>

Reviewed-by: Rob Clark <robdclark@gmail.com>

> ---
> This patch is based upon my my outstanding series[1] not because there
> is any real requirement but simply to avoid merge conflicts.  I
> believe that my previous series is ready to land.  If, however, you'd
> prefer that I rebase this patch somewhere atop something else then
> please shout.
>
> [1] https://lore.kernel.org/r/20200430194617.197510-1-dianders@chromium.org
>
> Changes in v2:
> - Use SN_MAX_DP_LANES instead of 4 in one place.
> - Comment that we aren't doing full validation of dts params.
> - Check dp_lanes <= SN_MAX_DP_LANES to avoid buffer overrun.
> - Add missing of_node_put()
>
>  drivers/gpu/drm/bridge/ti-sn65dsi86.c | 82 ++++++++++++++++++++++-----
>  1 file changed, 68 insertions(+), 14 deletions(-)
>
> diff --git a/drivers/gpu/drm/bridge/ti-sn65dsi86.c b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> index 1a125423eb07..534b712dccf8 100644
> --- a/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> +++ b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> @@ -50,8 +50,12 @@
>  #define SN_CHA_VERTICAL_BACK_PORCH_REG         0x36
>  #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG      0x38
>  #define SN_CHA_VERTICAL_FRONT_PORCH_REG                0x3A
> +#define SN_LN_ASSIGN_REG                       0x59
> +#define  LN_ASSIGN_WIDTH                       2
>  #define SN_ENH_FRAME_REG                       0x5A
>  #define  VSTREAM_ENABLE                                BIT(3)
> +#define  LN_POLRS_OFFSET                       4
> +#define  LN_POLRS_MASK                         0xf0
>  #define SN_DATA_FORMAT_REG                     0x5B
>  #define  BPP_18_RGB                            BIT(0)
>  #define SN_HPD_DISABLE_REG                     0x5C
> @@ -98,6 +102,7 @@
>
>  #define SN_REGULATOR_SUPPLY_NUM                4
>
> +#define SN_MAX_DP_LANES                        4
>  #define SN_NUM_GPIOS                   4
>
>  /**
> @@ -115,6 +120,8 @@
>   * @enable_gpio:  The GPIO we toggle to enable the bridge.
>   * @supplies:     Data for bulk enabling/disabling our regulators.
>   * @dp_lanes:     Count of dp_lanes we're using.
> + * @ln_assign:    Value to program to the LN_ASSIGN register.
> + * @ln_polr:      Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
>   *
>   * @gchip:        If we expose our GPIOs, this is used.
>   * @gchip_output: A cache of whether we've set GPIOs to output.  This
> @@ -140,6 +147,8 @@ struct ti_sn_bridge {
>         struct gpio_desc                *enable_gpio;
>         struct regulator_bulk_data      supplies[SN_REGULATOR_SUPPLY_NUM];
>         int                             dp_lanes;
> +       u8                              ln_assign;
> +       u8                              ln_polrs;
>
>         struct gpio_chip                gchip;
>         DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
> @@ -707,26 +716,20 @@ static void ti_sn_bridge_enable(struct drm_bridge *bridge)
>         int dp_rate_idx;
>         unsigned int val;
>         int ret = -EINVAL;
> +       int max_dp_lanes;
>
> -       /*
> -        * Run with the maximum number of lanes that the DP sink supports.
> -        *
> -        * Depending use cases, we might want to revisit this later because:
> -        * - It's plausible that someone may have run fewer lines to the
> -        *   sink than the sink actually supports, assuming that the lines
> -        *   will just be driven at a higher rate.
> -        * - The DP spec seems to indicate that it's more important to minimize
> -        *   the number of lanes than the link rate.
> -        *
> -        * If we do revisit, it would be important to measure the power impact.
> -        */
> -       pdata->dp_lanes = ti_sn_get_max_lanes(pdata);
> +       max_dp_lanes = ti_sn_get_max_lanes(pdata);
> +       pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
>
>         /* DSI_A lane config */
> -       val = CHA_DSI_LANES(4 - pdata->dsi->lanes);
> +       val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
>         regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
>                            CHA_DSI_LANES_MASK, val);
>
> +       regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
> +       regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
> +                          pdata->ln_polrs << LN_POLRS_OFFSET);
> +
>         /* set dsi clk frequency value */
>         ti_sn_bridge_set_dsi_rate(pdata);
>
> @@ -1063,6 +1066,55 @@ static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
>         return ret;
>  }
>
> +static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
> +                                    struct device_node *np)
> +{
> +       u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
> +       u32 lane_polarities[SN_MAX_DP_LANES] = { };
> +       struct device_node *endpoint;
> +       u8 ln_assign = 0;
> +       u8 ln_polrs = 0;
> +       int dp_lanes;
> +       int i;
> +
> +       /*
> +        * Read config from the device tree about lane remapping and lane
> +        * polarities.  These are optional and we assume identity map and
> +        * normal polarity if nothing is specified.  It's OK to specify just
> +        * data-lanes but not lane-polarities but not vice versa.
> +        *
> +        * Error checking is light (we just make sure we don't crash or
> +        * buffer overrun) and we assume dts is well formed and specifying
> +        * mappings that the hardware supports.
> +        */
> +       endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
> +       dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
> +       if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
> +               of_property_read_u32_array(endpoint, "data-lanes",
> +                                          lane_assignments, dp_lanes);
> +               of_property_read_u32_array(endpoint, "lane-polarities",
> +                                          lane_polarities, dp_lanes);
> +       } else {
> +               dp_lanes = SN_MAX_DP_LANES;
> +       }
> +       of_node_put(endpoint);
> +
> +       /*
> +        * Convert into register format.  Loop over all lanes even if
> +        * data-lanes had fewer elements so that we nicely initialize
> +        * the LN_ASSIGN register.
> +        */
> +       for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
> +               ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
> +               ln_polrs = ln_polrs << 1 | lane_polarities[i];
> +       }
> +
> +       /* Stash in our struct for when we power on */
> +       pdata->dp_lanes = dp_lanes;
> +       pdata->ln_assign = ln_assign;
> +       pdata->ln_polrs = ln_polrs;
> +}
> +
>  static int ti_sn_bridge_probe(struct i2c_client *client,
>                               const struct i2c_device_id *id)
>  {
> @@ -1105,6 +1157,8 @@ static int ti_sn_bridge_probe(struct i2c_client *client,
>                 return ret;
>         }
>
> +       ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
> +
>         ret = ti_sn_bridge_parse_regulators(pdata);
>         if (ret) {
>                 DRM_ERROR("failed to parse regulators\n");
> --
> 2.26.2.645.ge9eca65c58-goog
>
> _______________________________________________
> dri-devel mailing list
> dri-devel@lists.freedesktop.org
> https://lists.freedesktop.org/mailman/listinfo/dri-devel
Doug Anderson May 18, 2020, 6:22 p.m. UTC | #2
Sam,

On Fri, May 15, 2020 at 2:43 PM Rob Clark <robdclark@gmail.com> wrote:
>
> On Wed, May 6, 2020 at 2:03 PM Douglas Anderson <dianders@chromium.org> wrote:
> >
> > The ti-sn65dsi86 MIPI DSI to eDP bridge chip supports arbitrary
> > remapping of eDP lanes and also polarity inversion.  Both of these
> > features have been described in the device tree bindings for the
> > device since the beginning but were never implemented in the driver.
> > Implement both of them.
> >
> > Part of this change also allows you to (via the same device tree
> > bindings) specify to use fewer than the max number of DP lanes that
> > the panel reports.  This could be useful if your display supports more
> > lanes but only a few are hooked up on your board.
> >
> > Signed-off-by: Douglas Anderson <dianders@chromium.org>
> > Reviewed-by: Stephen Boyd <swboyd@chromium.org>
>
> Reviewed-by: Rob Clark <robdclark@gmail.com>

I guess get_maintainer is somehow not tagging you and I haven't got it
through my thick skull to CC you each time.  If you're willing, I
think this patch is ready too.  Happy to re-post it with you in the To
list if it helps.

-Doug
Sam Ravnborg May 18, 2020, 6:42 p.m. UTC | #3
Hi Douglas.

On Mon, May 18, 2020 at 11:22:22AM -0700, Doug Anderson wrote:
> Sam,
> 
> On Fri, May 15, 2020 at 2:43 PM Rob Clark <robdclark@gmail.com> wrote:
> >
> > On Wed, May 6, 2020 at 2:03 PM Douglas Anderson <dianders@chromium.org> wrote:
> > >
> > > The ti-sn65dsi86 MIPI DSI to eDP bridge chip supports arbitrary
> > > remapping of eDP lanes and also polarity inversion.  Both of these
> > > features have been described in the device tree bindings for the
> > > device since the beginning but were never implemented in the driver.
> > > Implement both of them.
> > >
> > > Part of this change also allows you to (via the same device tree
> > > bindings) specify to use fewer than the max number of DP lanes that
> > > the panel reports.  This could be useful if your display supports more
> > > lanes but only a few are hooked up on your board.
> > >
> > > Signed-off-by: Douglas Anderson <dianders@chromium.org>
> > > Reviewed-by: Stephen Boyd <swboyd@chromium.org>
> >
> > Reviewed-by: Rob Clark <robdclark@gmail.com>
> 
> I guess get_maintainer is somehow not tagging you and I haven't got it
> through my thick skull to CC you each time.  If you're willing, I
> think this patch is ready too.  Happy to re-post it with you in the To
> list if it helps.

I have long lost the original patch, so shall I apply then please
re-send.

	Sam
diff mbox series

Patch

diff --git a/drivers/gpu/drm/bridge/ti-sn65dsi86.c b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
index 1a125423eb07..534b712dccf8 100644
--- a/drivers/gpu/drm/bridge/ti-sn65dsi86.c
+++ b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
@@ -50,8 +50,12 @@ 
 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
+#define SN_LN_ASSIGN_REG			0x59
+#define  LN_ASSIGN_WIDTH			2
 #define SN_ENH_FRAME_REG			0x5A
 #define  VSTREAM_ENABLE				BIT(3)
+#define  LN_POLRS_OFFSET			4
+#define  LN_POLRS_MASK				0xf0
 #define SN_DATA_FORMAT_REG			0x5B
 #define  BPP_18_RGB				BIT(0)
 #define SN_HPD_DISABLE_REG			0x5C
@@ -98,6 +102,7 @@ 
 
 #define SN_REGULATOR_SUPPLY_NUM		4
 
+#define SN_MAX_DP_LANES			4
 #define SN_NUM_GPIOS			4
 
 /**
@@ -115,6 +120,8 @@ 
  * @enable_gpio:  The GPIO we toggle to enable the bridge.
  * @supplies:     Data for bulk enabling/disabling our regulators.
  * @dp_lanes:     Count of dp_lanes we're using.
+ * @ln_assign:    Value to program to the LN_ASSIGN register.
+ * @ln_polr:      Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
  *
  * @gchip:        If we expose our GPIOs, this is used.
  * @gchip_output: A cache of whether we've set GPIOs to output.  This
@@ -140,6 +147,8 @@  struct ti_sn_bridge {
 	struct gpio_desc		*enable_gpio;
 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
 	int				dp_lanes;
+	u8				ln_assign;
+	u8				ln_polrs;
 
 	struct gpio_chip		gchip;
 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
@@ -707,26 +716,20 @@  static void ti_sn_bridge_enable(struct drm_bridge *bridge)
 	int dp_rate_idx;
 	unsigned int val;
 	int ret = -EINVAL;
+	int max_dp_lanes;
 
-	/*
-	 * Run with the maximum number of lanes that the DP sink supports.
-	 *
-	 * Depending use cases, we might want to revisit this later because:
-	 * - It's plausible that someone may have run fewer lines to the
-	 *   sink than the sink actually supports, assuming that the lines
-	 *   will just be driven at a higher rate.
-	 * - The DP spec seems to indicate that it's more important to minimize
-	 *   the number of lanes than the link rate.
-	 *
-	 * If we do revisit, it would be important to measure the power impact.
-	 */
-	pdata->dp_lanes = ti_sn_get_max_lanes(pdata);
+	max_dp_lanes = ti_sn_get_max_lanes(pdata);
+	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
 
 	/* DSI_A lane config */
-	val = CHA_DSI_LANES(4 - pdata->dsi->lanes);
+	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
 			   CHA_DSI_LANES_MASK, val);
 
+	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
+	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
+			   pdata->ln_polrs << LN_POLRS_OFFSET);
+
 	/* set dsi clk frequency value */
 	ti_sn_bridge_set_dsi_rate(pdata);
 
@@ -1063,6 +1066,55 @@  static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
 	return ret;
 }
 
+static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
+				     struct device_node *np)
+{
+	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
+	u32 lane_polarities[SN_MAX_DP_LANES] = { };
+	struct device_node *endpoint;
+	u8 ln_assign = 0;
+	u8 ln_polrs = 0;
+	int dp_lanes;
+	int i;
+
+	/*
+	 * Read config from the device tree about lane remapping and lane
+	 * polarities.  These are optional and we assume identity map and
+	 * normal polarity if nothing is specified.  It's OK to specify just
+	 * data-lanes but not lane-polarities but not vice versa.
+	 *
+	 * Error checking is light (we just make sure we don't crash or
+	 * buffer overrun) and we assume dts is well formed and specifying
+	 * mappings that the hardware supports.
+	 */
+	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
+	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
+	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
+		of_property_read_u32_array(endpoint, "data-lanes",
+					   lane_assignments, dp_lanes);
+		of_property_read_u32_array(endpoint, "lane-polarities",
+					   lane_polarities, dp_lanes);
+	} else {
+		dp_lanes = SN_MAX_DP_LANES;
+	}
+	of_node_put(endpoint);
+
+	/*
+	 * Convert into register format.  Loop over all lanes even if
+	 * data-lanes had fewer elements so that we nicely initialize
+	 * the LN_ASSIGN register.
+	 */
+	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
+		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
+		ln_polrs = ln_polrs << 1 | lane_polarities[i];
+	}
+
+	/* Stash in our struct for when we power on */
+	pdata->dp_lanes = dp_lanes;
+	pdata->ln_assign = ln_assign;
+	pdata->ln_polrs = ln_polrs;
+}
+
 static int ti_sn_bridge_probe(struct i2c_client *client,
 			      const struct i2c_device_id *id)
 {
@@ -1105,6 +1157,8 @@  static int ti_sn_bridge_probe(struct i2c_client *client,
 		return ret;
 	}
 
+	ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
+
 	ret = ti_sn_bridge_parse_regulators(pdata);
 	if (ret) {
 		DRM_ERROR("failed to parse regulators\n");