Message ID | 20220110040650.18186-3-hnagalla@ti.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | TI K3 M4F support on AM64x SoC | expand |
On Sun, Jan 09, 2022 at 10:06:50PM -0600, Hari Nagalla wrote: > The AM64x SoC of TI K3 family has a Cortex M4F core in the MCU > domain. This core is typically used for safety applications in a stand > alone mode. However, some application (non safety related) may want to > use the M4F core as a generic remote processor with IPC to the host > processor. The M4F core has internal IRAM and DRAM memories and are > exposed to the system bus for code and data loading. > > A remoteproc driver is added to support this subsystem to be able to > load and boot M4F core. Loading includes to M4F internal memories and > to any predefined external code/data memory. The carveouts for external > contiguous memory is defined in the M4F device node and should match > with the external memory declarations in the M4F image binary. The M4F > subsystem has two resets. One reset is for the entire subsystem i.e > including the internal memories and ther other, a local reset is only > for the M4F processing core. For loading the image remoteoproc driver s/remoteoproc/remote processor > first releases the subsystem reset, loads the firmware image and then > releases the local reset to let the M4F processing core to run. > > Signed-off-by: Hari Nagalla <hnagalla@ti.com> > --- > drivers/remoteproc/Kconfig | 13 + > drivers/remoteproc/Makefile | 1 + > drivers/remoteproc/ti_k3_m4_remoteproc.c | 899 +++++++++++++++++++++++ > 3 files changed, 913 insertions(+) > create mode 100644 drivers/remoteproc/ti_k3_m4_remoteproc.c > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > index 3ddd426fc969..059490822b6f 100644 > --- a/drivers/remoteproc/Kconfig > +++ b/drivers/remoteproc/Kconfig > @@ -348,6 +348,19 @@ config TI_K3_R5_REMOTEPROC > It's safe to say N here if you're not interested in utilizing > a slave processor. > > +config TI_K3_M4_REMOTEPROC > + tristate "TI K3 M4 remoteproc support" > + depends on ARCH_K3 > + select MAILBOX > + select OMAP2PLUS_MBOX > + help > + Say m here to support TI's M4 remote processor subsystems > + on various TI K3 family of SoCs through the remote processor > + framework. > + > + It's safe to say N here if you're not interested in utilizing > + a slave processor. s/slave/remote > + > endif # REMOTEPROC > > endmenu > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > index 5478c7cb9e07..449948f2e466 100644 > --- a/drivers/remoteproc/Makefile > +++ b/drivers/remoteproc/Makefile > @@ -38,3 +38,4 @@ obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o > obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o > diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c > new file mode 100644 > index 000000000000..d8fb419bb269 > --- /dev/null > +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c > @@ -0,0 +1,899 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * TI K3 Cortex-M4 Remote Processor(s) driver > + * > + * Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com/ Shouldn't this be 2022? > + * Hari Nagalla <hnagalla@ti.com> > + */ > + > +#include <linux/io.h> > +#include <linux/mailbox_client.h> > +#include <linux/module.h> > +#include <linux/of_device.h> > +#include <linux/of_reserved_mem.h> > +#include <linux/omap-mailbox.h> > +#include <linux/platform_device.h> > +#include <linux/remoteproc.h> > +#include <linux/reset.h> > +#include <linux/slab.h> > + > +#include "omap_remoteproc.h" > +#include "remoteproc_internal.h" > +#include "ti_sci_proc.h" > + > +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) This is the third definition of this symbol. Please move it to a common header file (omap_remoteproc.h perhaprs) and fix the other locations, i.e keystone_remoteproc.c and ti_k3_dsp_remoteproc.c > + > +/** > + * struct k3_m4_mem - internal memory structure > + * @cpu_addr: MPU virtual address of the memory region > + * @bus_addr: Bus address used to access the memory region > + * @dev_addr: Device address of the memory region from DSP view > + * @size: Size of the memory region > + */ > +struct k3_m4_mem { > + void __iomem *cpu_addr; > + phys_addr_t bus_addr; > + u32 dev_addr; > + size_t size; > +}; This one is in ti_k3_r5_remoteproc.c and ti_k3_dsp_remoteproc.c, with the exact same documentation. > + > +/** > + * struct k3_m4_mem_data - memory definitions for a DSP > + * @name: name for this memory entry > + * @dev_addr: device address for the memory entry > + */ > +struct k3_m4_mem_data { > + const char *name; > + const u32 dev_addr; > +}; Same here. > + > +/** > + * struct k3_m4_dev_data - device data structure for a DSP > + * @mems: pointer to memory definitions for a DSP > + * @num_mems: number of memory regions in @mems > + * @boot_align_addr: boot vector address alignment granularity > + * @uses_lreset: flag to denote the need for local reset management > + */ > +struct k3_m4_dev_data { > + const struct k3_m4_mem_data *mems; > + u32 num_mems; > + u32 boot_align_addr; > + bool uses_lreset; > +}; Same here. > + > +/** > + * struct k3_m4_rproc - k3 M4 remote processor driver structure > + * @dev: cached device pointer > + * @rproc: remoteproc device handle > + * @mem: internal memory regions data > + * @num_mems: number of internal memory regions > + * @rmem: reserved memory regions data > + * @num_rmems: number of reserved memory regions > + * @reset: reset control handle > + * @data: pointer to M4-specific device data > + * @tsp: TI-SCI processor control handle > + * @ti_sci: TI-SCI handle > + * @ti_sci_id: TI-SCI device identifier > + * @mbox: mailbox channel handle > + * @client: mailbox client to request the mailbox channel > + * @ipc_only: flag to indicate IPC-only mode > + */ > +struct k3_m4_rproc { > + struct device *dev; > + struct rproc *rproc; > + struct k3_m4_mem *mem; > + int num_mems; > + struct k3_m4_mem *rmem; > + int num_rmems; > + struct reset_control *reset; > + const struct k3_m4_dev_data *data; > + struct ti_sci_proc *tsp; > + const struct ti_sci_handle *ti_sci; > + u32 ti_sci_id; > + struct mbox_chan *mbox; > + struct mbox_client client; > + bool ipc_only; > +}; > + > +/** > + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler > + * @client: mailbox client pointer used for requesting the mailbox channel > + * @data: mailbox payload > + * > + * This handler is invoked by the OMAP mailbox driver whenever a mailbox > + * message is received. Usually, the mailbox payload simply contains > + * the index of the virtqueue that is kicked by the remote processor, > + * and we let remoteproc core handle it. > + * > + * In addition to virtqueue indices, we also have some out-of-band values > + * that indicate different events. Those values are deliberately very > + * large so they don't coincide with virtqueue indices. > + */ > +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) > +{ > + struct k3_m4_rproc *kproc = container_of(client, struct k3_m4_rproc, > + client); > + struct device *dev = kproc->rproc->dev.parent; > + const char *name = kproc->rproc->name; > + u32 msg = omap_mbox_message(data); > + > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > + > + switch (msg) { > + case RP_MBOX_CRASH: > + /* > + * remoteproc detected an exception, but error recovery is not > + * supported. So, just log this for now > + */ > + dev_err(dev, "K3 M4 rproc %s crashed\n", name); > + break; > + case RP_MBOX_ECHO_REPLY: > + dev_info(dev, "received echo reply from %s\n", name); > + break; > + default: > + /* silently handle all other valid messages */ > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > + return; > + if (msg > kproc->rproc->max_notifyid) { > + dev_dbg(dev, "dropping unknown message 0x%x", msg); > + return; > + } > + /* msg contains the index of the triggered vring */ > + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > + dev_dbg(dev, "no message was found in vqid %d\n", msg); > + } > +} > + > +/* > + * Kick the remote processor to notify about pending unprocessed messages. > + * The vqid usage is not used and is inconsequential, as the kick is performed > + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), > + * the remote processor is expected to process both its Tx and Rx virtqueues. > + */ > +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = rproc->dev.parent; > + mbox_msg_t msg = (mbox_msg_t)vqid; > + int ret; > + > + /* send the index of the triggered virtqueue in the mailbox payload */ > + ret = mbox_send_message(kproc->mbox, (void *)msg); > + if (ret < 0) > + dev_err(dev, "failed to send mailbox message, status = %d\n", > + ret); > +} > + > +/* Put the M4 processor into reset */ > +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + ret = reset_control_assert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); > + return ret; > + } > + > + if (kproc->data->uses_lreset) > + return ret; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + if (reset_control_deassert(kproc->reset)) > + dev_warn(dev, "local-reset deassert back failed\n"); > + } > + > + return ret; > +} > + > +/* Release the M4 processor from reset */ > +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + if (kproc->data->uses_lreset) > + goto lreset; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); > + return ret; > + } > + > + dev_info(dev, "released m4 reset\n"); > + > +lreset: > + ret = reset_control_deassert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); > + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id)) > + dev_warn(dev, "module-reset assert back failed\n"); > + } > + > + return ret; > +} > + > +static int k3_m4_rproc_request_mbox(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct mbox_client *client = &kproc->client; > + struct device *dev = kproc->dev; > + int ret; > + > + client->dev = dev; > + client->tx_done = NULL; > + client->rx_callback = k3_m4_rproc_mbox_callback; > + client->tx_block = false; > + client->knows_txdone = false; > + > + kproc->mbox = mbox_request_channel(client, 0); > + if (IS_ERR(kproc->mbox)) { > + ret = -EBUSY; > + dev_err(dev, "mbox_request_channel failed: %ld\n", > + PTR_ERR(kproc->mbox)); > + return ret; > + } > + > + /* > + * Ping the remote processor, this is only for sanity-sake for now; > + * there is no functional effect whatsoever. > + * > + * Note that the reply will _not_ arrive immediately: this message > + * will wait in the mailbox fifo until the remote processor is booted. > + */ > + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > + if (ret < 0) { > + dev_err(dev, "mbox_send_message failed: %d\n", ret); > + mbox_free_channel(kproc->mbox); > + return ret; > + } > + > + return 0; > +} > + > +/* > + * The M4F cores have a local reset that affects only the CPU, and a > + * generic module reset that powers on the device and allows the M4 internal > + * memories to be accessed while the local reset is asserted. This function is > + * used to release the global reset on M4F to allow loading into the M4F > + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any > + * firmware loading, and is followed by the .start() ops after loading to > + * actually let the M4F core run. > + */ > +static int k3_m4_rproc_prepare(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + /* IPC-only mode does not require the core to be released from reset */ > + if (kproc->ipc_only) > + return 0; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", > + ret); > + > + return ret; > +} > + > +/* > + * This function implements the .unprepare() ops and performs the complimentary > + * operations to that of the .prepare() ops. The function is used to assert the > + * global reset on applicable M4F cores. This completes the second portion of > + * powering down the M4F cores. The cores themselves are only halted in the > + * .stop() callback through the local reset, and the .unprepare() ops is invoked > + * by the remoteproc core after the remoteproc is stopped to balance the global > + * reset. > + */ > +static int k3_m4_rproc_unprepare(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + /* do not put back the cores into reset in IPC-only mode */ > + if (kproc->ipc_only) > + return 0; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + > + return ret; > +} > + > +/* > + * Power up the M4F remote processor. > + * > + * This function will be invoked only after the firmware for this rproc > + * was loaded, parsed successfully, and all of its resource requirements > + * were met. > + */ > +static int k3_m4_rproc_start(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + u32 boot_addr; > + int ret; > + > + if (kproc->ipc_only) { > + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", > + __func__); > + return -EINVAL; > + } > + > + ret = k3_m4_rproc_request_mbox(rproc); > + if (ret) > + return ret; > + > + boot_addr = rproc->bootaddr; > + ret = k3_m4_rproc_release(kproc); > + if (ret) > + goto put_mbox; > + > + return 0; > + > +put_mbox: > + mbox_free_channel(kproc->mbox); > + return ret; > +} > + > +/* > + * Stop the M4 remote processor. > + * > + * This function puts the M4 processor into reset, and finishes processing > + * of any pending messages. > + */ > +static int k3_m4_rproc_stop(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (kproc->ipc_only) { > + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", > + __func__); > + return -EINVAL; > + } > + > + mbox_free_channel(kproc->mbox); > + > + k3_m4_rproc_reset(kproc); > + > + return 0; > +} > + > +/* > + * Attach to a running M4 remote processor (IPC-only mode) > + * > + * This rproc attach callback only needs to request the mailbox, the remote > + * processor is already booted, so there is no need to issue any TI-SCI > + * commands to boot the M4 core. > + */ > +static int k3_m4_rproc_attach(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + if (!kproc->ipc_only || rproc->state != RPROC_DETACHED) { > + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_DETACHED state\n"); > + return -EINVAL; > + } > + > + ret = k3_m4_rproc_request_mbox(rproc); > + if (ret) > + return ret; > + > + dev_err(dev, "M4 initialized in IPC-only mode\n"); > + return 0; > +} > + > +/* > + * Detach from a running M4 remote processor (IPC-only mode) > + * > + * This rproc detach callback performs the opposite operation to attach callback > + * and only needs to release the mailbox, the M4 core is not stopped and will > + * be left to continue to run its booted firmware. > + */ > +static int k3_m4_rproc_detach(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (!kproc->ipc_only || rproc->state != RPROC_ATTACHED) { > + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_ATTACHED state\n"); > + return -EINVAL; > + } > + > + mbox_free_channel(kproc->mbox); > + dev_err(dev, "M4 deinitialized in IPC-only mode\n"); > + return 0; > +} > + > +/* > + * This function implements the .get_loaded_rsc_table() callback and is used > + * to provide the resource table for a booted M4 in IPC-only mode. The K3 M4 > + * firmwares follow a design-by-contract approach and are expected to have the > + * resource table at the base of the DDR region reserved for firmware usage. > + * This provides flexibility for the remote processor to be booted by different > + * bootloaders that may or may not have the ability to publish the resource table > + * address and size through a DT property. > + */ > +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, > + size_t *rsc_table_sz) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (!kproc->rmem[0].cpu_addr) { > + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); > + return ERR_PTR(-ENOMEM); > + } > + > + /* > + * NOTE: The resource table size is currently hard-coded to a maximum > + * of 256 bytes. The most common resource table usage for K3 firmwares > + * is to only have the vdev resource entry and an optional trace entry. > + * The exact size could be computed based on resource table address, but > + * the hard-coded value suffices to support the IPC-only mode. > + */ > + *rsc_table_sz = 256; > + return (struct resource_table *)kproc->rmem[0].cpu_addr; > +} > + > +/* > + * Custom function to translate a M4 device address (internal RAMs only) to a > + * kernel virtual address. The M4s can access their RAMs at either an internal > + * address visible only from a M4, or at the SoC-level bus address. Both these > + * addresses need to be looked through for translation. The translated addresses > + * can be used either by the remoteproc core for loading (when using kernel > + * remoteproc loader), or by any rpmsg bus drivers. > + */ > +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + void __iomem *va = NULL; > + phys_addr_t bus_addr; > + u32 dev_addr, offset; > + size_t size; > + int i; > + > + if (len == 0) > + return NULL; > + > + for (i = 0; i < kproc->num_mems; i++) { > + bus_addr = kproc->mem[i].bus_addr; > + dev_addr = kproc->mem[i].dev_addr; > + size = kproc->mem[i].size; > + > + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { > + /* handle M4-view addresses */ > + if (da >= dev_addr && > + ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } else { > + /* handle SoC-view addresses */ > + if (da >= bus_addr && > + (da + len) <= (bus_addr + size)) { > + offset = da - bus_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + } > + > + /* handle static DDR reserved memory regions */ > + for (i = 0; i < kproc->num_rmems; i++) { > + dev_addr = kproc->rmem[i].dev_addr; > + size = kproc->rmem[i].size; > + > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->rmem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + return NULL; > +} > + > +static const struct rproc_ops k3_m4_rproc_ops = { > + .start = k3_m4_rproc_start, > + .stop = k3_m4_rproc_stop, > + .attach = k3_m4_rproc_attach, > + .detach = k3_m4_rproc_detach, > + .kick = k3_m4_rproc_kick, > + .da_to_va = k3_m4_rproc_da_to_va, > + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, > +}; > + > +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, > + struct k3_m4_rproc *kproc) > +{ > + const struct k3_m4_dev_data *data = kproc->data; > + struct device *dev = &pdev->dev; > + struct resource *res; > + int num_mems = 0; > + int i; > + > + num_mems = kproc->data->num_mems; > + kproc->mem = devm_kcalloc(kproc->dev, num_mems, > + sizeof(*kproc->mem), GFP_KERNEL); > + if (!kproc->mem) > + return -ENOMEM; > + > + for (i = 0; i < num_mems; i++) { > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + data->mems[i].name); > + if (!res) { > + dev_err(dev, "found no memory resource for %s\n", > + data->mems[i].name); > + return -EINVAL; > + } > + if (!devm_request_mem_region(dev, res->start, > + resource_size(res), > + dev_name(dev))) { > + dev_err(dev, "could not request %s region for resource\n", > + data->mems[i].name); > + return -EBUSY; > + } > + > + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > + resource_size(res)); > + if (!kproc->mem[i].cpu_addr) { > + dev_err(dev, "failed to map %s memory\n", > + data->mems[i].name); > + return -ENOMEM; > + } > + kproc->mem[i].bus_addr = res->start; > + kproc->mem[i].dev_addr = data->mems[i].dev_addr; > + kproc->mem[i].size = resource_size(res); > + > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + data->mems[i].name, &kproc->mem[i].bus_addr, > + kproc->mem[i].size, kproc->mem[i].cpu_addr, > + kproc->mem[i].dev_addr); > + } > + kproc->num_mems = num_mems; > + > + return 0; > +} This is a copy/paste from ti_k3_dsp_remoteproc.c > + > +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + struct device_node *np = dev->of_node; > + struct device_node *rmem_np; > + struct reserved_mem *rmem; > + int num_rmems; > + int ret, i; > + > + num_rmems = of_property_count_elems_of_size(np, "memory-region", > + sizeof(phandle)); > + if (num_rmems <= 0) { > + dev_err(dev, "device does not reserved memory regions, ret = %d\n", > + num_rmems); > + return -EINVAL; > + } > + if (num_rmems < 2) { > + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", > + num_rmems); > + return -EINVAL; > + } > + > + /* use reserved memory region 0 for vring DMA allocations */ > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > + if (ret) { > + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", > + ret); > + return ret; > + } > + > + num_rmems--; > + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > + if (!kproc->rmem) { > + ret = -ENOMEM; > + goto release_rmem; > + } > + > + /* use remaining reserved memory regions for static carveouts */ > + for (i = 0; i < num_rmems; i++) { > + rmem_np = of_parse_phandle(np, "memory-region", i + 1); > + if (!rmem_np) { > + ret = -EINVAL; > + goto unmap_rmem; > + } > + > + rmem = of_reserved_mem_lookup(rmem_np); > + if (!rmem) { > + of_node_put(rmem_np); > + ret = -EINVAL; > + goto unmap_rmem; > + } > + of_node_put(rmem_np); > + > + kproc->rmem[i].bus_addr = rmem->base; > + /* 64-bit address regions currently not supported */ > + kproc->rmem[i].dev_addr = (u32)rmem->base; > + kproc->rmem[i].size = rmem->size; > + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); > + if (!kproc->rmem[i].cpu_addr) { > + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > + i + 1, &rmem->base, &rmem->size); > + ret = -ENOMEM; > + goto unmap_rmem; > + } > + > + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + i + 1, &kproc->rmem[i].bus_addr, > + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > + kproc->rmem[i].dev_addr); > + } > + kproc->num_rmems = num_rmems; > + > + return 0; > + > +unmap_rmem: > + for (i--; i >= 0; i--) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > +release_rmem: > + of_reserved_mem_device_release(kproc->dev); > + return ret; > +} Same > + > +static void k3_m4_reserved_mem_exit(struct k3_m4_rproc *kproc) > +{ > + int i; > + > + for (i = 0; i < kproc->num_rmems; i++) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > + > + of_reserved_mem_device_release(kproc->dev); > +} Same > + > +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device *dev, > + const struct ti_sci_handle *sci) > +{ > + struct ti_sci_proc *tsp; > + u32 temp[2]; > + int ret; > + > + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > + temp, 2); > + if (ret < 0) > + return ERR_PTR(ret); > + > + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); > + if (!tsp) > + return ERR_PTR(-ENOMEM); > + > + tsp->dev = dev; > + tsp->sci = sci; > + tsp->ops = &sci->ops.proc_ops; > + tsp->proc_id = temp[0]; > + tsp->host_id = temp[1]; > + > + return tsp; > +} Same. In fact when I look closer 70% of this file is an exact copy of ti_k3_dsp_remoteproc.c. I'm all good with introducing new functions when they are needed but it is simply not the case here - please consolidate and cleanup. I will stop here with this set. Thanks, Mathieu > + > +static int k3_m4_rproc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + const struct k3_m4_dev_data *data; > + struct k3_m4_rproc *kproc; > + struct rproc *rproc; > + const char *fw_name; > + bool r_state = false; > + bool p_state = false; > + int ret = 0; > + int ret1; > + > + data = of_device_get_match_data(dev); > + if (!data) > + return -ENODEV; > + > + ret = rproc_of_parse_firmware(dev, 0, &fw_name); > + if (ret) { > + dev_err(dev, "failed to parse firmware-name property, ret = %d\n", > + ret); > + return ret; > + } > + > + rproc = rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, > + sizeof(*kproc)); > + if (!rproc) > + return -ENOMEM; > + > + rproc->has_iommu = false; > + rproc->recovery_disabled = true; > + if (data->uses_lreset) { > + rproc->ops->prepare = k3_m4_rproc_prepare; > + rproc->ops->unprepare = k3_m4_rproc_unprepare; > + } > + kproc = rproc->priv; > + kproc->rproc = rproc; > + kproc->dev = dev; > + kproc->data = data; > + > + kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); > + if (IS_ERR(kproc->ti_sci)) { > + ret = PTR_ERR(kproc->ti_sci); > + if (ret != -EPROBE_DEFER) { > + dev_err(dev, "failed to get ti-sci handle, ret = %d\n", > + ret); > + } > + kproc->ti_sci = NULL; > + goto free_rproc; > + } > + > + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); > + goto put_sci; > + } > + > + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); > + if (IS_ERR(kproc->reset)) { > + ret = PTR_ERR(kproc->reset); > + dev_err(dev, "failed to get reset, status = %d\n", ret); > + goto put_sci; > + } > + > + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); > + if (IS_ERR(kproc->tsp)) { > + dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", > + ret); > + ret = PTR_ERR(kproc->tsp); > + goto put_sci; > + } > + > + ret = ti_sci_proc_request(kproc->tsp); > + if (ret < 0) { > + dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); > + goto free_tsp; > + } > + > + ret = k3_m4_rproc_of_get_memories(pdev, kproc); > + if (ret) > + goto release_tsp; > + > + ret = k3_m4_reserved_mem_init(kproc); > + if (ret) { > + dev_err(dev, "reserved memory init failed, ret = %d\n", ret); > + goto release_tsp; > + } > + > + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, > + &r_state, &p_state); > + if (ret) { > + dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", > + ret); > + goto release_mem; > + } > + > + /* configure devices for either remoteproc or IPC-only mode */ > + if (p_state) { > + dev_err(dev, "configured M4 for IPC-only mode\n"); > + rproc->state = RPROC_DETACHED; > + kproc->ipc_only = true; > + } else { > + dev_err(dev, "configured M4 for remoteproc mode\n"); > + /* > + * ensure the M4 local reset is asserted to ensure the core > + * doesn't execute bogus code in .prepare() when the module > + * reset is released. > + */ > + if (data->uses_lreset) { > + ret = reset_control_status(kproc->reset); > + if (ret < 0) { > + dev_err(dev, "failed to get reset status, status = %d\n", > + ret); > + goto release_mem; > + } else if (ret == 0) { > + dev_warn(dev, "local reset is deasserted for device\n"); > + k3_m4_rproc_reset(kproc); > + } > + } > + } > + > + ret = rproc_add(rproc); > + if (ret) { > + dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", > + ret); > + goto release_mem; > + } > + > + platform_set_drvdata(pdev, kproc); > + > + return 0; > + > +release_mem: > + k3_m4_reserved_mem_exit(kproc); > +release_tsp: > + ret1 = ti_sci_proc_release(kproc->tsp); > + if (ret1) > + dev_err(dev, "failed to release proc, ret = %d\n", ret1); > +free_tsp: > + kfree(kproc->tsp); > +put_sci: > + ret1 = ti_sci_put_handle(kproc->ti_sci); > + if (ret1) > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); > +free_rproc: > + rproc_free(rproc); > + return ret; > +} > + > +static int k3_m4_rproc_remove(struct platform_device *pdev) > +{ > + struct k3_m4_rproc *kproc = platform_get_drvdata(pdev); > + struct device *dev = &pdev->dev; > + int ret; > + > + rproc_del(kproc->rproc); > + > + ret = ti_sci_proc_release(kproc->tsp); > + if (ret) > + dev_err(dev, "failed to release proc, ret = %d\n", ret); > + > + kfree(kproc->tsp); > + > + ret = ti_sci_put_handle(kproc->ti_sci); > + if (ret) > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); > + > + k3_m4_reserved_mem_exit(kproc); > + rproc_free(kproc->rproc); > + > + return 0; > +} > + > +static const struct k3_m4_mem_data am64_m4_mems[] = { > + { .name = "iram", .dev_addr = 0x0 }, > + { .name = "dram", .dev_addr = 0x30000 }, > +}; > + > +static const struct k3_m4_dev_data am64_m4_data = { > + .mems = am64_m4_mems, > + .num_mems = ARRAY_SIZE(am64_m4_mems), > + .boot_align_addr = SZ_1K, > + .uses_lreset = true, > +}; > + > +static const struct of_device_id k3_m4_of_match[] = { > + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, > + { /* sentinel */ }, > +}; > +MODULE_DEVICE_TABLE(of, k3_m4_of_match); > + > +static struct platform_driver k3_m4_rproc_driver = { > + .probe = k3_m4_rproc_probe, > + .remove = k3_m4_rproc_remove, > + .driver = { > + .name = "k3-m4-rproc", > + .of_match_table = k3_m4_of_match, > + }, > +}; > + > +module_platform_driver(k3_m4_rproc_driver); > + > +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); > +MODULE_LICENSE("GPL v2"); > +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); > -- > 2.17.1 >
On Mon, Jan 31, 2022 at 11:27:41AM -0700, Mathieu Poirier wrote: > On Sun, Jan 09, 2022 at 10:06:50PM -0600, Hari Nagalla wrote: > > The AM64x SoC of TI K3 family has a Cortex M4F core in the MCU > > domain. This core is typically used for safety applications in a stand > > alone mode. However, some application (non safety related) may want to > > use the M4F core as a generic remote processor with IPC to the host > > processor. The M4F core has internal IRAM and DRAM memories and are > > exposed to the system bus for code and data loading. > > > > A remoteproc driver is added to support this subsystem to be able to > > load and boot M4F core. Loading includes to M4F internal memories and > > to any predefined external code/data memory. The carveouts for external > > contiguous memory is defined in the M4F device node and should match > > with the external memory declarations in the M4F image binary. The M4F > > subsystem has two resets. One reset is for the entire subsystem i.e > > including the internal memories and ther other, a local reset is only > > for the M4F processing core. For loading the image remoteoproc driver > > s/remoteoproc/remote processor > > > first releases the subsystem reset, loads the firmware image and then > > releases the local reset to let the M4F processing core to run. > > > > Signed-off-by: Hari Nagalla <hnagalla@ti.com> > > --- > > drivers/remoteproc/Kconfig | 13 + > > drivers/remoteproc/Makefile | 1 + > > drivers/remoteproc/ti_k3_m4_remoteproc.c | 899 +++++++++++++++++++++++ > > 3 files changed, 913 insertions(+) > > create mode 100644 drivers/remoteproc/ti_k3_m4_remoteproc.c > > > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > > index 3ddd426fc969..059490822b6f 100644 > > --- a/drivers/remoteproc/Kconfig > > +++ b/drivers/remoteproc/Kconfig > > @@ -348,6 +348,19 @@ config TI_K3_R5_REMOTEPROC > > It's safe to say N here if you're not interested in utilizing > > a slave processor. > > > > +config TI_K3_M4_REMOTEPROC > > + tristate "TI K3 M4 remoteproc support" > > + depends on ARCH_K3 > > + select MAILBOX > > + select OMAP2PLUS_MBOX > > + help > > + Say m here to support TI's M4 remote processor subsystems > > + on various TI K3 family of SoCs through the remote processor > > + framework. > > + > > + It's safe to say N here if you're not interested in utilizing > > + a slave processor. > > s/slave/remote > > > + > > endif # REMOTEPROC > > > > endmenu > > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > > index 5478c7cb9e07..449948f2e466 100644 > > --- a/drivers/remoteproc/Makefile > > +++ b/drivers/remoteproc/Makefile > > @@ -38,3 +38,4 @@ obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > > obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o > > obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > > +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o > > diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c > > new file mode 100644 > > index 000000000000..d8fb419bb269 > > --- /dev/null > > +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c > > @@ -0,0 +1,899 @@ > > +// SPDX-License-Identifier: GPL-2.0-only > > +/* > > + * TI K3 Cortex-M4 Remote Processor(s) driver > > + * > > + * Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com/ > > Shouldn't this be 2022? > > > + * Hari Nagalla <hnagalla@ti.com> > > + */ > > + > > +#include <linux/io.h> > > +#include <linux/mailbox_client.h> > > +#include <linux/module.h> > > +#include <linux/of_device.h> > > +#include <linux/of_reserved_mem.h> > > +#include <linux/omap-mailbox.h> > > +#include <linux/platform_device.h> > > +#include <linux/remoteproc.h> > > +#include <linux/reset.h> > > +#include <linux/slab.h> > > + > > +#include "omap_remoteproc.h" > > +#include "remoteproc_internal.h" > > +#include "ti_sci_proc.h" > > + > > +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) > > This is the third definition of this symbol. Please move it to a common header > file (omap_remoteproc.h perhaprs) and fix the other locations, i.e > keystone_remoteproc.c and ti_k3_dsp_remoteproc.c > > > + > > +/** > > + * struct k3_m4_mem - internal memory structure > > + * @cpu_addr: MPU virtual address of the memory region > > + * @bus_addr: Bus address used to access the memory region > > + * @dev_addr: Device address of the memory region from DSP view > > + * @size: Size of the memory region > > + */ > > +struct k3_m4_mem { > > + void __iomem *cpu_addr; > > + phys_addr_t bus_addr; > > + u32 dev_addr; > > + size_t size; > > +}; > > This one is in ti_k3_r5_remoteproc.c and ti_k3_dsp_remoteproc.c, with the exact > same documentation. > > > + > > +/** > > + * struct k3_m4_mem_data - memory definitions for a DSP > > + * @name: name for this memory entry > > + * @dev_addr: device address for the memory entry > > + */ > > +struct k3_m4_mem_data { > > + const char *name; > > + const u32 dev_addr; > > +}; > > Same here. > > > + > > +/** > > + * struct k3_m4_dev_data - device data structure for a DSP > > + * @mems: pointer to memory definitions for a DSP > > + * @num_mems: number of memory regions in @mems > > + * @boot_align_addr: boot vector address alignment granularity > > + * @uses_lreset: flag to denote the need for local reset management > > + */ > > +struct k3_m4_dev_data { > > + const struct k3_m4_mem_data *mems; > > + u32 num_mems; > > + u32 boot_align_addr; > > + bool uses_lreset; > > +}; > > Same here. > > > + > > +/** > > + * struct k3_m4_rproc - k3 M4 remote processor driver structure > > + * @dev: cached device pointer > > + * @rproc: remoteproc device handle > > + * @mem: internal memory regions data > > + * @num_mems: number of internal memory regions > > + * @rmem: reserved memory regions data > > + * @num_rmems: number of reserved memory regions > > + * @reset: reset control handle > > + * @data: pointer to M4-specific device data > > + * @tsp: TI-SCI processor control handle > > + * @ti_sci: TI-SCI handle > > + * @ti_sci_id: TI-SCI device identifier > > + * @mbox: mailbox channel handle > > + * @client: mailbox client to request the mailbox channel > > + * @ipc_only: flag to indicate IPC-only mode > > + */ > > +struct k3_m4_rproc { > > + struct device *dev; > > + struct rproc *rproc; > > + struct k3_m4_mem *mem; > > + int num_mems; > > + struct k3_m4_mem *rmem; > > + int num_rmems; > > + struct reset_control *reset; > > + const struct k3_m4_dev_data *data; > > + struct ti_sci_proc *tsp; > > + const struct ti_sci_handle *ti_sci; > > + u32 ti_sci_id; > > + struct mbox_chan *mbox; > > + struct mbox_client client; > > + bool ipc_only; > > +}; > > + > > +/** > > + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler > > + * @client: mailbox client pointer used for requesting the mailbox channel > > + * @data: mailbox payload > > + * > > + * This handler is invoked by the OMAP mailbox driver whenever a mailbox > > + * message is received. Usually, the mailbox payload simply contains > > + * the index of the virtqueue that is kicked by the remote processor, > > + * and we let remoteproc core handle it. > > + * > > + * In addition to virtqueue indices, we also have some out-of-band values > > + * that indicate different events. Those values are deliberately very > > + * large so they don't coincide with virtqueue indices. > > + */ > > +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) > > +{ > > + struct k3_m4_rproc *kproc = container_of(client, struct k3_m4_rproc, > > + client); > > + struct device *dev = kproc->rproc->dev.parent; > > + const char *name = kproc->rproc->name; > > + u32 msg = omap_mbox_message(data); > > + > > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > > + > > + switch (msg) { > > + case RP_MBOX_CRASH: > > + /* > > + * remoteproc detected an exception, but error recovery is not > > + * supported. So, just log this for now > > + */ > > + dev_err(dev, "K3 M4 rproc %s crashed\n", name); > > + break; > > + case RP_MBOX_ECHO_REPLY: > > + dev_info(dev, "received echo reply from %s\n", name); > > + break; > > + default: > > + /* silently handle all other valid messages */ > > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > > + return; > > + if (msg > kproc->rproc->max_notifyid) { > > + dev_dbg(dev, "dropping unknown message 0x%x", msg); > > + return; > > + } > > + /* msg contains the index of the triggered vring */ > > + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > > + dev_dbg(dev, "no message was found in vqid %d\n", msg); > > + } > > +} > > + > > +/* > > + * Kick the remote processor to notify about pending unprocessed messages. > > + * The vqid usage is not used and is inconsequential, as the kick is performed > > + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), > > + * the remote processor is expected to process both its Tx and Rx virtqueues. > > + */ > > +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = rproc->dev.parent; > > + mbox_msg_t msg = (mbox_msg_t)vqid; > > + int ret; > > + > > + /* send the index of the triggered virtqueue in the mailbox payload */ > > + ret = mbox_send_message(kproc->mbox, (void *)msg); > > + if (ret < 0) > > + dev_err(dev, "failed to send mailbox message, status = %d\n", > > + ret); > > +} > > + > > +/* Put the M4 processor into reset */ > > +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) > > +{ > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + ret = reset_control_assert(kproc->reset); > > + if (ret) { > > + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); > > + return ret; > > + } > > + > > + if (kproc->data->uses_lreset) > > + return ret; > > + > > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > > + kproc->ti_sci_id); > > + if (ret) { > > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > > + if (reset_control_deassert(kproc->reset)) > > + dev_warn(dev, "local-reset deassert back failed\n"); > > + } > > + > > + return ret; > > +} > > + > > +/* Release the M4 processor from reset */ > > +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) > > +{ > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + if (kproc->data->uses_lreset) > > + goto lreset; > > + > > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > > + kproc->ti_sci_id); > > + if (ret) { > > + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); > > + return ret; > > + } > > + > > + dev_info(dev, "released m4 reset\n"); > > + > > +lreset: > > + ret = reset_control_deassert(kproc->reset); > > + if (ret) { > > + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); > > + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > > + kproc->ti_sci_id)) > > + dev_warn(dev, "module-reset assert back failed\n"); > > + } > > + > > + return ret; > > +} > > + > > +static int k3_m4_rproc_request_mbox(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct mbox_client *client = &kproc->client; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + client->dev = dev; > > + client->tx_done = NULL; > > + client->rx_callback = k3_m4_rproc_mbox_callback; > > + client->tx_block = false; > > + client->knows_txdone = false; > > + > > + kproc->mbox = mbox_request_channel(client, 0); > > + if (IS_ERR(kproc->mbox)) { > > + ret = -EBUSY; > > + dev_err(dev, "mbox_request_channel failed: %ld\n", > > + PTR_ERR(kproc->mbox)); > > + return ret; > > + } > > + > > + /* > > + * Ping the remote processor, this is only for sanity-sake for now; > > + * there is no functional effect whatsoever. > > + * > > + * Note that the reply will _not_ arrive immediately: this message > > + * will wait in the mailbox fifo until the remote processor is booted. > > + */ > > + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > > + if (ret < 0) { > > + dev_err(dev, "mbox_send_message failed: %d\n", ret); > > + mbox_free_channel(kproc->mbox); > > + return ret; > > + } > > + > > + return 0; > > +} > > + > > +/* > > + * The M4F cores have a local reset that affects only the CPU, and a > > + * generic module reset that powers on the device and allows the M4 internal > > + * memories to be accessed while the local reset is asserted. This function is > > + * used to release the global reset on M4F to allow loading into the M4F > > + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any > > + * firmware loading, and is followed by the .start() ops after loading to > > + * actually let the M4F core run. > > + */ > > +static int k3_m4_rproc_prepare(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + /* IPC-only mode does not require the core to be released from reset */ > > + if (kproc->ipc_only) > > + return 0; > > + > > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > > + kproc->ti_sci_id); > > + if (ret) > > + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", > > + ret); > > + > > + return ret; > > +} > > + > > +/* > > + * This function implements the .unprepare() ops and performs the complimentary > > + * operations to that of the .prepare() ops. The function is used to assert the > > + * global reset on applicable M4F cores. This completes the second portion of > > + * powering down the M4F cores. The cores themselves are only halted in the > > + * .stop() callback through the local reset, and the .unprepare() ops is invoked > > + * by the remoteproc core after the remoteproc is stopped to balance the global > > + * reset. > > + */ > > +static int k3_m4_rproc_unprepare(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + /* do not put back the cores into reset in IPC-only mode */ > > + if (kproc->ipc_only) > > + return 0; > > + > > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > > + kproc->ti_sci_id); > > + if (ret) > > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > > + > > + return ret; > > +} > > + > > +/* > > + * Power up the M4F remote processor. > > + * > > + * This function will be invoked only after the firmware for this rproc > > + * was loaded, parsed successfully, and all of its resource requirements > > + * were met. > > + */ > > +static int k3_m4_rproc_start(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + u32 boot_addr; > > + int ret; > > + > > + if (kproc->ipc_only) { > > + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", > > + __func__); > > + return -EINVAL; > > + } > > + > > + ret = k3_m4_rproc_request_mbox(rproc); > > + if (ret) > > + return ret; > > + > > + boot_addr = rproc->bootaddr; > > + ret = k3_m4_rproc_release(kproc); > > + if (ret) > > + goto put_mbox; > > + > > + return 0; > > + > > +put_mbox: > > + mbox_free_channel(kproc->mbox); > > + return ret; > > +} > > + > > +/* > > + * Stop the M4 remote processor. > > + * > > + * This function puts the M4 processor into reset, and finishes processing > > + * of any pending messages. > > + */ > > +static int k3_m4_rproc_stop(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + > > + if (kproc->ipc_only) { > > + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", > > + __func__); > > + return -EINVAL; > > + } > > + > > + mbox_free_channel(kproc->mbox); > > + > > + k3_m4_rproc_reset(kproc); > > + > > + return 0; > > +} > > + > > +/* > > + * Attach to a running M4 remote processor (IPC-only mode) > > + * > > + * This rproc attach callback only needs to request the mailbox, the remote > > + * processor is already booted, so there is no need to issue any TI-SCI > > + * commands to boot the M4 core. > > + */ > > +static int k3_m4_rproc_attach(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + int ret; > > + > > + if (!kproc->ipc_only || rproc->state != RPROC_DETACHED) { > > + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_DETACHED state\n"); > > + return -EINVAL; > > + } > > + > > + ret = k3_m4_rproc_request_mbox(rproc); > > + if (ret) > > + return ret; > > + > > + dev_err(dev, "M4 initialized in IPC-only mode\n"); > > + return 0; > > +} > > + > > +/* > > + * Detach from a running M4 remote processor (IPC-only mode) > > + * > > + * This rproc detach callback performs the opposite operation to attach callback > > + * and only needs to release the mailbox, the M4 core is not stopped and will > > + * be left to continue to run its booted firmware. > > + */ > > +static int k3_m4_rproc_detach(struct rproc *rproc) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + > > + if (!kproc->ipc_only || rproc->state != RPROC_ATTACHED) { > > + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_ATTACHED state\n"); > > + return -EINVAL; > > + } > > + > > + mbox_free_channel(kproc->mbox); > > + dev_err(dev, "M4 deinitialized in IPC-only mode\n"); > > + return 0; > > +} > > + > > +/* > > + * This function implements the .get_loaded_rsc_table() callback and is used > > + * to provide the resource table for a booted M4 in IPC-only mode. The K3 M4 > > + * firmwares follow a design-by-contract approach and are expected to have the > > + * resource table at the base of the DDR region reserved for firmware usage. > > + * This provides flexibility for the remote processor to be booted by different > > + * bootloaders that may or may not have the ability to publish the resource table > > + * address and size through a DT property. > > + */ > > +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, > > + size_t *rsc_table_sz) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + struct device *dev = kproc->dev; > > + > > + if (!kproc->rmem[0].cpu_addr) { > > + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); > > + return ERR_PTR(-ENOMEM); > > + } > > + > > + /* > > + * NOTE: The resource table size is currently hard-coded to a maximum > > + * of 256 bytes. The most common resource table usage for K3 firmwares > > + * is to only have the vdev resource entry and an optional trace entry. > > + * The exact size could be computed based on resource table address, but > > + * the hard-coded value suffices to support the IPC-only mode. > > + */ > > + *rsc_table_sz = 256; > > + return (struct resource_table *)kproc->rmem[0].cpu_addr; > > +} > > + > > +/* > > + * Custom function to translate a M4 device address (internal RAMs only) to a > > + * kernel virtual address. The M4s can access their RAMs at either an internal > > + * address visible only from a M4, or at the SoC-level bus address. Both these > > + * addresses need to be looked through for translation. The translated addresses > > + * can be used either by the remoteproc core for loading (when using kernel > > + * remoteproc loader), or by any rpmsg bus drivers. > > + */ > > +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) > > +{ > > + struct k3_m4_rproc *kproc = rproc->priv; > > + void __iomem *va = NULL; > > + phys_addr_t bus_addr; > > + u32 dev_addr, offset; > > + size_t size; > > + int i; > > + > > + if (len == 0) > > + return NULL; > > + > > + for (i = 0; i < kproc->num_mems; i++) { > > + bus_addr = kproc->mem[i].bus_addr; > > + dev_addr = kproc->mem[i].dev_addr; > > + size = kproc->mem[i].size; > > + > > + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { > > + /* handle M4-view addresses */ > > + if (da >= dev_addr && > > + ((da + len) <= (dev_addr + size))) { > > + offset = da - dev_addr; > > + va = kproc->mem[i].cpu_addr + offset; > > + return (__force void *)va; > > + } > > + } else { > > + /* handle SoC-view addresses */ > > + if (da >= bus_addr && > > + (da + len) <= (bus_addr + size)) { > > + offset = da - bus_addr; > > + va = kproc->mem[i].cpu_addr + offset; > > + return (__force void *)va; > > + } > > + } > > + } > > + > > + /* handle static DDR reserved memory regions */ > > + for (i = 0; i < kproc->num_rmems; i++) { > > + dev_addr = kproc->rmem[i].dev_addr; > > + size = kproc->rmem[i].size; > > + > > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > > + offset = da - dev_addr; > > + va = kproc->rmem[i].cpu_addr + offset; > > + return (__force void *)va; > > + } > > + } > > + > > + return NULL; > > +} > > + > > +static const struct rproc_ops k3_m4_rproc_ops = { > > + .start = k3_m4_rproc_start, > > + .stop = k3_m4_rproc_stop, > > + .attach = k3_m4_rproc_attach, > > + .detach = k3_m4_rproc_detach, > > + .kick = k3_m4_rproc_kick, > > + .da_to_va = k3_m4_rproc_da_to_va, > > + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, > > +}; > > + > > +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, > > + struct k3_m4_rproc *kproc) > > +{ > > + const struct k3_m4_dev_data *data = kproc->data; > > + struct device *dev = &pdev->dev; > > + struct resource *res; > > + int num_mems = 0; > > + int i; > > + > > + num_mems = kproc->data->num_mems; > > + kproc->mem = devm_kcalloc(kproc->dev, num_mems, > > + sizeof(*kproc->mem), GFP_KERNEL); > > + if (!kproc->mem) > > + return -ENOMEM; > > + > > + for (i = 0; i < num_mems; i++) { > > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > > + data->mems[i].name); > > + if (!res) { > > + dev_err(dev, "found no memory resource for %s\n", > > + data->mems[i].name); > > + return -EINVAL; > > + } > > + if (!devm_request_mem_region(dev, res->start, > > + resource_size(res), > > + dev_name(dev))) { > > + dev_err(dev, "could not request %s region for resource\n", > > + data->mems[i].name); > > + return -EBUSY; > > + } > > + > > + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > > + resource_size(res)); > > + if (!kproc->mem[i].cpu_addr) { > > + dev_err(dev, "failed to map %s memory\n", > > + data->mems[i].name); > > + return -ENOMEM; > > + } > > + kproc->mem[i].bus_addr = res->start; > > + kproc->mem[i].dev_addr = data->mems[i].dev_addr; > > + kproc->mem[i].size = resource_size(res); > > + > > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > > + data->mems[i].name, &kproc->mem[i].bus_addr, > > + kproc->mem[i].size, kproc->mem[i].cpu_addr, > > + kproc->mem[i].dev_addr); > > + } > > + kproc->num_mems = num_mems; > > + > > + return 0; > > +} > > This is a copy/paste from ti_k3_dsp_remoteproc.c > > > + > > +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) > > +{ > > + struct device *dev = kproc->dev; > > + struct device_node *np = dev->of_node; > > + struct device_node *rmem_np; > > + struct reserved_mem *rmem; > > + int num_rmems; > > + int ret, i; > > + > > + num_rmems = of_property_count_elems_of_size(np, "memory-region", > > + sizeof(phandle)); > > + if (num_rmems <= 0) { > > + dev_err(dev, "device does not reserved memory regions, ret = %d\n", > > + num_rmems); > > + return -EINVAL; > > + } > > + if (num_rmems < 2) { > > + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", > > + num_rmems); > > + return -EINVAL; > > + } > > + > > + /* use reserved memory region 0 for vring DMA allocations */ > > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > > + if (ret) { > > + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", > > + ret); > > + return ret; > > + } > > + > > + num_rmems--; > > + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > > + if (!kproc->rmem) { > > + ret = -ENOMEM; > > + goto release_rmem; > > + } > > + > > + /* use remaining reserved memory regions for static carveouts */ > > + for (i = 0; i < num_rmems; i++) { > > + rmem_np = of_parse_phandle(np, "memory-region", i + 1); > > + if (!rmem_np) { > > + ret = -EINVAL; > > + goto unmap_rmem; > > + } > > + > > + rmem = of_reserved_mem_lookup(rmem_np); > > + if (!rmem) { > > + of_node_put(rmem_np); > > + ret = -EINVAL; > > + goto unmap_rmem; > > + } > > + of_node_put(rmem_np); > > + > > + kproc->rmem[i].bus_addr = rmem->base; > > + /* 64-bit address regions currently not supported */ > > + kproc->rmem[i].dev_addr = (u32)rmem->base; > > + kproc->rmem[i].size = rmem->size; > > + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); > > + if (!kproc->rmem[i].cpu_addr) { > > + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > > + i + 1, &rmem->base, &rmem->size); > > + ret = -ENOMEM; > > + goto unmap_rmem; > > + } > > + > > + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > > + i + 1, &kproc->rmem[i].bus_addr, > > + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > > + kproc->rmem[i].dev_addr); > > + } > > + kproc->num_rmems = num_rmems; > > + > > + return 0; > > + > > +unmap_rmem: > > + for (i--; i >= 0; i--) > > + iounmap(kproc->rmem[i].cpu_addr); > > + kfree(kproc->rmem); > > +release_rmem: > > + of_reserved_mem_device_release(kproc->dev); > > + return ret; > > +} > > Same > > > + > > +static void k3_m4_reserved_mem_exit(struct k3_m4_rproc *kproc) > > +{ > > + int i; > > + > > + for (i = 0; i < kproc->num_rmems; i++) > > + iounmap(kproc->rmem[i].cpu_addr); > > + kfree(kproc->rmem); > > + > > + of_reserved_mem_device_release(kproc->dev); > > +} > > Same > > > + > > +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device *dev, > > + const struct ti_sci_handle *sci) > > +{ > > + struct ti_sci_proc *tsp; > > + u32 temp[2]; > > + int ret; > > + > > + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > > + temp, 2); > > + if (ret < 0) > > + return ERR_PTR(ret); > > + > > + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); > > + if (!tsp) > > + return ERR_PTR(-ENOMEM); > > + > > + tsp->dev = dev; > > + tsp->sci = sci; > > + tsp->ops = &sci->ops.proc_ops; > > + tsp->proc_id = temp[0]; > > + tsp->host_id = temp[1]; > > + > > + return tsp; > > +} > > Same. In fact when I look closer 70% of this file is an exact copy of > ti_k3_dsp_remoteproc.c. > > I'm all good with introducing new functions when they are needed but it is > simply not the case here - please consolidate and cleanup. I will stop here > with this set. Some clarification here... "Refactor" is a better choice of word than "consolidate". I support having K4 M4 in its own file as you did here but move all the common code between it and K4 DSP in a common file to avoid bloating and ease maintenance. > > Thanks, > Mathieu > > > + > > +static int k3_m4_rproc_probe(struct platform_device *pdev) > > +{ > > + struct device *dev = &pdev->dev; > > + struct device_node *np = dev->of_node; > > + const struct k3_m4_dev_data *data; > > + struct k3_m4_rproc *kproc; > > + struct rproc *rproc; > > + const char *fw_name; > > + bool r_state = false; > > + bool p_state = false; > > + int ret = 0; > > + int ret1; > > + > > + data = of_device_get_match_data(dev); > > + if (!data) > > + return -ENODEV; > > + > > + ret = rproc_of_parse_firmware(dev, 0, &fw_name); > > + if (ret) { > > + dev_err(dev, "failed to parse firmware-name property, ret = %d\n", > > + ret); > > + return ret; > > + } > > + > > + rproc = rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, > > + sizeof(*kproc)); > > + if (!rproc) > > + return -ENOMEM; > > + > > + rproc->has_iommu = false; > > + rproc->recovery_disabled = true; > > + if (data->uses_lreset) { > > + rproc->ops->prepare = k3_m4_rproc_prepare; > > + rproc->ops->unprepare = k3_m4_rproc_unprepare; > > + } > > + kproc = rproc->priv; > > + kproc->rproc = rproc; > > + kproc->dev = dev; > > + kproc->data = data; > > + > > + kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); > > + if (IS_ERR(kproc->ti_sci)) { > > + ret = PTR_ERR(kproc->ti_sci); > > + if (ret != -EPROBE_DEFER) { > > + dev_err(dev, "failed to get ti-sci handle, ret = %d\n", > > + ret); > > + } > > + kproc->ti_sci = NULL; > > + goto free_rproc; > > + } > > + > > + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); > > + if (ret) { > > + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); > > + goto put_sci; > > + } > > + > > + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); > > + if (IS_ERR(kproc->reset)) { > > + ret = PTR_ERR(kproc->reset); > > + dev_err(dev, "failed to get reset, status = %d\n", ret); > > + goto put_sci; > > + } > > + > > + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); > > + if (IS_ERR(kproc->tsp)) { > > + dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", > > + ret); > > + ret = PTR_ERR(kproc->tsp); > > + goto put_sci; > > + } > > + > > + ret = ti_sci_proc_request(kproc->tsp); > > + if (ret < 0) { > > + dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); > > + goto free_tsp; > > + } > > + > > + ret = k3_m4_rproc_of_get_memories(pdev, kproc); > > + if (ret) > > + goto release_tsp; > > + > > + ret = k3_m4_reserved_mem_init(kproc); > > + if (ret) { > > + dev_err(dev, "reserved memory init failed, ret = %d\n", ret); > > + goto release_tsp; > > + } > > + > > + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, > > + &r_state, &p_state); > > + if (ret) { > > + dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", > > + ret); > > + goto release_mem; > > + } > > + > > + /* configure devices for either remoteproc or IPC-only mode */ > > + if (p_state) { > > + dev_err(dev, "configured M4 for IPC-only mode\n"); > > + rproc->state = RPROC_DETACHED; > > + kproc->ipc_only = true; > > + } else { > > + dev_err(dev, "configured M4 for remoteproc mode\n"); > > + /* > > + * ensure the M4 local reset is asserted to ensure the core > > + * doesn't execute bogus code in .prepare() when the module > > + * reset is released. > > + */ > > + if (data->uses_lreset) { > > + ret = reset_control_status(kproc->reset); > > + if (ret < 0) { > > + dev_err(dev, "failed to get reset status, status = %d\n", > > + ret); > > + goto release_mem; > > + } else if (ret == 0) { > > + dev_warn(dev, "local reset is deasserted for device\n"); > > + k3_m4_rproc_reset(kproc); > > + } > > + } > > + } > > + > > + ret = rproc_add(rproc); > > + if (ret) { > > + dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", > > + ret); > > + goto release_mem; > > + } > > + > > + platform_set_drvdata(pdev, kproc); > > + > > + return 0; > > + > > +release_mem: > > + k3_m4_reserved_mem_exit(kproc); > > +release_tsp: > > + ret1 = ti_sci_proc_release(kproc->tsp); > > + if (ret1) > > + dev_err(dev, "failed to release proc, ret = %d\n", ret1); > > +free_tsp: > > + kfree(kproc->tsp); > > +put_sci: > > + ret1 = ti_sci_put_handle(kproc->ti_sci); > > + if (ret1) > > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); > > +free_rproc: > > + rproc_free(rproc); > > + return ret; > > +} > > + > > +static int k3_m4_rproc_remove(struct platform_device *pdev) > > +{ > > + struct k3_m4_rproc *kproc = platform_get_drvdata(pdev); > > + struct device *dev = &pdev->dev; > > + int ret; > > + > > + rproc_del(kproc->rproc); > > + > > + ret = ti_sci_proc_release(kproc->tsp); > > + if (ret) > > + dev_err(dev, "failed to release proc, ret = %d\n", ret); > > + > > + kfree(kproc->tsp); > > + > > + ret = ti_sci_put_handle(kproc->ti_sci); > > + if (ret) > > + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); > > + > > + k3_m4_reserved_mem_exit(kproc); > > + rproc_free(kproc->rproc); > > + > > + return 0; > > +} > > + > > +static const struct k3_m4_mem_data am64_m4_mems[] = { > > + { .name = "iram", .dev_addr = 0x0 }, > > + { .name = "dram", .dev_addr = 0x30000 }, > > +}; > > + > > +static const struct k3_m4_dev_data am64_m4_data = { > > + .mems = am64_m4_mems, > > + .num_mems = ARRAY_SIZE(am64_m4_mems), > > + .boot_align_addr = SZ_1K, > > + .uses_lreset = true, > > +}; > > + > > +static const struct of_device_id k3_m4_of_match[] = { > > + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, > > + { /* sentinel */ }, > > +}; > > +MODULE_DEVICE_TABLE(of, k3_m4_of_match); > > + > > +static struct platform_driver k3_m4_rproc_driver = { > > + .probe = k3_m4_rproc_probe, > > + .remove = k3_m4_rproc_remove, > > + .driver = { > > + .name = "k3-m4-rproc", > > + .of_match_table = k3_m4_of_match, > > + }, > > +}; > > + > > +module_platform_driver(k3_m4_rproc_driver); > > + > > +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); > > +MODULE_LICENSE("GPL v2"); > > +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); > > -- > > 2.17.1 > >
diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig index 3ddd426fc969..059490822b6f 100644 --- a/drivers/remoteproc/Kconfig +++ b/drivers/remoteproc/Kconfig @@ -348,6 +348,19 @@ config TI_K3_R5_REMOTEPROC It's safe to say N here if you're not interested in utilizing a slave processor. +config TI_K3_M4_REMOTEPROC + tristate "TI K3 M4 remoteproc support" + depends on ARCH_K3 + select MAILBOX + select OMAP2PLUS_MBOX + help + Say m here to support TI's M4 remote processor subsystems + on various TI K3 family of SoCs through the remote processor + framework. + + It's safe to say N here if you're not interested in utilizing + a slave processor. + endif # REMOTEPROC endmenu diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile index 5478c7cb9e07..449948f2e466 100644 --- a/drivers/remoteproc/Makefile +++ b/drivers/remoteproc/Makefile @@ -38,3 +38,4 @@ obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c new file mode 100644 index 000000000000..d8fb419bb269 --- /dev/null +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c @@ -0,0 +1,899 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * TI K3 Cortex-M4 Remote Processor(s) driver + * + * Copyright (C) 2021 Texas Instruments Incorporated - https://www.ti.com/ + * Hari Nagalla <hnagalla@ti.com> + */ + +#include <linux/io.h> +#include <linux/mailbox_client.h> +#include <linux/module.h> +#include <linux/of_device.h> +#include <linux/of_reserved_mem.h> +#include <linux/omap-mailbox.h> +#include <linux/platform_device.h> +#include <linux/remoteproc.h> +#include <linux/reset.h> +#include <linux/slab.h> + +#include "omap_remoteproc.h" +#include "remoteproc_internal.h" +#include "ti_sci_proc.h" + +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) + +/** + * struct k3_m4_mem - internal memory structure + * @cpu_addr: MPU virtual address of the memory region + * @bus_addr: Bus address used to access the memory region + * @dev_addr: Device address of the memory region from DSP view + * @size: Size of the memory region + */ +struct k3_m4_mem { + void __iomem *cpu_addr; + phys_addr_t bus_addr; + u32 dev_addr; + size_t size; +}; + +/** + * struct k3_m4_mem_data - memory definitions for a DSP + * @name: name for this memory entry + * @dev_addr: device address for the memory entry + */ +struct k3_m4_mem_data { + const char *name; + const u32 dev_addr; +}; + +/** + * struct k3_m4_dev_data - device data structure for a DSP + * @mems: pointer to memory definitions for a DSP + * @num_mems: number of memory regions in @mems + * @boot_align_addr: boot vector address alignment granularity + * @uses_lreset: flag to denote the need for local reset management + */ +struct k3_m4_dev_data { + const struct k3_m4_mem_data *mems; + u32 num_mems; + u32 boot_align_addr; + bool uses_lreset; +}; + +/** + * struct k3_m4_rproc - k3 M4 remote processor driver structure + * @dev: cached device pointer + * @rproc: remoteproc device handle + * @mem: internal memory regions data + * @num_mems: number of internal memory regions + * @rmem: reserved memory regions data + * @num_rmems: number of reserved memory regions + * @reset: reset control handle + * @data: pointer to M4-specific device data + * @tsp: TI-SCI processor control handle + * @ti_sci: TI-SCI handle + * @ti_sci_id: TI-SCI device identifier + * @mbox: mailbox channel handle + * @client: mailbox client to request the mailbox channel + * @ipc_only: flag to indicate IPC-only mode + */ +struct k3_m4_rproc { + struct device *dev; + struct rproc *rproc; + struct k3_m4_mem *mem; + int num_mems; + struct k3_m4_mem *rmem; + int num_rmems; + struct reset_control *reset; + const struct k3_m4_dev_data *data; + struct ti_sci_proc *tsp; + const struct ti_sci_handle *ti_sci; + u32 ti_sci_id; + struct mbox_chan *mbox; + struct mbox_client client; + bool ipc_only; +}; + +/** + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler + * @client: mailbox client pointer used for requesting the mailbox channel + * @data: mailbox payload + * + * This handler is invoked by the OMAP mailbox driver whenever a mailbox + * message is received. Usually, the mailbox payload simply contains + * the index of the virtqueue that is kicked by the remote processor, + * and we let remoteproc core handle it. + * + * In addition to virtqueue indices, we also have some out-of-band values + * that indicate different events. Those values are deliberately very + * large so they don't coincide with virtqueue indices. + */ +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) +{ + struct k3_m4_rproc *kproc = container_of(client, struct k3_m4_rproc, + client); + struct device *dev = kproc->rproc->dev.parent; + const char *name = kproc->rproc->name; + u32 msg = omap_mbox_message(data); + + dev_dbg(dev, "mbox msg: 0x%x\n", msg); + + switch (msg) { + case RP_MBOX_CRASH: + /* + * remoteproc detected an exception, but error recovery is not + * supported. So, just log this for now + */ + dev_err(dev, "K3 M4 rproc %s crashed\n", name); + break; + case RP_MBOX_ECHO_REPLY: + dev_info(dev, "received echo reply from %s\n", name); + break; + default: + /* silently handle all other valid messages */ + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) + return; + if (msg > kproc->rproc->max_notifyid) { + dev_dbg(dev, "dropping unknown message 0x%x", msg); + return; + } + /* msg contains the index of the triggered vring */ + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) + dev_dbg(dev, "no message was found in vqid %d\n", msg); + } +} + +/* + * Kick the remote processor to notify about pending unprocessed messages. + * The vqid usage is not used and is inconsequential, as the kick is performed + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), + * the remote processor is expected to process both its Tx and Rx virtqueues. + */ +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = rproc->dev.parent; + mbox_msg_t msg = (mbox_msg_t)vqid; + int ret; + + /* send the index of the triggered virtqueue in the mailbox payload */ + ret = mbox_send_message(kproc->mbox, (void *)msg); + if (ret < 0) + dev_err(dev, "failed to send mailbox message, status = %d\n", + ret); +} + +/* Put the M4 processor into reset */ +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + int ret; + + ret = reset_control_assert(kproc->reset); + if (ret) { + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); + return ret; + } + + if (kproc->data->uses_lreset) + return ret; + + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) { + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); + if (reset_control_deassert(kproc->reset)) + dev_warn(dev, "local-reset deassert back failed\n"); + } + + return ret; +} + +/* Release the M4 processor from reset */ +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + int ret; + + if (kproc->data->uses_lreset) + goto lreset; + + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) { + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); + return ret; + } + + dev_info(dev, "released m4 reset\n"); + +lreset: + ret = reset_control_deassert(kproc->reset); + if (ret) { + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id)) + dev_warn(dev, "module-reset assert back failed\n"); + } + + return ret; +} + +static int k3_m4_rproc_request_mbox(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct mbox_client *client = &kproc->client; + struct device *dev = kproc->dev; + int ret; + + client->dev = dev; + client->tx_done = NULL; + client->rx_callback = k3_m4_rproc_mbox_callback; + client->tx_block = false; + client->knows_txdone = false; + + kproc->mbox = mbox_request_channel(client, 0); + if (IS_ERR(kproc->mbox)) { + ret = -EBUSY; + dev_err(dev, "mbox_request_channel failed: %ld\n", + PTR_ERR(kproc->mbox)); + return ret; + } + + /* + * Ping the remote processor, this is only for sanity-sake for now; + * there is no functional effect whatsoever. + * + * Note that the reply will _not_ arrive immediately: this message + * will wait in the mailbox fifo until the remote processor is booted. + */ + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); + if (ret < 0) { + dev_err(dev, "mbox_send_message failed: %d\n", ret); + mbox_free_channel(kproc->mbox); + return ret; + } + + return 0; +} + +/* + * The M4F cores have a local reset that affects only the CPU, and a + * generic module reset that powers on the device and allows the M4 internal + * memories to be accessed while the local reset is asserted. This function is + * used to release the global reset on M4F to allow loading into the M4F + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any + * firmware loading, and is followed by the .start() ops after loading to + * actually let the M4F core run. + */ +static int k3_m4_rproc_prepare(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + /* IPC-only mode does not require the core to be released from reset */ + if (kproc->ipc_only) + return 0; + + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", + ret); + + return ret; +} + +/* + * This function implements the .unprepare() ops and performs the complimentary + * operations to that of the .prepare() ops. The function is used to assert the + * global reset on applicable M4F cores. This completes the second portion of + * powering down the M4F cores. The cores themselves are only halted in the + * .stop() callback through the local reset, and the .unprepare() ops is invoked + * by the remoteproc core after the remoteproc is stopped to balance the global + * reset. + */ +static int k3_m4_rproc_unprepare(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + /* do not put back the cores into reset in IPC-only mode */ + if (kproc->ipc_only) + return 0; + + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, + kproc->ti_sci_id); + if (ret) + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); + + return ret; +} + +/* + * Power up the M4F remote processor. + * + * This function will be invoked only after the firmware for this rproc + * was loaded, parsed successfully, and all of its resource requirements + * were met. + */ +static int k3_m4_rproc_start(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + u32 boot_addr; + int ret; + + if (kproc->ipc_only) { + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", + __func__); + return -EINVAL; + } + + ret = k3_m4_rproc_request_mbox(rproc); + if (ret) + return ret; + + boot_addr = rproc->bootaddr; + ret = k3_m4_rproc_release(kproc); + if (ret) + goto put_mbox; + + return 0; + +put_mbox: + mbox_free_channel(kproc->mbox); + return ret; +} + +/* + * Stop the M4 remote processor. + * + * This function puts the M4 processor into reset, and finishes processing + * of any pending messages. + */ +static int k3_m4_rproc_stop(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (kproc->ipc_only) { + dev_err(dev, "%s cannot be invoked in IPC-only mode\n", + __func__); + return -EINVAL; + } + + mbox_free_channel(kproc->mbox); + + k3_m4_rproc_reset(kproc); + + return 0; +} + +/* + * Attach to a running M4 remote processor (IPC-only mode) + * + * This rproc attach callback only needs to request the mailbox, the remote + * processor is already booted, so there is no need to issue any TI-SCI + * commands to boot the M4 core. + */ +static int k3_m4_rproc_attach(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + int ret; + + if (!kproc->ipc_only || rproc->state != RPROC_DETACHED) { + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_DETACHED state\n"); + return -EINVAL; + } + + ret = k3_m4_rproc_request_mbox(rproc); + if (ret) + return ret; + + dev_err(dev, "M4 initialized in IPC-only mode\n"); + return 0; +} + +/* + * Detach from a running M4 remote processor (IPC-only mode) + * + * This rproc detach callback performs the opposite operation to attach callback + * and only needs to release the mailbox, the M4 core is not stopped and will + * be left to continue to run its booted firmware. + */ +static int k3_m4_rproc_detach(struct rproc *rproc) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (!kproc->ipc_only || rproc->state != RPROC_ATTACHED) { + dev_err(dev, "M4 is expected to be in IPC-only mode and RPROC_ATTACHED state\n"); + return -EINVAL; + } + + mbox_free_channel(kproc->mbox); + dev_err(dev, "M4 deinitialized in IPC-only mode\n"); + return 0; +} + +/* + * This function implements the .get_loaded_rsc_table() callback and is used + * to provide the resource table for a booted M4 in IPC-only mode. The K3 M4 + * firmwares follow a design-by-contract approach and are expected to have the + * resource table at the base of the DDR region reserved for firmware usage. + * This provides flexibility for the remote processor to be booted by different + * bootloaders that may or may not have the ability to publish the resource table + * address and size through a DT property. + */ +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, + size_t *rsc_table_sz) +{ + struct k3_m4_rproc *kproc = rproc->priv; + struct device *dev = kproc->dev; + + if (!kproc->rmem[0].cpu_addr) { + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); + return ERR_PTR(-ENOMEM); + } + + /* + * NOTE: The resource table size is currently hard-coded to a maximum + * of 256 bytes. The most common resource table usage for K3 firmwares + * is to only have the vdev resource entry and an optional trace entry. + * The exact size could be computed based on resource table address, but + * the hard-coded value suffices to support the IPC-only mode. + */ + *rsc_table_sz = 256; + return (struct resource_table *)kproc->rmem[0].cpu_addr; +} + +/* + * Custom function to translate a M4 device address (internal RAMs only) to a + * kernel virtual address. The M4s can access their RAMs at either an internal + * address visible only from a M4, or at the SoC-level bus address. Both these + * addresses need to be looked through for translation. The translated addresses + * can be used either by the remoteproc core for loading (when using kernel + * remoteproc loader), or by any rpmsg bus drivers. + */ +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) +{ + struct k3_m4_rproc *kproc = rproc->priv; + void __iomem *va = NULL; + phys_addr_t bus_addr; + u32 dev_addr, offset; + size_t size; + int i; + + if (len == 0) + return NULL; + + for (i = 0; i < kproc->num_mems; i++) { + bus_addr = kproc->mem[i].bus_addr; + dev_addr = kproc->mem[i].dev_addr; + size = kproc->mem[i].size; + + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { + /* handle M4-view addresses */ + if (da >= dev_addr && + ((da + len) <= (dev_addr + size))) { + offset = da - dev_addr; + va = kproc->mem[i].cpu_addr + offset; + return (__force void *)va; + } + } else { + /* handle SoC-view addresses */ + if (da >= bus_addr && + (da + len) <= (bus_addr + size)) { + offset = da - bus_addr; + va = kproc->mem[i].cpu_addr + offset; + return (__force void *)va; + } + } + } + + /* handle static DDR reserved memory regions */ + for (i = 0; i < kproc->num_rmems; i++) { + dev_addr = kproc->rmem[i].dev_addr; + size = kproc->rmem[i].size; + + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { + offset = da - dev_addr; + va = kproc->rmem[i].cpu_addr + offset; + return (__force void *)va; + } + } + + return NULL; +} + +static const struct rproc_ops k3_m4_rproc_ops = { + .start = k3_m4_rproc_start, + .stop = k3_m4_rproc_stop, + .attach = k3_m4_rproc_attach, + .detach = k3_m4_rproc_detach, + .kick = k3_m4_rproc_kick, + .da_to_va = k3_m4_rproc_da_to_va, + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, +}; + +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, + struct k3_m4_rproc *kproc) +{ + const struct k3_m4_dev_data *data = kproc->data; + struct device *dev = &pdev->dev; + struct resource *res; + int num_mems = 0; + int i; + + num_mems = kproc->data->num_mems; + kproc->mem = devm_kcalloc(kproc->dev, num_mems, + sizeof(*kproc->mem), GFP_KERNEL); + if (!kproc->mem) + return -ENOMEM; + + for (i = 0; i < num_mems; i++) { + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + data->mems[i].name); + if (!res) { + dev_err(dev, "found no memory resource for %s\n", + data->mems[i].name); + return -EINVAL; + } + if (!devm_request_mem_region(dev, res->start, + resource_size(res), + dev_name(dev))) { + dev_err(dev, "could not request %s region for resource\n", + data->mems[i].name); + return -EBUSY; + } + + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, + resource_size(res)); + if (!kproc->mem[i].cpu_addr) { + dev_err(dev, "failed to map %s memory\n", + data->mems[i].name); + return -ENOMEM; + } + kproc->mem[i].bus_addr = res->start; + kproc->mem[i].dev_addr = data->mems[i].dev_addr; + kproc->mem[i].size = resource_size(res); + + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", + data->mems[i].name, &kproc->mem[i].bus_addr, + kproc->mem[i].size, kproc->mem[i].cpu_addr, + kproc->mem[i].dev_addr); + } + kproc->num_mems = num_mems; + + return 0; +} + +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) +{ + struct device *dev = kproc->dev; + struct device_node *np = dev->of_node; + struct device_node *rmem_np; + struct reserved_mem *rmem; + int num_rmems; + int ret, i; + + num_rmems = of_property_count_elems_of_size(np, "memory-region", + sizeof(phandle)); + if (num_rmems <= 0) { + dev_err(dev, "device does not reserved memory regions, ret = %d\n", + num_rmems); + return -EINVAL; + } + if (num_rmems < 2) { + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", + num_rmems); + return -EINVAL; + } + + /* use reserved memory region 0 for vring DMA allocations */ + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); + if (ret) { + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", + ret); + return ret; + } + + num_rmems--; + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); + if (!kproc->rmem) { + ret = -ENOMEM; + goto release_rmem; + } + + /* use remaining reserved memory regions for static carveouts */ + for (i = 0; i < num_rmems; i++) { + rmem_np = of_parse_phandle(np, "memory-region", i + 1); + if (!rmem_np) { + ret = -EINVAL; + goto unmap_rmem; + } + + rmem = of_reserved_mem_lookup(rmem_np); + if (!rmem) { + of_node_put(rmem_np); + ret = -EINVAL; + goto unmap_rmem; + } + of_node_put(rmem_np); + + kproc->rmem[i].bus_addr = rmem->base; + /* 64-bit address regions currently not supported */ + kproc->rmem[i].dev_addr = (u32)rmem->base; + kproc->rmem[i].size = rmem->size; + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); + if (!kproc->rmem[i].cpu_addr) { + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", + i + 1, &rmem->base, &rmem->size); + ret = -ENOMEM; + goto unmap_rmem; + } + + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", + i + 1, &kproc->rmem[i].bus_addr, + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, + kproc->rmem[i].dev_addr); + } + kproc->num_rmems = num_rmems; + + return 0; + +unmap_rmem: + for (i--; i >= 0; i--) + iounmap(kproc->rmem[i].cpu_addr); + kfree(kproc->rmem); +release_rmem: + of_reserved_mem_device_release(kproc->dev); + return ret; +} + +static void k3_m4_reserved_mem_exit(struct k3_m4_rproc *kproc) +{ + int i; + + for (i = 0; i < kproc->num_rmems; i++) + iounmap(kproc->rmem[i].cpu_addr); + kfree(kproc->rmem); + + of_reserved_mem_device_release(kproc->dev); +} + +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device *dev, + const struct ti_sci_handle *sci) +{ + struct ti_sci_proc *tsp; + u32 temp[2]; + int ret; + + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", + temp, 2); + if (ret < 0) + return ERR_PTR(ret); + + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); + if (!tsp) + return ERR_PTR(-ENOMEM); + + tsp->dev = dev; + tsp->sci = sci; + tsp->ops = &sci->ops.proc_ops; + tsp->proc_id = temp[0]; + tsp->host_id = temp[1]; + + return tsp; +} + +static int k3_m4_rproc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + const struct k3_m4_dev_data *data; + struct k3_m4_rproc *kproc; + struct rproc *rproc; + const char *fw_name; + bool r_state = false; + bool p_state = false; + int ret = 0; + int ret1; + + data = of_device_get_match_data(dev); + if (!data) + return -ENODEV; + + ret = rproc_of_parse_firmware(dev, 0, &fw_name); + if (ret) { + dev_err(dev, "failed to parse firmware-name property, ret = %d\n", + ret); + return ret; + } + + rproc = rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, + sizeof(*kproc)); + if (!rproc) + return -ENOMEM; + + rproc->has_iommu = false; + rproc->recovery_disabled = true; + if (data->uses_lreset) { + rproc->ops->prepare = k3_m4_rproc_prepare; + rproc->ops->unprepare = k3_m4_rproc_unprepare; + } + kproc = rproc->priv; + kproc->rproc = rproc; + kproc->dev = dev; + kproc->data = data; + + kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci"); + if (IS_ERR(kproc->ti_sci)) { + ret = PTR_ERR(kproc->ti_sci); + if (ret != -EPROBE_DEFER) { + dev_err(dev, "failed to get ti-sci handle, ret = %d\n", + ret); + } + kproc->ti_sci = NULL; + goto free_rproc; + } + + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); + if (ret) { + dev_err(dev, "missing 'ti,sci-dev-id' property\n"); + goto put_sci; + } + + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); + if (IS_ERR(kproc->reset)) { + ret = PTR_ERR(kproc->reset); + dev_err(dev, "failed to get reset, status = %d\n", ret); + goto put_sci; + } + + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); + if (IS_ERR(kproc->tsp)) { + dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", + ret); + ret = PTR_ERR(kproc->tsp); + goto put_sci; + } + + ret = ti_sci_proc_request(kproc->tsp); + if (ret < 0) { + dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); + goto free_tsp; + } + + ret = k3_m4_rproc_of_get_memories(pdev, kproc); + if (ret) + goto release_tsp; + + ret = k3_m4_reserved_mem_init(kproc); + if (ret) { + dev_err(dev, "reserved memory init failed, ret = %d\n", ret); + goto release_tsp; + } + + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, + &r_state, &p_state); + if (ret) { + dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n", + ret); + goto release_mem; + } + + /* configure devices for either remoteproc or IPC-only mode */ + if (p_state) { + dev_err(dev, "configured M4 for IPC-only mode\n"); + rproc->state = RPROC_DETACHED; + kproc->ipc_only = true; + } else { + dev_err(dev, "configured M4 for remoteproc mode\n"); + /* + * ensure the M4 local reset is asserted to ensure the core + * doesn't execute bogus code in .prepare() when the module + * reset is released. + */ + if (data->uses_lreset) { + ret = reset_control_status(kproc->reset); + if (ret < 0) { + dev_err(dev, "failed to get reset status, status = %d\n", + ret); + goto release_mem; + } else if (ret == 0) { + dev_warn(dev, "local reset is deasserted for device\n"); + k3_m4_rproc_reset(kproc); + } + } + } + + ret = rproc_add(rproc); + if (ret) { + dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", + ret); + goto release_mem; + } + + platform_set_drvdata(pdev, kproc); + + return 0; + +release_mem: + k3_m4_reserved_mem_exit(kproc); +release_tsp: + ret1 = ti_sci_proc_release(kproc->tsp); + if (ret1) + dev_err(dev, "failed to release proc, ret = %d\n", ret1); +free_tsp: + kfree(kproc->tsp); +put_sci: + ret1 = ti_sci_put_handle(kproc->ti_sci); + if (ret1) + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1); +free_rproc: + rproc_free(rproc); + return ret; +} + +static int k3_m4_rproc_remove(struct platform_device *pdev) +{ + struct k3_m4_rproc *kproc = platform_get_drvdata(pdev); + struct device *dev = &pdev->dev; + int ret; + + rproc_del(kproc->rproc); + + ret = ti_sci_proc_release(kproc->tsp); + if (ret) + dev_err(dev, "failed to release proc, ret = %d\n", ret); + + kfree(kproc->tsp); + + ret = ti_sci_put_handle(kproc->ti_sci); + if (ret) + dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); + + k3_m4_reserved_mem_exit(kproc); + rproc_free(kproc->rproc); + + return 0; +} + +static const struct k3_m4_mem_data am64_m4_mems[] = { + { .name = "iram", .dev_addr = 0x0 }, + { .name = "dram", .dev_addr = 0x30000 }, +}; + +static const struct k3_m4_dev_data am64_m4_data = { + .mems = am64_m4_mems, + .num_mems = ARRAY_SIZE(am64_m4_mems), + .boot_align_addr = SZ_1K, + .uses_lreset = true, +}; + +static const struct of_device_id k3_m4_of_match[] = { + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, k3_m4_of_match); + +static struct platform_driver k3_m4_rproc_driver = { + .probe = k3_m4_rproc_probe, + .remove = k3_m4_rproc_remove, + .driver = { + .name = "k3-m4-rproc", + .of_match_table = k3_m4_of_match, + }, +}; + +module_platform_driver(k3_m4_rproc_driver); + +MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver");
The AM64x SoC of TI K3 family has a Cortex M4F core in the MCU domain. This core is typically used for safety applications in a stand alone mode. However, some application (non safety related) may want to use the M4F core as a generic remote processor with IPC to the host processor. The M4F core has internal IRAM and DRAM memories and are exposed to the system bus for code and data loading. A remoteproc driver is added to support this subsystem to be able to load and boot M4F core. Loading includes to M4F internal memories and to any predefined external code/data memory. The carveouts for external contiguous memory is defined in the M4F device node and should match with the external memory declarations in the M4F image binary. The M4F subsystem has two resets. One reset is for the entire subsystem i.e including the internal memories and ther other, a local reset is only for the M4F processing core. For loading the image remoteoproc driver first releases the subsystem reset, loads the firmware image and then releases the local reset to let the M4F processing core to run. Signed-off-by: Hari Nagalla <hnagalla@ti.com> --- drivers/remoteproc/Kconfig | 13 + drivers/remoteproc/Makefile | 1 + drivers/remoteproc/ti_k3_m4_remoteproc.c | 899 +++++++++++++++++++++++ 3 files changed, 913 insertions(+) create mode 100644 drivers/remoteproc/ti_k3_m4_remoteproc.c