@@ -69,6 +69,9 @@ libblake2s-x86_64-y := blake2s-core.o blake2s-glue.o
obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o
+obj-$(CONFIG_CRYPTO_POLYVAL_CLMUL_NI) += polyval-clmulni.o
+polyval-clmulni-y := polyval-clmulni_asm.o polyval-clmulni_glue.o
+
obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o
crc32c-intel-y := crc32c-intel_glue.o
crc32c-intel-$(CONFIG_64BIT) += crc32c-pcl-intel-asm_64.o
new file mode 100644
@@ -0,0 +1,330 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright 2021 Google LLC
+ */
+/*
+ * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
+ * instructions. It works on 8 blocks at a time, by precomputing the first 8
+ * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
+ * allows us to split finite field multiplication into two steps.
+ *
+ * In the first step, we consider h^i, m_i as normal polynomials of degree less
+ * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
+ * is simply polynomial multiplication.
+ *
+ * In the second step, we compute the reduction of p(x) modulo the finite field
+ * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
+ * multiplication is finite field multiplication. The advantage is that the
+ * two-step process only requires 1 finite field reduction for every 8
+ * polynomial multiplications. Further parallelism is gained by interleaving the
+ * multiplications and polynomial reductions.
+ */
+
+#include <linux/linkage.h>
+#include <asm/frame.h>
+
+#define STRIDE_BLOCKS 8
+
+#define GSTAR %xmm7
+#define PL %xmm8
+#define PH %xmm9
+#define TMP_XMM %xmm11
+#define LO %xmm12
+#define HI %xmm13
+#define MI %xmm14
+#define SUM %xmm15
+
+#define KEY_POWERS %rdi
+#define MSG %rsi
+#define BLOCKS_LEFT %rdx
+#define TMP %rax
+
+.section .rodata.cst16.gstar, "aM", @progbits, 16
+.align 16
+
+.Lgstar:
+ .quad 0xc200000000000000, 0xc200000000000000
+
+.text
+
+/*
+ * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
+ * count pointed to by MSG and KEY_POWERS.
+ */
+.macro schoolbook1 count
+ .set i, 0
+ .rept (\count)
+ schoolbook1_iteration i 0
+ .set i, (i +1)
+ .endr
+.endm
+
+/*
+ * Computes the product of two 128-bit polynomials at the memory locations
+ * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of the
+ * 256-bit product into LO, MI, HI.
+ *
+ * The multiplication produces four parts:
+ * LOW: The polynomial given by performing carryless multiplication of the
+ * bottom 64-bits of each polynomial
+ * MID1: The polynomial given by performing carryless multiplication of the
+ * bottom 64-bits of the first polynomial and the top 64-bits of the second
+ * MID2: The polynomial given by performing carryless multiplication of the
+ * bottom 64-bits of the second polynomial and the top 64-bits of the first
+ * HIGH: The polynomial given by performing carryless multiplication of the
+ * top 64-bits of each polynomial
+ *
+ * We compute:
+ * LO += LOW
+ * MI += MID1 + MID2
+ * HI += HIGH
+ *
+ * LO = [LO_1 : LO_0]
+ * MI = [MI_1 : MI_0]
+ * HI = [HI_1 : HI_0]
+ *
+ * Later, the 256-bit result can be extracted as:
+ * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
+ * This step is done when computing the polynomial reduction for efficiency
+ * reasons.
+ *
+ * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an
+ * extra multiplication of SUM and h^8.
+ */
+.macro schoolbook1_iteration i xor_sum
+ movups (16*\i)(MSG), %xmm0
+ .if (\i == 0 && \xor_sum == 1)
+ pxor SUM, %xmm0
+ .endif
+ vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
+ vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
+ vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
+ vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
+ vpxor %xmm2, MI, MI
+ vpxor %xmm1, LO, LO
+ vpxor %xmm4, HI, HI
+ vpxor %xmm3, MI, MI
+.endm
+
+/*
+ * Performs the same computation as schoolbook1_iteration, except we expect the
+ * arguments to already be loaded into xmm0 and xmm1 and we set the result
+ * registers LO, MI, and HI directly rather than XOR'ing into them.
+ */
+.macro schoolbook1_noload
+ vpclmulqdq $0x01, %xmm0, %xmm1, MI
+ vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
+ vpclmulqdq $0x00, %xmm0, %xmm1, LO
+ vpclmulqdq $0x11, %xmm0, %xmm1, HI
+ vpxor %xmm2, MI, MI
+.endm
+
+/*
+ * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
+ * the result in PL, PH.
+ * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
+ */
+.macro schoolbook2
+ vpslldq $8, MI, PL
+ vpsrldq $8, MI, PH
+ pxor LO, PL
+ pxor HI, PH
+.endm
+
+/*
+ * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
+ *
+ * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
+ * x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the product
+ * of two 128-bit polynomials in Montgomery form. We need to reduce it mod g(x).
+ * Also, since polynomials in Montgomery form have an "extra" factor of x^128,
+ * this product has two extra factors of x^128. To get it back into Montgomery
+ * form, we need to remove one of these factors by dividing by x^128.
+ *
+ * To accomplish both of these goals, we add multiples of g(x) that cancel out
+ * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
+ * bits are zero, the polynomial division by x^128 can be done by right shifting.
+ *
+ * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
+ * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
+ * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
+ * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
+ * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
+ * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
+ *
+ * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
+ * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
+ * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
+ * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
+ * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
+ *
+ * So our final computation is:
+ * T = T_1 : T_0 = g*(x) * P_0
+ * V = V_1 : V_0 = g*(x) * (P_1 + T_0)
+ * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
+ *
+ * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
+ * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
+ * T1 into dest. This allows us to reuse P_1 + T_0 when computing V.
+ */
+.macro montgomery_reduction dest
+ vpclmulqdq $0x00, GSTAR, PL, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x)
+ pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1
+ pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1
+ pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
+ pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
+ vpxor TMP_XMM, PH, \dest
+.endm
+
+/*
+ * Compute schoolbook multiplication for 8 blocks
+ * m_0h^8 + ... + m_7h^1
+ *
+ * If reduce is set, also computes the montgomery reduction of the
+ * previous full_stride call and XORs with the first message block.
+ * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
+ * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
+ */
+.macro full_stride reduce
+ pxor LO, LO
+ pxor HI, HI
+ pxor MI, MI
+
+ schoolbook1_iteration 7 0
+ .if \reduce
+ vpclmulqdq $0x00, GSTAR, PL, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 6 0
+ .if \reduce
+ pshufd $0b01001110, TMP_XMM, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 5 0
+ .if \reduce
+ pxor PL, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 4 0
+ .if \reduce
+ pxor TMP_XMM, PH
+ .endif
+
+ schoolbook1_iteration 3 0
+ .if \reduce
+ pclmulqdq $0x11, GSTAR, TMP_XMM
+ .endif
+
+ schoolbook1_iteration 2 0
+ .if \reduce
+ vpxor TMP_XMM, PH, SUM
+ .endif
+
+ schoolbook1_iteration 1 0
+
+ schoolbook1_iteration 0 1
+
+ addq $(8*16), MSG
+ schoolbook2
+.endm
+
+/*
+ * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
+ */
+.macro partial_stride
+ mov BLOCKS_LEFT, TMP
+ shlq $4, TMP
+ addq $(16*STRIDE_BLOCKS), KEY_POWERS
+ subq TMP, KEY_POWERS
+
+ movups (MSG), %xmm0
+ pxor SUM, %xmm0
+ movaps (KEY_POWERS), %xmm1
+ schoolbook1_noload
+ dec BLOCKS_LEFT
+ addq $16, MSG
+ addq $16, KEY_POWERS
+
+ test $4, BLOCKS_LEFT
+ jz .Lpartial4BlocksDone
+ schoolbook1 4
+ addq $(4*16), MSG
+ addq $(4*16), KEY_POWERS
+.Lpartial4BlocksDone:
+ test $2, BLOCKS_LEFT
+ jz .Lpartial2BlocksDone
+ schoolbook1 2
+ addq $(2*16), MSG
+ addq $(2*16), KEY_POWERS
+.Lpartial2BlocksDone:
+ test $1, BLOCKS_LEFT
+ jz .LpartialDone
+ schoolbook1 1
+.LpartialDone:
+ schoolbook2
+ montgomery_reduction SUM
+.endm
+
+/*
+ * Perform montgomery multiplication in GF(2^128) and store result in op1.
+ *
+ * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
+ * If op1, op2 are in montgomery form, this computes the montgomery
+ * form of op1*op2.
+ *
+ * void clmul_polyval_mul(u8 *op1, const u8 *op2);
+ */
+SYM_FUNC_START(clmul_polyval_mul)
+ FRAME_BEGIN
+ vmovdqa .Lgstar(%rip), GSTAR
+ movups (%rdi), %xmm0
+ movups (%rsi), %xmm1
+ schoolbook1_noload
+ schoolbook2
+ montgomery_reduction SUM
+ movups SUM, (%rdi)
+ FRAME_END
+ RET
+SYM_FUNC_END(clmul_polyval_mul)
+
+/*
+ * Perform polynomial evaluation as specified by POLYVAL. This computes:
+ * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
+ * where n=nblocks, h is the hash key, and m_i are the message blocks.
+ *
+ * rdi - pointer to precomputed key powers h^8 ... h^1
+ * rsi - pointer to message blocks
+ * rdx - number of blocks to hash
+ * rcx - pointer to the accumulator
+ *
+ * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
+ * const u8 *in, size_t nblocks, u8 *accumulator);
+ */
+SYM_FUNC_START(clmul_polyval_update)
+ FRAME_BEGIN
+ vmovdqa .Lgstar(%rip), GSTAR
+ movups (%rcx), SUM
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ js .LstrideLoopExit
+ full_stride 0
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ js .LstrideLoopExitReduce
+.LstrideLoop:
+ full_stride 1
+ subq $STRIDE_BLOCKS, BLOCKS_LEFT
+ jns .LstrideLoop
+.LstrideLoopExitReduce:
+ montgomery_reduction SUM
+.LstrideLoopExit:
+ add $STRIDE_BLOCKS, BLOCKS_LEFT
+ jz .LskipPartial
+ partial_stride
+.LskipPartial:
+ movups SUM, (%rcx)
+ FRAME_END
+ RET
+SYM_FUNC_END(clmul_polyval_update)
new file mode 100644
@@ -0,0 +1,200 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Accelerated POLYVAL implementation with Intel PCLMULQDQ-NI
+ * instructions. This file contains glue code.
+ *
+ * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
+ * Copyright (c) 2009 Intel Corp.
+ * Author: Huang Ying <ying.huang@intel.com>
+ * Copyright 2021 Google LLC
+ */
+/*
+ * Glue code based on ghash-clmulni-intel_glue.c.
+ *
+ * This implementation of POLYVAL uses montgomery multiplication
+ * accelerated by PCLMULQDQ-NI to implement the finite field
+ * operations.
+ *
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/gf128mul.h>
+#include <crypto/internal/hash.h>
+#include <crypto/internal/simd.h>
+#include <crypto/polyval.h>
+#include <linux/crypto.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/cpu_device_id.h>
+#include <asm/simd.h>
+
+#define NUM_KEY_POWERS 8
+
+struct polyval_tfm_ctx {
+ /*
+ * These powers must be in the order h^8, ..., h^1.
+ */
+ u8 key_powers[NUM_KEY_POWERS][POLYVAL_BLOCK_SIZE];
+};
+
+struct polyval_desc_ctx {
+ u8 buffer[POLYVAL_BLOCK_SIZE];
+ u32 bytes;
+};
+
+asmlinkage void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
+ const u8 *in, size_t nblocks, u8 *accumulator);
+asmlinkage void clmul_polyval_mul(u8 *op1, const u8 *op2);
+
+static void internal_polyval_update(const struct polyval_tfm_ctx *keys,
+ const u8 *in, size_t nblocks, u8 *accumulator)
+{
+ if (likely(crypto_simd_usable())) {
+ kernel_fpu_begin();
+ clmul_polyval_update(keys, in, nblocks, accumulator);
+ kernel_fpu_end();
+ } else {
+ polyval_update_non4k(keys->key_powers[NUM_KEY_POWERS-1], in,
+ nblocks, accumulator);
+ }
+}
+
+static void internal_polyval_mul(u8 *op1, const u8 *op2)
+{
+ if (likely(crypto_simd_usable())) {
+ kernel_fpu_begin();
+ clmul_polyval_mul(op1, op2);
+ kernel_fpu_end();
+ } else {
+ polyval_mul_non4k(op1, op2);
+ }
+}
+
+static int polyval_x86_setkey(struct crypto_shash *tfm,
+ const u8 *key, unsigned int keylen)
+{
+ struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm);
+ int i;
+
+ if (keylen != POLYVAL_BLOCK_SIZE)
+ return -EINVAL;
+
+ memcpy(ctx->key_powers[NUM_KEY_POWERS-1], key,
+ POLYVAL_BLOCK_SIZE);
+
+ for (i = NUM_KEY_POWERS-2; i >= 0; i--) {
+ memcpy(ctx->key_powers[i], key, POLYVAL_BLOCK_SIZE);
+ internal_polyval_mul(ctx->key_powers[i], ctx->key_powers[i+1]);
+ }
+
+ return 0;
+}
+
+static int polyval_x86_init(struct shash_desc *desc)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+
+ memset(dctx, 0, sizeof(*dctx));
+
+ return 0;
+}
+
+static int polyval_x86_update(struct shash_desc *desc,
+ const u8 *src, unsigned int srclen)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm);
+ u8 *pos;
+ unsigned int nblocks;
+ int n;
+
+ if (dctx->bytes) {
+ n = min(srclen, dctx->bytes);
+ pos = dctx->buffer + POLYVAL_BLOCK_SIZE - dctx->bytes;
+
+ dctx->bytes -= n;
+ srclen -= n;
+
+ while (n--)
+ *pos++ ^= *src++;
+
+ if (!dctx->bytes)
+ internal_polyval_mul(dctx->buffer,
+ ctx->key_powers[NUM_KEY_POWERS-1]);
+ }
+
+ nblocks = srclen/POLYVAL_BLOCK_SIZE;
+ internal_polyval_update(ctx, src, nblocks, dctx->buffer);
+ srclen -= nblocks*POLYVAL_BLOCK_SIZE;
+
+ if (srclen) {
+ dctx->bytes = POLYVAL_BLOCK_SIZE - srclen;
+ src += nblocks*POLYVAL_BLOCK_SIZE;
+ pos = dctx->buffer;
+ while (srclen--)
+ *pos++ ^= *src++;
+ }
+
+ return 0;
+}
+
+static int polyval_x86_final(struct shash_desc *desc, u8 *dst)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm);
+
+ if (dctx->bytes) {
+ internal_polyval_mul(dctx->buffer,
+ ctx->key_powers[NUM_KEY_POWERS-1]);
+ }
+
+ dctx->bytes = 0;
+ memcpy(dst, dctx->buffer, POLYVAL_BLOCK_SIZE);
+
+ return 0;
+}
+
+static struct shash_alg polyval_alg = {
+ .digestsize = POLYVAL_DIGEST_SIZE,
+ .init = polyval_x86_init,
+ .update = polyval_x86_update,
+ .final = polyval_x86_final,
+ .setkey = polyval_x86_setkey,
+ .descsize = sizeof(struct polyval_desc_ctx),
+ .base = {
+ .cra_name = "polyval",
+ .cra_driver_name = "polyval-clmulni",
+ .cra_priority = 200,
+ .cra_blocksize = POLYVAL_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct polyval_tfm_ctx),
+ .cra_module = THIS_MODULE,
+ },
+};
+
+static const struct x86_cpu_id pcmul_cpu_id[] = {
+ X86_MATCH_FEATURE(X86_FEATURE_PCLMULQDQ, NULL), /* Pickle-Mickle-Duck */
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, pcmul_cpu_id);
+
+static int __init polyval_clmulni_mod_init(void)
+{
+ if (!x86_match_cpu(pcmul_cpu_id))
+ return -ENODEV;
+
+ return crypto_register_shash(&polyval_alg);
+}
+
+static void __exit polyval_clmulni_mod_exit(void)
+{
+ crypto_unregister_shash(&polyval_alg);
+}
+
+module_init(polyval_clmulni_mod_init);
+module_exit(polyval_clmulni_mod_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("POLYVAL hash function accelerated by PCLMULQDQ-NI");
+MODULE_ALIAS_CRYPTO("polyval");
+MODULE_ALIAS_CRYPTO("polyval-clmulni");
@@ -787,6 +787,15 @@ config CRYPTO_POLYVAL
POLYVAL is the hash function used in HCTR2. It is not a general-purpose
cryptographic hash function.
+config CRYPTO_POLYVAL_CLMUL_NI
+ tristate "POLYVAL hash function (CLMUL-NI accelerated)"
+ depends on X86 && 64BIT
+ select CRYPTO_POLYVAL
+ help
+ This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
+ used to efficiently implement HCTR2 on x86-64 processors that support
+ carry-less multiplication instructions.
+
config CRYPTO_POLY1305
tristate "Poly1305 authenticator algorithm"
select CRYPTO_HASH
@@ -46,7 +46,6 @@
#include <asm/unaligned.h>
#include <crypto/algapi.h>
-#include <crypto/gf128mul.h>
#include <crypto/polyval.h>
#include <crypto/internal/hash.h>
#include <linux/crypto.h>
@@ -66,8 +65,8 @@ struct polyval_desc_ctx {
u32 bytes;
};
-static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE],
- const u8 src[POLYVAL_BLOCK_SIZE])
+void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE],
+ const u8 src[POLYVAL_BLOCK_SIZE])
{
u64 a = get_unaligned((const u64 *)&src[0]);
u64 b = get_unaligned((const u64 *)&src[8]);
@@ -76,6 +75,44 @@ static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE],
put_unaligned(swab64(b), (u64 *)&dst[0]);
}
+/*
+ * Performs multiplication in the POLYVAL field using the GHASH field as a
+ * subroutine. This function is used as a fallback for hardware accelerated
+ * implementations when simd registers are unavailable.
+ *
+ * Note: This function is not used for polyval-generic, instead we use the 4k
+ * lookup table implementation for finite field multiplication.
+ */
+void polyval_mul_non4k(u8 *op1, const u8 *op2)
+{
+ be128 a, b;
+
+ // Assume one argument is in Montgomery form and one is not.
+ copy_and_reverse((u8 *)&a, op1);
+ copy_and_reverse((u8 *)&b, op2);
+ gf128mul_x_lle(&a, &a);
+ gf128mul_lle(&a, &b);
+ copy_and_reverse(op1, (u8 *)&a);
+}
+
+/*
+ * Perform a POLYVAL update using non4k multiplication. This function is used
+ * as a fallback for hardware accelerated implementations when simd registers
+ * are unavailable.
+ *
+ * Note: This function is not used for polyval-generic, instead we use the 4k
+ * lookup table implementation of finite field multiplication.
+ */
+void polyval_update_non4k(const u8 *key, const u8 *in,
+ size_t nblocks, u8 *accumulator)
+{
+ while (nblocks--) {
+ crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE);
+ polyval_mul_non4k(accumulator, key);
+ in += POLYVAL_BLOCK_SIZE;
+ }
+}
+
static int polyval_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
@@ -8,10 +8,19 @@
#ifndef _CRYPTO_POLYVAL_H
#define _CRYPTO_POLYVAL_H
+#include <crypto/gf128mul.h>
#include <linux/types.h>
#include <linux/crypto.h>
#define POLYVAL_BLOCK_SIZE 16
#define POLYVAL_DIGEST_SIZE 16
+void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE],
+ const u8 src[POLYVAL_BLOCK_SIZE]);
+
+void polyval_mul_non4k(u8 *op1, const u8 *op2);
+
+void polyval_update_non4k(const u8 *key, const u8 *in,
+ size_t nblocks, u8 *accumulator);
+
#endif