Message ID | 20231025093847.3740104-4-zengheng4@huawei.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | Make the cpuinfo_cur_freq interface read correctly | expand |
On Wed, Oct 25, 2023 at 05:38:47PM +0800, Zeng Heng wrote: > We have found significant differences in the latency of cpc_read() between > regular scenarios and scenarios with high memory access pressure. Ignoring > this error can result in getting rate interface occasionally returning > absurd values. > > Here provides a high memory access sample test by stress-ng. My local > testing platform includes 160 CPUs, the CPC registers is accessed by mmio > method, and the cpuidle feature is disabled (the AMU always works online): > > ~~~ > ./stress-ng --memrate 160 --timeout 180 > ~~~ > > The following data is sourced from ftrace statistics towards > cppc_get_perf_ctrs(): > > Regular scenarios || High memory access pressure scenarios > 104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() { > 104) 0.800 us | cpc_read.isra.0(); || 133) 4.580 us | cpc_read.isra.0(); > 104) 0.640 us | cpc_read.isra.0(); || 133) 7.780 us | cpc_read.isra.0(); > 104) 0.450 us | cpc_read.isra.0(); || 133) 2.550 us | cpc_read.isra.0(); > 104) 0.430 us | cpc_read.isra.0(); || 133) 0.570 us | cpc_read.isra.0(); > 104) 4.610 us | } || 133) ! 157.610 us | } > 104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() { > 104) 0.720 us | cpc_read.isra.0(); || 133) 0.760 us | cpc_read.isra.0(); > 104) 0.720 us | cpc_read.isra.0(); || 133) 4.480 us | cpc_read.isra.0(); > 104) 0.510 us | cpc_read.isra.0(); || 133) 0.520 us | cpc_read.isra.0(); > 104) 0.500 us | cpc_read.isra.0(); || 133) + 10.100 us | cpc_read.isra.0(); > 104) 3.460 us | } || 133) ! 120.850 us | } > 108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() { > 108) 0.820 us | cpc_read.isra.0(); || 87) ! 255.200 us | cpc_read.isra.0(); > 108) 0.850 us | cpc_read.isra.0(); || 87) 2.910 us | cpc_read.isra.0(); > 108) 0.590 us | cpc_read.isra.0(); || 87) 5.160 us | cpc_read.isra.0(); > 108) 0.610 us | cpc_read.isra.0(); || 87) 4.340 us | cpc_read.isra.0(); > 108) 5.080 us | } || 87) ! 315.790 us | } > 108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() { > 108) 0.630 us | cpc_read.isra.0(); || 87) 0.800 us | cpc_read.isra.0(); > 108) 0.630 us | cpc_read.isra.0(); || 87) 6.310 us | cpc_read.isra.0(); > 108) 0.420 us | cpc_read.isra.0(); || 87) 1.190 us | cpc_read.isra.0(); > 108) 0.430 us | cpc_read.isra.0(); || 87) + 11.620 us | cpc_read.isra.0(); > 108) 3.780 us | } || 87) ! 207.010 us | } > > My local testing platform works under 3000000hz, but the cpuinfo_cur_freq > interface returns values that are not even close to the actual frequency: > > [root@localhost ~]# cd /sys/devices/system/cpu > [root@localhost cpu]# for i in {0..159}; do cat cpu$i/cpufreq/cpuinfo_cur_freq; done > 5127812 > 2952127 > 3069001 > 3496183 > 922989768 > 2419194 > 3427042 > 2331869 > 3594611 > 8238499 > ... > > The reason is when under heavy memory access pressure, the execution of > cpc_read() delay has increased from sub-microsecond to several hundred > microseconds. Moving the cpc_read function into a critical section by irq > disable/enable has minimal impact on the result. > > cppc_get_perf_ctrs()[0] cppc_get_perf_ctrs()[1] > / \ / \ > cpc_read cpc_read cpc_read cpc_read > ref[0] delivered[0] ref[1] delivered[1] > | | | | > v v v v > -----------------------------------------------------------------------> time > <--delta[0]--> <------sample_period------> <-----delta[1]-----> > > Since that, > freq = ref_freq * (delivered[1] - delivered[0]) / (ref[1] - ref[0]) > and > delivered[1] - delivered[0] = freq * (delta[1] + sample_period), > ref[1] - ref[0] = ref_freq * (delta[0] + sample_period) > > To eliminate the impact of system memory access latency, setting a > sampling period of 2us is far from sufficient. Consequently, we suggest > cppc_cpufreq_get_rate() only can be called in the process context, and > adopt a longer sampling period to neutralize the impact of random latency. > > Here we call the cond_resched() function instead of sleep-like functions > to ensure that `taskset -c $i cat cpu$i/cpufreq/cpuinfo_cur_freq` could > work when cpuidle feature is enabled. > > Reported-by: Yang Shi <yang@os.amperecomputing.com> > Link: https://lore.kernel.org/all/20230328193846.8757-1-yang@os.amperecomputing.com/ > Signed-off-by: Zeng Heng <zengheng4@huawei.com> > --- > drivers/cpufreq/cppc_cpufreq.c | 16 +++++++++++++++- > 1 file changed, 15 insertions(+), 1 deletion(-) > > diff --git a/drivers/cpufreq/cppc_cpufreq.c b/drivers/cpufreq/cppc_cpufreq.c > index 321a9dc9484d..a7c5418bcda7 100644 > --- a/drivers/cpufreq/cppc_cpufreq.c > +++ b/drivers/cpufreq/cppc_cpufreq.c > @@ -851,12 +851,26 @@ static int cppc_get_perf_ctrs_pair(void *val) The previous patch added this function, and calls it with smp_call_on_cpu(), where it'll run in IRQ context with IRQs disabled... > struct fb_ctr_pair *fb_ctrs = val; > int cpu = fb_ctrs->cpu; > int ret; > + unsigned long timeout; > > ret = cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t0); > if (ret) > return ret; > > - udelay(2); /* 2usec delay between sampling */ > + if (likely(!irqs_disabled())) { > + /* > + * Set 1ms as sampling interval, but never schedule > + * to the idle task to prevent the AMU counters from > + * stopping working. > + */ > + timeout = jiffies + msecs_to_jiffies(1); > + while (!time_after(jiffies, timeout)) > + cond_resched(); > + > + } else { ... so we'll enter this branch of the if-else ... > + pr_warn_once("CPU%d: Get rate in atomic context", cpu); ... and pr_warn_once() for something that's apparently normal and outside of the user's control? That doesn't make much sense to me. Mark. > + udelay(2); /* 2usec delay between sampling */ > + } > > return cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t1); > } > -- > 2.25.1 >
在 2023/10/25 19:01, Mark Rutland 写道: > On Wed, Oct 25, 2023 at 05:38:47PM +0800, Zeng Heng wrote: > > The previous patch added this function, and calls it with smp_call_on_cpu(), > where it'll run in IRQ context with IRQs disabled... smp_call_on_cpu() puts the work to the bind-cpu worker. And this function will be called in task context, and IRQs is certainly enabled. Zeng Heng >> struct fb_ctr_pair *fb_ctrs = val; >> int cpu = fb_ctrs->cpu; >> int ret; >> + unsigned long timeout; >> >> ret = cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t0); >> if (ret) >> return ret; >> >> - udelay(2); /* 2usec delay between sampling */ >> + if (likely(!irqs_disabled())) { >> + /* >> + * Set 1ms as sampling interval, but never schedule >> + * to the idle task to prevent the AMU counters from >> + * stopping working. >> + */ >> + timeout = jiffies + msecs_to_jiffies(1); >> + while (!time_after(jiffies, timeout)) >> + cond_resched(); >> + >> + } else { > ... so we'll enter this branch of the if-else ... > >> + pr_warn_once("CPU%d: Get rate in atomic context", cpu); > ... and pr_warn_once() for something that's apparently normal and outside of > the user's control? > > That doesn't make much sense to me. > > Mark. > >> + udelay(2); /* 2usec delay between sampling */ >> + } >> >> return cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t1); >> } >> -- >> 2.25.1 >>
On Thu, Oct 26, 2023 at 09:55:39AM +0800, Zeng Heng wrote: > > 在 2023/10/25 19:01, Mark Rutland 写道: > > On Wed, Oct 25, 2023 at 05:38:47PM +0800, Zeng Heng wrote: > > > > The previous patch added this function, and calls it with smp_call_on_cpu(), > > where it'll run in IRQ context with IRQs disabled... > > smp_call_on_cpu() puts the work to the bind-cpu worker. Ah, sorry -- I had confused this with the smp_call_function*() family, which do this in IRQ context. > And this function will be called in task context, and IRQs is certainly enabled. Understood; given that, please ignore my comments below. Mark. > > > Zeng Heng > > > > struct fb_ctr_pair *fb_ctrs = val; > > > int cpu = fb_ctrs->cpu; > > > int ret; > > > + unsigned long timeout; > > > ret = cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t0); > > > if (ret) > > > return ret; > > > - udelay(2); /* 2usec delay between sampling */ > > > + if (likely(!irqs_disabled())) { > > > + /* > > > + * Set 1ms as sampling interval, but never schedule > > > + * to the idle task to prevent the AMU counters from > > > + * stopping working. > > > + */ > > > + timeout = jiffies + msecs_to_jiffies(1); > > > + while (!time_after(jiffies, timeout)) > > > + cond_resched(); > > > + > > > + } else { > > ... so we'll enter this branch of the if-else ... > > > > > + pr_warn_once("CPU%d: Get rate in atomic context", cpu); > > ... and pr_warn_once() for something that's apparently normal and outside of > > the user's control? > > > > That doesn't make much sense to me. > > > > Mark. > > > > > + udelay(2); /* 2usec delay between sampling */ > > > + } > > > return cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t1); > > > } > > > -- > > > 2.25.1 > > >
diff --git a/drivers/cpufreq/cppc_cpufreq.c b/drivers/cpufreq/cppc_cpufreq.c index 321a9dc9484d..a7c5418bcda7 100644 --- a/drivers/cpufreq/cppc_cpufreq.c +++ b/drivers/cpufreq/cppc_cpufreq.c @@ -851,12 +851,26 @@ static int cppc_get_perf_ctrs_pair(void *val) struct fb_ctr_pair *fb_ctrs = val; int cpu = fb_ctrs->cpu; int ret; + unsigned long timeout; ret = cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t0); if (ret) return ret; - udelay(2); /* 2usec delay between sampling */ + if (likely(!irqs_disabled())) { + /* + * Set 1ms as sampling interval, but never schedule + * to the idle task to prevent the AMU counters from + * stopping working. + */ + timeout = jiffies + msecs_to_jiffies(1); + while (!time_after(jiffies, timeout)) + cond_resched(); + + } else { + pr_warn_once("CPU%d: Get rate in atomic context", cpu); + udelay(2); /* 2usec delay between sampling */ + } return cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t1); }
We have found significant differences in the latency of cpc_read() between regular scenarios and scenarios with high memory access pressure. Ignoring this error can result in getting rate interface occasionally returning absurd values. Here provides a high memory access sample test by stress-ng. My local testing platform includes 160 CPUs, the CPC registers is accessed by mmio method, and the cpuidle feature is disabled (the AMU always works online): ~~~ ./stress-ng --memrate 160 --timeout 180 ~~~ The following data is sourced from ftrace statistics towards cppc_get_perf_ctrs(): Regular scenarios || High memory access pressure scenarios 104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() { 104) 0.800 us | cpc_read.isra.0(); || 133) 4.580 us | cpc_read.isra.0(); 104) 0.640 us | cpc_read.isra.0(); || 133) 7.780 us | cpc_read.isra.0(); 104) 0.450 us | cpc_read.isra.0(); || 133) 2.550 us | cpc_read.isra.0(); 104) 0.430 us | cpc_read.isra.0(); || 133) 0.570 us | cpc_read.isra.0(); 104) 4.610 us | } || 133) ! 157.610 us | } 104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() { 104) 0.720 us | cpc_read.isra.0(); || 133) 0.760 us | cpc_read.isra.0(); 104) 0.720 us | cpc_read.isra.0(); || 133) 4.480 us | cpc_read.isra.0(); 104) 0.510 us | cpc_read.isra.0(); || 133) 0.520 us | cpc_read.isra.0(); 104) 0.500 us | cpc_read.isra.0(); || 133) + 10.100 us | cpc_read.isra.0(); 104) 3.460 us | } || 133) ! 120.850 us | } 108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() { 108) 0.820 us | cpc_read.isra.0(); || 87) ! 255.200 us | cpc_read.isra.0(); 108) 0.850 us | cpc_read.isra.0(); || 87) 2.910 us | cpc_read.isra.0(); 108) 0.590 us | cpc_read.isra.0(); || 87) 5.160 us | cpc_read.isra.0(); 108) 0.610 us | cpc_read.isra.0(); || 87) 4.340 us | cpc_read.isra.0(); 108) 5.080 us | } || 87) ! 315.790 us | } 108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() { 108) 0.630 us | cpc_read.isra.0(); || 87) 0.800 us | cpc_read.isra.0(); 108) 0.630 us | cpc_read.isra.0(); || 87) 6.310 us | cpc_read.isra.0(); 108) 0.420 us | cpc_read.isra.0(); || 87) 1.190 us | cpc_read.isra.0(); 108) 0.430 us | cpc_read.isra.0(); || 87) + 11.620 us | cpc_read.isra.0(); 108) 3.780 us | } || 87) ! 207.010 us | } My local testing platform works under 3000000hz, but the cpuinfo_cur_freq interface returns values that are not even close to the actual frequency: [root@localhost ~]# cd /sys/devices/system/cpu [root@localhost cpu]# for i in {0..159}; do cat cpu$i/cpufreq/cpuinfo_cur_freq; done 5127812 2952127 3069001 3496183 922989768 2419194 3427042 2331869 3594611 8238499 ... The reason is when under heavy memory access pressure, the execution of cpc_read() delay has increased from sub-microsecond to several hundred microseconds. Moving the cpc_read function into a critical section by irq disable/enable has minimal impact on the result. cppc_get_perf_ctrs()[0] cppc_get_perf_ctrs()[1] / \ / \ cpc_read cpc_read cpc_read cpc_read ref[0] delivered[0] ref[1] delivered[1] | | | | v v v v -----------------------------------------------------------------------> time <--delta[0]--> <------sample_period------> <-----delta[1]-----> Since that, freq = ref_freq * (delivered[1] - delivered[0]) / (ref[1] - ref[0]) and delivered[1] - delivered[0] = freq * (delta[1] + sample_period), ref[1] - ref[0] = ref_freq * (delta[0] + sample_period) To eliminate the impact of system memory access latency, setting a sampling period of 2us is far from sufficient. Consequently, we suggest cppc_cpufreq_get_rate() only can be called in the process context, and adopt a longer sampling period to neutralize the impact of random latency. Here we call the cond_resched() function instead of sleep-like functions to ensure that `taskset -c $i cat cpu$i/cpufreq/cpuinfo_cur_freq` could work when cpuidle feature is enabled. Reported-by: Yang Shi <yang@os.amperecomputing.com> Link: https://lore.kernel.org/all/20230328193846.8757-1-yang@os.amperecomputing.com/ Signed-off-by: Zeng Heng <zengheng4@huawei.com> --- drivers/cpufreq/cppc_cpufreq.c | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-)