@@ -13,4 +13,25 @@ config CRYPTO_AES_RISCV64
Architecture: riscv64 using:
- Zvkned vector crypto extension
+config CRYPTO_AES_BLOCK_RISCV64
+ tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS"
+ depends on 64BIT && RISCV_ISA_V
+ select CRYPTO_AES_RISCV64
+ select CRYPTO_SIMD
+ select CRYPTO_SKCIPHER
+ help
+ Length-preserving ciphers: AES cipher algorithms (FIPS-197)
+ with block cipher modes:
+ - ECB (Electronic Codebook) mode (NIST SP 800-38A)
+ - CBC (Cipher Block Chaining) mode (NIST SP 800-38A)
+ - CTR (Counter) mode (NIST SP 800-38A)
+ - XTS (XOR Encrypt XOR Tweakable Block Cipher with Ciphertext
+ Stealing) mode (NIST SP 800-38E and IEEE 1619)
+
+ Architecture: riscv64 using:
+ - Zvkned vector crypto extension
+ - Zvbb vector extension (XTS)
+ - Zvkb vector crypto extension (CTR/XTS)
+ - Zvkg vector crypto extension (XTS)
+
endmenu
@@ -6,10 +6,21 @@
obj-$(CONFIG_CRYPTO_AES_RISCV64) += aes-riscv64.o
aes-riscv64-y := aes-riscv64-glue.o aes-riscv64-zvkned.o
+obj-$(CONFIG_CRYPTO_AES_BLOCK_RISCV64) += aes-block-riscv64.o
+aes-block-riscv64-y := aes-riscv64-block-mode-glue.o aes-riscv64-zvkned-zvbb-zvkg.o aes-riscv64-zvkned-zvkb.o
+
quiet_cmd_perlasm = PERLASM $@
cmd_perlasm = $(PERL) $(<) void $(@)
$(obj)/aes-riscv64-zvkned.S: $(src)/aes-riscv64-zvkned.pl
$(call cmd,perlasm)
+$(obj)/aes-riscv64-zvkned-zvbb-zvkg.S: $(src)/aes-riscv64-zvkned-zvbb-zvkg.pl
+ $(call cmd,perlasm)
+
+$(obj)/aes-riscv64-zvkned-zvkb.S: $(src)/aes-riscv64-zvkned-zvkb.pl
+ $(call cmd,perlasm)
+
clean-files += aes-riscv64-zvkned.S
+clean-files += aes-riscv64-zvkned-zvbb-zvkg.S
+clean-files += aes-riscv64-zvkned-zvkb.S
new file mode 100644
@@ -0,0 +1,514 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Port of the OpenSSL AES block mode implementations for RISC-V
+ *
+ * Copyright (C) 2023 SiFive, Inc.
+ * Author: Jerry Shih <jerry.shih@sifive.com>
+ */
+
+#include <asm/simd.h>
+#include <asm/vector.h>
+#include <crypto/aes.h>
+#include <crypto/ctr.h>
+#include <crypto/xts.h>
+#include <crypto/internal/cipher.h>
+#include <crypto/internal/simd.h>
+#include <crypto/internal/skcipher.h>
+#include <crypto/scatterwalk.h>
+#include <linux/crypto.h>
+#include <linux/linkage.h>
+#include <linux/math.h>
+#include <linux/minmax.h>
+#include <linux/module.h>
+#include <linux/types.h>
+
+#include "aes-riscv64-glue.h"
+
+struct riscv64_aes_xts_ctx {
+ struct crypto_aes_ctx ctx1;
+ struct crypto_aes_ctx ctx2;
+};
+
+/* aes cbc block mode using zvkned vector crypto extension */
+asmlinkage void rv64i_zvkned_cbc_encrypt(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key,
+ u8 *ivec);
+asmlinkage void rv64i_zvkned_cbc_decrypt(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key,
+ u8 *ivec);
+/* aes ecb block mode using zvkned vector crypto extension */
+asmlinkage void rv64i_zvkned_ecb_encrypt(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key);
+asmlinkage void rv64i_zvkned_ecb_decrypt(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key);
+
+/* aes ctr block mode using zvkb and zvkned vector crypto extension */
+/* This func operates on 32-bit counter. Caller has to handle the overflow. */
+asmlinkage void
+rv64i_zvkb_zvkned_ctr32_encrypt_blocks(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key,
+ u8 *ivec);
+
+/* aes xts block mode using zvbb, zvkg and zvkned vector crypto extension */
+asmlinkage void
+rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key, u8 *iv,
+ int update_iv);
+asmlinkage void
+rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key, u8 *iv,
+ int update_iv);
+
+typedef void (*aes_xts_func)(const u8 *in, u8 *out, size_t length,
+ const struct crypto_aes_ctx *key, u8 *iv,
+ int update_iv);
+
+/* ecb */
+static int aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
+ unsigned int key_len)
+{
+ struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+
+ return riscv64_aes_setkey(ctx, in_key, key_len);
+}
+
+static int ecb_encrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct skcipher_walk walk;
+ unsigned int nbytes;
+ int err;
+
+ /* If we have error here, the `nbytes` will be zero. */
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes)) {
+ kernel_vector_begin();
+ rv64i_zvkned_ecb_encrypt(walk.src.virt.addr, walk.dst.virt.addr,
+ nbytes & (~(AES_BLOCK_SIZE - 1)), ctx);
+ kernel_vector_end();
+ err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
+ }
+
+ return err;
+}
+
+static int ecb_decrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct skcipher_walk walk;
+ unsigned int nbytes;
+ int err;
+
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes)) {
+ kernel_vector_begin();
+ rv64i_zvkned_ecb_decrypt(walk.src.virt.addr, walk.dst.virt.addr,
+ nbytes & (~(AES_BLOCK_SIZE - 1)), ctx);
+ kernel_vector_end();
+ err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
+ }
+
+ return err;
+}
+
+/* cbc */
+static int cbc_encrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct skcipher_walk walk;
+ unsigned int nbytes;
+ int err;
+
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes)) {
+ kernel_vector_begin();
+ rv64i_zvkned_cbc_encrypt(walk.src.virt.addr, walk.dst.virt.addr,
+ nbytes & (~(AES_BLOCK_SIZE - 1)), ctx,
+ walk.iv);
+ kernel_vector_end();
+ err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
+ }
+
+ return err;
+}
+
+static int cbc_decrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct skcipher_walk walk;
+ unsigned int nbytes;
+ int err;
+
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes)) {
+ kernel_vector_begin();
+ rv64i_zvkned_cbc_decrypt(walk.src.virt.addr, walk.dst.virt.addr,
+ nbytes & (~(AES_BLOCK_SIZE - 1)), ctx,
+ walk.iv);
+ kernel_vector_end();
+ err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
+ }
+
+ return err;
+}
+
+/* ctr */
+static int ctr_encrypt(struct skcipher_request *req)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct skcipher_walk walk;
+ unsigned int ctr32;
+ unsigned int nbytes;
+ unsigned int blocks;
+ unsigned int current_blocks;
+ unsigned int current_length;
+ int err;
+
+ /* the ctr iv uses big endian */
+ ctr32 = get_unaligned_be32(req->iv + 12);
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes)) {
+ if (nbytes != walk.total) {
+ nbytes &= (~(AES_BLOCK_SIZE - 1));
+ blocks = nbytes / AES_BLOCK_SIZE;
+ } else {
+ /* This is the last walk. We should handle the tail data. */
+ blocks = DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
+ }
+ ctr32 += blocks;
+
+ kernel_vector_begin();
+ /*
+ * The `if` block below detects the overflow, which is then handled by
+ * limiting the amount of blocks to the exact overflow point.
+ */
+ if (ctr32 >= blocks) {
+ rv64i_zvkb_zvkned_ctr32_encrypt_blocks(
+ walk.src.virt.addr, walk.dst.virt.addr, nbytes,
+ ctx, req->iv);
+ } else {
+ /* use 2 ctr32 function calls for overflow case */
+ current_blocks = blocks - ctr32;
+ current_length =
+ min(nbytes, current_blocks * AES_BLOCK_SIZE);
+ rv64i_zvkb_zvkned_ctr32_encrypt_blocks(
+ walk.src.virt.addr, walk.dst.virt.addr,
+ current_length, ctx, req->iv);
+ crypto_inc(req->iv, 12);
+
+ if (ctr32) {
+ rv64i_zvkb_zvkned_ctr32_encrypt_blocks(
+ walk.src.virt.addr +
+ current_blocks * AES_BLOCK_SIZE,
+ walk.dst.virt.addr +
+ current_blocks * AES_BLOCK_SIZE,
+ nbytes - current_length, ctx, req->iv);
+ }
+ }
+ kernel_vector_end();
+
+ err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
+ }
+
+ return err;
+}
+
+/* xts */
+static int xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
+ unsigned int key_len)
+{
+ struct riscv64_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
+ unsigned int xts_single_key_len = key_len / 2;
+ int ret;
+
+ ret = xts_verify_key(tfm, in_key, key_len);
+ if (ret)
+ return ret;
+ ret = riscv64_aes_setkey(&ctx->ctx1, in_key, xts_single_key_len);
+ if (ret)
+ return ret;
+ return riscv64_aes_setkey(&ctx->ctx2, in_key + xts_single_key_len,
+ xts_single_key_len);
+}
+
+static int xts_crypt(struct skcipher_request *req, aes_xts_func func)
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct riscv64_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct skcipher_request sub_req;
+ struct scatterlist sg_src[2], sg_dst[2];
+ struct scatterlist *src, *dst;
+ struct skcipher_walk walk;
+ unsigned int walk_size = crypto_skcipher_walksize(tfm);
+ unsigned int tail_bytes;
+ unsigned int head_bytes;
+ unsigned int nbytes;
+ unsigned int update_iv = 1;
+ int err;
+
+ /* xts input size should be bigger than AES_BLOCK_SIZE */
+ if (req->cryptlen < AES_BLOCK_SIZE)
+ return -EINVAL;
+
+ /*
+ * We split xts-aes cryption into `head` and `tail` parts.
+ * The head block contains the input from the beginning which doesn't need
+ * `ciphertext stealing` method.
+ * The tail block contains at least two AES blocks including ciphertext
+ * stealing data from the end.
+ */
+ if (req->cryptlen <= walk_size) {
+ /*
+ * All data is in one `walk`. We could handle it within one AES-XTS call in
+ * the end.
+ */
+ tail_bytes = req->cryptlen;
+ head_bytes = 0;
+ } else {
+ if (req->cryptlen & (AES_BLOCK_SIZE - 1)) {
+ /*
+ * with ciphertext stealing
+ *
+ * Find the largest tail size which is small than `walk` size while the
+ * head part still fits AES block boundary.
+ */
+ tail_bytes = req->cryptlen & (AES_BLOCK_SIZE - 1);
+ tail_bytes = walk_size + tail_bytes - AES_BLOCK_SIZE;
+ head_bytes = req->cryptlen - tail_bytes;
+ } else {
+ /* no ciphertext stealing */
+ tail_bytes = 0;
+ head_bytes = req->cryptlen;
+ }
+ }
+
+ riscv64_aes_encrypt_zvkned(&ctx->ctx2, req->iv, req->iv);
+
+ if (head_bytes && tail_bytes) {
+ /* If we have to parts, setup new request for head part only. */
+ skcipher_request_set_tfm(&sub_req, tfm);
+ skcipher_request_set_callback(
+ &sub_req, skcipher_request_flags(req), NULL, NULL);
+ skcipher_request_set_crypt(&sub_req, req->src, req->dst,
+ head_bytes, req->iv);
+ req = &sub_req;
+ }
+
+ if (head_bytes) {
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes)) {
+ if (nbytes == walk.total)
+ update_iv = (tail_bytes > 0);
+
+ nbytes &= (~(AES_BLOCK_SIZE - 1));
+ kernel_vector_begin();
+ func(walk.src.virt.addr, walk.dst.virt.addr, nbytes,
+ &ctx->ctx1, req->iv, update_iv);
+ kernel_vector_end();
+
+ err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
+ }
+ if (err || !tail_bytes)
+ return err;
+
+ /*
+ * Setup new request for tail part.
+ * We use `scatterwalk_next()` to find the next scatterlist from last
+ * walk instead of iterating from the beginning.
+ */
+ dst = src = scatterwalk_next(sg_src, &walk.in);
+ if (req->dst != req->src)
+ dst = scatterwalk_next(sg_dst, &walk.out);
+ skcipher_request_set_crypt(req, src, dst, tail_bytes, req->iv);
+ }
+
+ /* tail */
+ err = skcipher_walk_virt(&walk, req, false);
+ if (err)
+ return err;
+ if (walk.nbytes != tail_bytes)
+ return -EINVAL;
+ kernel_vector_begin();
+ func(walk.src.virt.addr, walk.dst.virt.addr, walk.nbytes, &ctx->ctx1,
+ req->iv, 0);
+ kernel_vector_end();
+
+ return skcipher_walk_done(&walk, 0);
+}
+
+static int xts_encrypt(struct skcipher_request *req)
+{
+ return xts_crypt(req, rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt);
+}
+
+static int xts_decrypt(struct skcipher_request *req)
+{
+ return xts_crypt(req, rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt);
+}
+
+static struct skcipher_alg riscv64_aes_algs_zvkned[] = {
+ {
+ .setkey = aes_setkey,
+ .encrypt = ecb_encrypt,
+ .decrypt = ecb_decrypt,
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .walksize = AES_BLOCK_SIZE * 8,
+ .base = {
+ .cra_flags = CRYPTO_ALG_INTERNAL,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct crypto_aes_ctx),
+ .cra_priority = 300,
+ .cra_name = "__ecb(aes)",
+ .cra_driver_name = "__ecb-aes-riscv64-zvkned",
+ .cra_module = THIS_MODULE,
+ },
+ }, {
+ .setkey = aes_setkey,
+ .encrypt = cbc_encrypt,
+ .decrypt = cbc_decrypt,
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .walksize = AES_BLOCK_SIZE * 8,
+ .base = {
+ .cra_flags = CRYPTO_ALG_INTERNAL,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct crypto_aes_ctx),
+ .cra_priority = 300,
+ .cra_name = "__cbc(aes)",
+ .cra_driver_name = "__cbc-aes-riscv64-zvkned",
+ .cra_module = THIS_MODULE,
+ },
+ }
+};
+
+static struct simd_skcipher_alg
+ *riscv64_aes_simd_algs_zvkned[ARRAY_SIZE(riscv64_aes_algs_zvkned)];
+
+static struct skcipher_alg riscv64_aes_alg_zvkned_zvkb[] = {
+ {
+ .setkey = aes_setkey,
+ .encrypt = ctr_encrypt,
+ .decrypt = ctr_encrypt,
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .chunksize = AES_BLOCK_SIZE,
+ .walksize = AES_BLOCK_SIZE * 8,
+ .base = {
+ .cra_flags = CRYPTO_ALG_INTERNAL,
+ .cra_blocksize = 1,
+ .cra_ctxsize = sizeof(struct crypto_aes_ctx),
+ .cra_priority = 300,
+ .cra_name = "__ctr(aes)",
+ .cra_driver_name = "__ctr-aes-riscv64-zvkned-zvkb",
+ .cra_module = THIS_MODULE,
+ },
+ }
+};
+
+static struct simd_skcipher_alg *riscv64_aes_simd_alg_zvkned_zvkb[ARRAY_SIZE(
+ riscv64_aes_alg_zvkned_zvkb)];
+
+static struct skcipher_alg riscv64_aes_alg_zvkned_zvbb_zvkg[] = {
+ {
+ .setkey = xts_setkey,
+ .encrypt = xts_encrypt,
+ .decrypt = xts_decrypt,
+ .min_keysize = AES_MIN_KEY_SIZE * 2,
+ .max_keysize = AES_MAX_KEY_SIZE * 2,
+ .ivsize = AES_BLOCK_SIZE,
+ .chunksize = AES_BLOCK_SIZE,
+ .walksize = AES_BLOCK_SIZE * 8,
+ .base = {
+ .cra_flags = CRYPTO_ALG_INTERNAL,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct riscv64_aes_xts_ctx),
+ .cra_priority = 300,
+ .cra_name = "__xts(aes)",
+ .cra_driver_name = "__xts-aes-riscv64-zvkned-zvbb-zvkg",
+ .cra_module = THIS_MODULE,
+ },
+ }
+};
+
+static struct simd_skcipher_alg
+ *riscv64_aes_simd_alg_zvkned_zvbb_zvkg[ARRAY_SIZE(
+ riscv64_aes_alg_zvkned_zvbb_zvkg)];
+
+static int __init riscv64_aes_block_mod_init(void)
+{
+ int ret = -ENODEV;
+
+ if (riscv_isa_extension_available(NULL, ZVKNED) &&
+ riscv_vector_vlen() >= 128 && riscv_vector_vlen() <= 2048) {
+ ret = simd_register_skciphers_compat(
+ riscv64_aes_algs_zvkned,
+ ARRAY_SIZE(riscv64_aes_algs_zvkned),
+ riscv64_aes_simd_algs_zvkned);
+ if (ret)
+ return ret;
+
+ if (riscv_isa_extension_available(NULL, ZVBB)) {
+ ret = simd_register_skciphers_compat(
+ riscv64_aes_alg_zvkned_zvkb,
+ ARRAY_SIZE(riscv64_aes_alg_zvkned_zvkb),
+ riscv64_aes_simd_alg_zvkned_zvkb);
+ if (ret)
+ goto unregister_zvkned;
+
+ if (riscv_isa_extension_available(NULL, ZVKG)) {
+ ret = simd_register_skciphers_compat(
+ riscv64_aes_alg_zvkned_zvbb_zvkg,
+ ARRAY_SIZE(
+ riscv64_aes_alg_zvkned_zvbb_zvkg),
+ riscv64_aes_simd_alg_zvkned_zvbb_zvkg);
+ if (ret)
+ goto unregister_zvkned_zvkb;
+ }
+ }
+ }
+
+ return ret;
+
+unregister_zvkned_zvkb:
+ simd_unregister_skciphers(riscv64_aes_alg_zvkned_zvkb,
+ ARRAY_SIZE(riscv64_aes_alg_zvkned_zvkb),
+ riscv64_aes_simd_alg_zvkned_zvkb);
+unregister_zvkned:
+ simd_unregister_skciphers(riscv64_aes_algs_zvkned,
+ ARRAY_SIZE(riscv64_aes_algs_zvkned),
+ riscv64_aes_simd_algs_zvkned);
+
+ return ret;
+}
+
+static void __exit riscv64_aes_block_mod_fini(void)
+{
+ simd_unregister_skciphers(riscv64_aes_alg_zvkned_zvbb_zvkg,
+ ARRAY_SIZE(riscv64_aes_alg_zvkned_zvbb_zvkg),
+ riscv64_aes_simd_alg_zvkned_zvbb_zvkg);
+ simd_unregister_skciphers(riscv64_aes_alg_zvkned_zvkb,
+ ARRAY_SIZE(riscv64_aes_alg_zvkned_zvkb),
+ riscv64_aes_simd_alg_zvkned_zvkb);
+ simd_unregister_skciphers(riscv64_aes_algs_zvkned,
+ ARRAY_SIZE(riscv64_aes_algs_zvkned),
+ riscv64_aes_simd_algs_zvkned);
+}
+
+module_init(riscv64_aes_block_mod_init);
+module_exit(riscv64_aes_block_mod_fini);
+
+MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS (RISC-V accelerated)");
+MODULE_AUTHOR("Jerry Shih <jerry.shih@sifive.com>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS_CRYPTO("cbc(aes)");
+MODULE_ALIAS_CRYPTO("ctr(aes)");
+MODULE_ALIAS_CRYPTO("ecb(aes)");
+MODULE_ALIAS_CRYPTO("xts(aes)");
new file mode 100644
@@ -0,0 +1,949 @@
+#! /usr/bin/env perl
+# SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause
+#
+# This file is dual-licensed, meaning that you can use it under your
+# choice of either of the following two licenses:
+#
+# Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You can obtain
+# a copy in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+# or
+#
+# Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+# - RV64I
+# - RISC-V Vector ('V') with VLEN >= 128 && VLEN <= 2048
+# - RISC-V Vector Bit-manipulation extension ('Zvbb')
+# - RISC-V Vector GCM/GMAC extension ('Zvkg')
+# - RISC-V Vector AES block cipher extension ('Zvkned')
+
+use strict;
+use warnings;
+
+use FindBin qw($Bin);
+use lib "$Bin";
+use lib "$Bin/../../perlasm";
+use riscv;
+
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+my $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+my $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$output and open STDOUT,">$output";
+
+my $code=<<___;
+.text
+___
+
+{
+################################################################################
+# void rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt(const unsigned char *in,
+# unsigned char *out, size_t length,
+# const AES_KEY *key,
+# unsigned char iv[16],
+# int update_iv)
+my ($INPUT, $OUTPUT, $LENGTH, $KEY, $IV, $UPDATE_IV) = ("a0", "a1", "a2", "a3", "a4", "a5");
+my ($TAIL_LENGTH) = ("a6");
+my ($VL) = ("a7");
+my ($T0, $T1, $T2, $T3) = ("t0", "t1", "t2", "t3");
+my ($STORE_LEN32) = ("t4");
+my ($LEN32) = ("t5");
+my ($V0, $V1, $V2, $V3, $V4, $V5, $V6, $V7,
+ $V8, $V9, $V10, $V11, $V12, $V13, $V14, $V15,
+ $V16, $V17, $V18, $V19, $V20, $V21, $V22, $V23,
+ $V24, $V25, $V26, $V27, $V28, $V29, $V30, $V31,
+) = map("v$_",(0..31));
+
+# load iv to v28
+sub load_xts_iv0 {
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V28, $IV]}
+___
+
+ return $code;
+}
+
+# prepare input data(v24), iv(v28), bit-reversed-iv(v16), bit-reversed-iv-multiplier(v20)
+sub init_first_round {
+ my $code=<<___;
+ # load input
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vle32_v $V24, $INPUT]}
+
+ li $T0, 5
+ # We could simplify the initialization steps if we have `block<=1`.
+ blt $LEN32, $T0, 1f
+
+ # Note: We use `vgmul` for GF(2^128) multiplication. The `vgmul` uses
+ # different order of coefficients. We should use`vbrev8` to reverse the
+ # data when we use `vgmul`.
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vbrev8_v $V0, $V28]}
+ @{[vsetvli "zero", $LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vmv_v_i $V16, 0]}
+ # v16: [r-IV0, r-IV0, ...]
+ @{[vaesz_vs $V16, $V0]}
+
+ # Prepare GF(2^128) multiplier [1, x, x^2, x^3, ...] in v8.
+ # We use `vwsll` to get power of 2 multipliers. Current rvv spec only
+ # supports `SEW<=64`. So, the maximum `VLEN` for this approach is `2048`.
+ # SEW64_BITS * AES_BLOCK_SIZE / LMUL
+ # = 64 * 128 / 4 = 2048
+ #
+ # TODO: truncate the vl to `2048` for `vlen>2048` case.
+ slli $T0, $LEN32, 2
+ @{[vsetvli "zero", $T0, "e32", "m1", "ta", "ma"]}
+ # v2: [`1`, `1`, `1`, `1`, ...]
+ @{[vmv_v_i $V2, 1]}
+ # v3: [`0`, `1`, `2`, `3`, ...]
+ @{[vid_v $V3]}
+ @{[vsetvli "zero", $T0, "e64", "m2", "ta", "ma"]}
+ # v4: [`1`, 0, `1`, 0, `1`, 0, `1`, 0, ...]
+ @{[vzext_vf2 $V4, $V2]}
+ # v6: [`0`, 0, `1`, 0, `2`, 0, `3`, 0, ...]
+ @{[vzext_vf2 $V6, $V3]}
+ slli $T0, $LEN32, 1
+ @{[vsetvli "zero", $T0, "e32", "m2", "ta", "ma"]}
+ # v8: [1<<0=1, 0, 0, 0, 1<<1=x, 0, 0, 0, 1<<2=x^2, 0, 0, 0, ...]
+ @{[vwsll_vv $V8, $V4, $V6]}
+
+ # Compute [r-IV0*1, r-IV0*x, r-IV0*x^2, r-IV0*x^3, ...] in v16
+ @{[vsetvli "zero", $LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vbrev8_v $V8, $V8]}
+ @{[vgmul_vv $V16, $V8]}
+
+ # Compute [IV0*1, IV0*x, IV0*x^2, IV0*x^3, ...] in v28.
+ # Reverse the bits order back.
+ @{[vbrev8_v $V28, $V16]}
+
+ # Prepare the x^n multiplier in v20. The `n` is the aes-xts block number
+ # in a LMUL=4 register group.
+ # n = ((VLEN*LMUL)/(32*4)) = ((VLEN*4)/(32*4))
+ # = (VLEN/32)
+ # We could use vsetvli with `e32, m1` to compute the `n` number.
+ @{[vsetvli $T0, "zero", "e32", "m1", "ta", "ma"]}
+ li $T1, 1
+ sll $T0, $T1, $T0
+ @{[vsetivli "zero", 2, "e64", "m1", "ta", "ma"]}
+ @{[vmv_v_i $V0, 0]}
+ @{[vsetivli "zero", 1, "e64", "m1", "tu", "ma"]}
+ @{[vmv_v_x $V0, $T0]}
+ @{[vsetivli "zero", 2, "e64", "m1", "ta", "ma"]}
+ @{[vbrev8_v $V0, $V0]}
+ @{[vsetvli "zero", $LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vmv_v_i $V20, 0]}
+ @{[vaesz_vs $V20, $V0]}
+
+ j 2f
+1:
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vbrev8_v $V16, $V28]}
+2:
+___
+
+ return $code;
+}
+
+# prepare xts enc last block's input(v24) and iv(v28)
+sub handle_xts_enc_last_block {
+ my $code=<<___;
+ bnez $TAIL_LENGTH, 2f
+
+ beqz $UPDATE_IV, 1f
+ ## Store next IV
+ addi $VL, $VL, -4
+ @{[vsetivli "zero", 4, "e32", "m4", "ta", "ma"]}
+ # multiplier
+ @{[vslidedown_vx $V16, $V16, $VL]}
+
+ # setup `x` multiplier with byte-reversed order
+ # 0b00000010 => 0b01000000 (0x40)
+ li $T0, 0x40
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vmv_v_i $V28, 0]}
+ @{[vsetivli "zero", 1, "e8", "m1", "tu", "ma"]}
+ @{[vmv_v_x $V28, $T0]}
+
+ # IV * `x`
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vgmul_vv $V16, $V28]}
+ # Reverse the IV's bits order back to big-endian
+ @{[vbrev8_v $V28, $V16]}
+
+ @{[vse32_v $V28, $IV]}
+1:
+
+ ret
+2:
+ # slidedown second to last block
+ addi $VL, $VL, -4
+ @{[vsetivli "zero", 4, "e32", "m4", "ta", "ma"]}
+ # ciphertext
+ @{[vslidedown_vx $V24, $V24, $VL]}
+ # multiplier
+ @{[vslidedown_vx $V16, $V16, $VL]}
+
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vmv_v_v $V25, $V24]}
+
+ # load last block into v24
+ # note: We should load the last block before store the second to last block
+ # for in-place operation.
+ @{[vsetvli "zero", $TAIL_LENGTH, "e8", "m1", "tu", "ma"]}
+ @{[vle8_v $V24, $INPUT]}
+
+ # setup `x` multiplier with byte-reversed order
+ # 0b00000010 => 0b01000000 (0x40)
+ li $T0, 0x40
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vmv_v_i $V28, 0]}
+ @{[vsetivli "zero", 1, "e8", "m1", "tu", "ma"]}
+ @{[vmv_v_x $V28, $T0]}
+
+ # compute IV for last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vgmul_vv $V16, $V28]}
+ @{[vbrev8_v $V28, $V16]}
+
+ # store second to last block
+ @{[vsetvli "zero", $TAIL_LENGTH, "e8", "m1", "ta", "ma"]}
+ @{[vse8_v $V25, $OUTPUT]}
+___
+
+ return $code;
+}
+
+# prepare xts dec second to last block's input(v24) and iv(v29) and
+# last block's and iv(v28)
+sub handle_xts_dec_last_block {
+ my $code=<<___;
+ bnez $TAIL_LENGTH, 2f
+
+ beqz $UPDATE_IV, 1f
+ ## Store next IV
+ # setup `x` multiplier with byte-reversed order
+ # 0b00000010 => 0b01000000 (0x40)
+ li $T0, 0x40
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vmv_v_i $V28, 0]}
+ @{[vsetivli "zero", 1, "e8", "m1", "tu", "ma"]}
+ @{[vmv_v_x $V28, $T0]}
+
+ beqz $LENGTH, 3f
+ addi $VL, $VL, -4
+ @{[vsetivli "zero", 4, "e32", "m4", "ta", "ma"]}
+ # multiplier
+ @{[vslidedown_vx $V16, $V16, $VL]}
+
+3:
+ # IV * `x`
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vgmul_vv $V16, $V28]}
+ # Reverse the IV's bits order back to big-endian
+ @{[vbrev8_v $V28, $V16]}
+
+ @{[vse32_v $V28, $IV]}
+1:
+
+ ret
+2:
+ # load second to last block's ciphertext
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V24, $INPUT]}
+ addi $INPUT, $INPUT, 16
+
+ # setup `x` multiplier with byte-reversed order
+ # 0b00000010 => 0b01000000 (0x40)
+ li $T0, 0x40
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vmv_v_i $V20, 0]}
+ @{[vsetivli "zero", 1, "e8", "m1", "tu", "ma"]}
+ @{[vmv_v_x $V20, $T0]}
+
+ beqz $LENGTH, 1f
+ # slidedown third to last block
+ addi $VL, $VL, -4
+ @{[vsetivli "zero", 4, "e32", "m4", "ta", "ma"]}
+ # multiplier
+ @{[vslidedown_vx $V16, $V16, $VL]}
+
+ # compute IV for last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vgmul_vv $V16, $V20]}
+ @{[vbrev8_v $V28, $V16]}
+
+ # compute IV for second to last block
+ @{[vgmul_vv $V16, $V20]}
+ @{[vbrev8_v $V29, $V16]}
+ j 2f
+1:
+ # compute IV for second to last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vgmul_vv $V16, $V20]}
+ @{[vbrev8_v $V29, $V16]}
+2:
+___
+
+ return $code;
+}
+
+# Load all 11 round keys to v1-v11 registers.
+sub aes_128_load_key {
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V2, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V3, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V4, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V5, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V6, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V7, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V8, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V9, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V10, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V11, $KEY]}
+___
+
+ return $code;
+}
+
+# Load all 13 round keys to v1-v13 registers.
+sub aes_192_load_key {
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V2, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V3, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V4, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V5, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V6, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V7, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V8, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V9, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V10, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V11, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V12, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V13, $KEY]}
+___
+
+ return $code;
+}
+
+# Load all 15 round keys to v1-v15 registers.
+sub aes_256_load_key {
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V2, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V3, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V4, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V5, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V6, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V7, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V8, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V9, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V10, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V11, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V12, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V13, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V14, $KEY]}
+ addi $KEY, $KEY, 16
+ @{[vle32_v $V15, $KEY]}
+___
+
+ return $code;
+}
+
+# aes-128 enc with round keys v1-v11
+sub aes_128_enc {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V1]}
+ @{[vaesem_vs $V24, $V2]}
+ @{[vaesem_vs $V24, $V3]}
+ @{[vaesem_vs $V24, $V4]}
+ @{[vaesem_vs $V24, $V5]}
+ @{[vaesem_vs $V24, $V6]}
+ @{[vaesem_vs $V24, $V7]}
+ @{[vaesem_vs $V24, $V8]}
+ @{[vaesem_vs $V24, $V9]}
+ @{[vaesem_vs $V24, $V10]}
+ @{[vaesef_vs $V24, $V11]}
+___
+
+ return $code;
+}
+
+# aes-128 dec with round keys v1-v11
+sub aes_128_dec {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V11]}
+ @{[vaesdm_vs $V24, $V10]}
+ @{[vaesdm_vs $V24, $V9]}
+ @{[vaesdm_vs $V24, $V8]}
+ @{[vaesdm_vs $V24, $V7]}
+ @{[vaesdm_vs $V24, $V6]}
+ @{[vaesdm_vs $V24, $V5]}
+ @{[vaesdm_vs $V24, $V4]}
+ @{[vaesdm_vs $V24, $V3]}
+ @{[vaesdm_vs $V24, $V2]}
+ @{[vaesdf_vs $V24, $V1]}
+___
+
+ return $code;
+}
+
+# aes-192 enc with round keys v1-v13
+sub aes_192_enc {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V1]}
+ @{[vaesem_vs $V24, $V2]}
+ @{[vaesem_vs $V24, $V3]}
+ @{[vaesem_vs $V24, $V4]}
+ @{[vaesem_vs $V24, $V5]}
+ @{[vaesem_vs $V24, $V6]}
+ @{[vaesem_vs $V24, $V7]}
+ @{[vaesem_vs $V24, $V8]}
+ @{[vaesem_vs $V24, $V9]}
+ @{[vaesem_vs $V24, $V10]}
+ @{[vaesem_vs $V24, $V11]}
+ @{[vaesem_vs $V24, $V12]}
+ @{[vaesef_vs $V24, $V13]}
+___
+
+ return $code;
+}
+
+# aes-192 dec with round keys v1-v13
+sub aes_192_dec {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V13]}
+ @{[vaesdm_vs $V24, $V12]}
+ @{[vaesdm_vs $V24, $V11]}
+ @{[vaesdm_vs $V24, $V10]}
+ @{[vaesdm_vs $V24, $V9]}
+ @{[vaesdm_vs $V24, $V8]}
+ @{[vaesdm_vs $V24, $V7]}
+ @{[vaesdm_vs $V24, $V6]}
+ @{[vaesdm_vs $V24, $V5]}
+ @{[vaesdm_vs $V24, $V4]}
+ @{[vaesdm_vs $V24, $V3]}
+ @{[vaesdm_vs $V24, $V2]}
+ @{[vaesdf_vs $V24, $V1]}
+___
+
+ return $code;
+}
+
+# aes-256 enc with round keys v1-v15
+sub aes_256_enc {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V1]}
+ @{[vaesem_vs $V24, $V2]}
+ @{[vaesem_vs $V24, $V3]}
+ @{[vaesem_vs $V24, $V4]}
+ @{[vaesem_vs $V24, $V5]}
+ @{[vaesem_vs $V24, $V6]}
+ @{[vaesem_vs $V24, $V7]}
+ @{[vaesem_vs $V24, $V8]}
+ @{[vaesem_vs $V24, $V9]}
+ @{[vaesem_vs $V24, $V10]}
+ @{[vaesem_vs $V24, $V11]}
+ @{[vaesem_vs $V24, $V12]}
+ @{[vaesem_vs $V24, $V13]}
+ @{[vaesem_vs $V24, $V14]}
+ @{[vaesef_vs $V24, $V15]}
+___
+
+ return $code;
+}
+
+# aes-256 dec with round keys v1-v15
+sub aes_256_dec {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V15]}
+ @{[vaesdm_vs $V24, $V14]}
+ @{[vaesdm_vs $V24, $V13]}
+ @{[vaesdm_vs $V24, $V12]}
+ @{[vaesdm_vs $V24, $V11]}
+ @{[vaesdm_vs $V24, $V10]}
+ @{[vaesdm_vs $V24, $V9]}
+ @{[vaesdm_vs $V24, $V8]}
+ @{[vaesdm_vs $V24, $V7]}
+ @{[vaesdm_vs $V24, $V6]}
+ @{[vaesdm_vs $V24, $V5]}
+ @{[vaesdm_vs $V24, $V4]}
+ @{[vaesdm_vs $V24, $V3]}
+ @{[vaesdm_vs $V24, $V2]}
+ @{[vaesdf_vs $V24, $V1]}
+___
+
+ return $code;
+}
+
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt
+.type rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt,\@function
+rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt:
+ @{[load_xts_iv0]}
+
+ # aes block size is 16
+ andi $TAIL_LENGTH, $LENGTH, 15
+ mv $STORE_LEN32, $LENGTH
+ beqz $TAIL_LENGTH, 1f
+ sub $LENGTH, $LENGTH, $TAIL_LENGTH
+ addi $STORE_LEN32, $LENGTH, -16
+1:
+ # We make the `LENGTH` become e32 length here.
+ srli $LEN32, $LENGTH, 2
+ srli $STORE_LEN32, $STORE_LEN32, 2
+
+ # Load key length.
+ lwu $T0, 480($KEY)
+ li $T1, 32
+ li $T2, 24
+ li $T3, 16
+ beq $T0, $T1, aes_xts_enc_256
+ beq $T0, $T2, aes_xts_enc_192
+ beq $T0, $T3, aes_xts_enc_128
+.size rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt,.-rv64i_zvbb_zvkg_zvkned_aes_xts_encrypt
+___
+
+$code .= <<___;
+.p2align 3
+aes_xts_enc_128:
+ @{[init_first_round]}
+ @{[aes_128_load_key]}
+
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ j 1f
+
+.Lenc_blocks_128:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ # load plaintext into v24
+ @{[vle32_v $V24, $INPUT]}
+ # update iv
+ @{[vgmul_vv $V16, $V20]}
+ # reverse the iv's bits order back
+ @{[vbrev8_v $V28, $V16]}
+1:
+ @{[vxor_vv $V24, $V24, $V28]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+ add $INPUT, $INPUT, $T0
+ @{[aes_128_enc]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store ciphertext
+ @{[vsetvli "zero", $STORE_LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vse32_v $V24, $OUTPUT]}
+ add $OUTPUT, $OUTPUT, $T0
+ sub $STORE_LEN32, $STORE_LEN32, $VL
+
+ bnez $LEN32, .Lenc_blocks_128
+
+ @{[handle_xts_enc_last_block]}
+
+ # xts last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V28]}
+ @{[aes_128_enc]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store last block ciphertext
+ addi $OUTPUT, $OUTPUT, -16
+ @{[vse32_v $V24, $OUTPUT]}
+
+ ret
+.size aes_xts_enc_128,.-aes_xts_enc_128
+___
+
+$code .= <<___;
+.p2align 3
+aes_xts_enc_192:
+ @{[init_first_round]}
+ @{[aes_192_load_key]}
+
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ j 1f
+
+.Lenc_blocks_192:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ # load plaintext into v24
+ @{[vle32_v $V24, $INPUT]}
+ # update iv
+ @{[vgmul_vv $V16, $V20]}
+ # reverse the iv's bits order back
+ @{[vbrev8_v $V28, $V16]}
+1:
+ @{[vxor_vv $V24, $V24, $V28]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+ add $INPUT, $INPUT, $T0
+ @{[aes_192_enc]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store ciphertext
+ @{[vsetvli "zero", $STORE_LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vse32_v $V24, $OUTPUT]}
+ add $OUTPUT, $OUTPUT, $T0
+ sub $STORE_LEN32, $STORE_LEN32, $VL
+
+ bnez $LEN32, .Lenc_blocks_192
+
+ @{[handle_xts_enc_last_block]}
+
+ # xts last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V28]}
+ @{[aes_192_enc]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store last block ciphertext
+ addi $OUTPUT, $OUTPUT, -16
+ @{[vse32_v $V24, $OUTPUT]}
+
+ ret
+.size aes_xts_enc_192,.-aes_xts_enc_192
+___
+
+$code .= <<___;
+.p2align 3
+aes_xts_enc_256:
+ @{[init_first_round]}
+ @{[aes_256_load_key]}
+
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ j 1f
+
+.Lenc_blocks_256:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ # load plaintext into v24
+ @{[vle32_v $V24, $INPUT]}
+ # update iv
+ @{[vgmul_vv $V16, $V20]}
+ # reverse the iv's bits order back
+ @{[vbrev8_v $V28, $V16]}
+1:
+ @{[vxor_vv $V24, $V24, $V28]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+ add $INPUT, $INPUT, $T0
+ @{[aes_256_enc]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store ciphertext
+ @{[vsetvli "zero", $STORE_LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vse32_v $V24, $OUTPUT]}
+ add $OUTPUT, $OUTPUT, $T0
+ sub $STORE_LEN32, $STORE_LEN32, $VL
+
+ bnez $LEN32, .Lenc_blocks_256
+
+ @{[handle_xts_enc_last_block]}
+
+ # xts last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V28]}
+ @{[aes_256_enc]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store last block ciphertext
+ addi $OUTPUT, $OUTPUT, -16
+ @{[vse32_v $V24, $OUTPUT]}
+
+ ret
+.size aes_xts_enc_256,.-aes_xts_enc_256
+___
+
+################################################################################
+# void rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt(const unsigned char *in,
+# unsigned char *out, size_t length,
+# const AES_KEY *key,
+# unsigned char iv[16],
+# int update_iv)
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt
+.type rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt,\@function
+rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt:
+ @{[load_xts_iv0]}
+
+ # aes block size is 16
+ andi $TAIL_LENGTH, $LENGTH, 15
+ beqz $TAIL_LENGTH, 1f
+ sub $LENGTH, $LENGTH, $TAIL_LENGTH
+ addi $LENGTH, $LENGTH, -16
+1:
+ # We make the `LENGTH` become e32 length here.
+ srli $LEN32, $LENGTH, 2
+
+ # Load key length.
+ lwu $T0, 480($KEY)
+ li $T1, 32
+ li $T2, 24
+ li $T3, 16
+ beq $T0, $T1, aes_xts_dec_256
+ beq $T0, $T2, aes_xts_dec_192
+ beq $T0, $T3, aes_xts_dec_128
+.size rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt,.-rv64i_zvbb_zvkg_zvkned_aes_xts_decrypt
+___
+
+$code .= <<___;
+.p2align 3
+aes_xts_dec_128:
+ @{[init_first_round]}
+ @{[aes_128_load_key]}
+
+ beqz $LEN32, 2f
+
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ j 1f
+
+.Ldec_blocks_128:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ # load ciphertext into v24
+ @{[vle32_v $V24, $INPUT]}
+ # update iv
+ @{[vgmul_vv $V16, $V20]}
+ # reverse the iv's bits order back
+ @{[vbrev8_v $V28, $V16]}
+1:
+ @{[vxor_vv $V24, $V24, $V28]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+ add $INPUT, $INPUT, $T0
+ @{[aes_128_dec]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store plaintext
+ @{[vse32_v $V24, $OUTPUT]}
+ add $OUTPUT, $OUTPUT, $T0
+
+ bnez $LEN32, .Ldec_blocks_128
+
+2:
+ @{[handle_xts_dec_last_block]}
+
+ ## xts second to last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V29]}
+ @{[aes_128_dec]}
+ @{[vxor_vv $V24, $V24, $V29]}
+ @{[vmv_v_v $V25, $V24]}
+
+ # load last block ciphertext
+ @{[vsetvli "zero", $TAIL_LENGTH, "e8", "m1", "tu", "ma"]}
+ @{[vle8_v $V24, $INPUT]}
+
+ # store second to last block plaintext
+ addi $T0, $OUTPUT, 16
+ @{[vse8_v $V25, $T0]}
+
+ ## xts last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V28]}
+ @{[aes_128_dec]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store second to last block plaintext
+ @{[vse32_v $V24, $OUTPUT]}
+
+ ret
+.size aes_xts_dec_128,.-aes_xts_dec_128
+___
+
+$code .= <<___;
+.p2align 3
+aes_xts_dec_192:
+ @{[init_first_round]}
+ @{[aes_192_load_key]}
+
+ beqz $LEN32, 2f
+
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ j 1f
+
+.Ldec_blocks_192:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ # load ciphertext into v24
+ @{[vle32_v $V24, $INPUT]}
+ # update iv
+ @{[vgmul_vv $V16, $V20]}
+ # reverse the iv's bits order back
+ @{[vbrev8_v $V28, $V16]}
+1:
+ @{[vxor_vv $V24, $V24, $V28]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+ add $INPUT, $INPUT, $T0
+ @{[aes_192_dec]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store plaintext
+ @{[vse32_v $V24, $OUTPUT]}
+ add $OUTPUT, $OUTPUT, $T0
+
+ bnez $LEN32, .Ldec_blocks_192
+
+2:
+ @{[handle_xts_dec_last_block]}
+
+ ## xts second to last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V29]}
+ @{[aes_192_dec]}
+ @{[vxor_vv $V24, $V24, $V29]}
+ @{[vmv_v_v $V25, $V24]}
+
+ # load last block ciphertext
+ @{[vsetvli "zero", $TAIL_LENGTH, "e8", "m1", "tu", "ma"]}
+ @{[vle8_v $V24, $INPUT]}
+
+ # store second to last block plaintext
+ addi $T0, $OUTPUT, 16
+ @{[vse8_v $V25, $T0]}
+
+ ## xts last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V28]}
+ @{[aes_192_dec]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store second to last block plaintext
+ @{[vse32_v $V24, $OUTPUT]}
+
+ ret
+.size aes_xts_dec_192,.-aes_xts_dec_192
+___
+
+$code .= <<___;
+.p2align 3
+aes_xts_dec_256:
+ @{[init_first_round]}
+ @{[aes_256_load_key]}
+
+ beqz $LEN32, 2f
+
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ j 1f
+
+.Ldec_blocks_256:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ # load ciphertext into v24
+ @{[vle32_v $V24, $INPUT]}
+ # update iv
+ @{[vgmul_vv $V16, $V20]}
+ # reverse the iv's bits order back
+ @{[vbrev8_v $V28, $V16]}
+1:
+ @{[vxor_vv $V24, $V24, $V28]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+ add $INPUT, $INPUT, $T0
+ @{[aes_256_dec]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store plaintext
+ @{[vse32_v $V24, $OUTPUT]}
+ add $OUTPUT, $OUTPUT, $T0
+
+ bnez $LEN32, .Ldec_blocks_256
+
+2:
+ @{[handle_xts_dec_last_block]}
+
+ ## xts second to last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V29]}
+ @{[aes_256_dec]}
+ @{[vxor_vv $V24, $V24, $V29]}
+ @{[vmv_v_v $V25, $V24]}
+
+ # load last block ciphertext
+ @{[vsetvli "zero", $TAIL_LENGTH, "e8", "m1", "tu", "ma"]}
+ @{[vle8_v $V24, $INPUT]}
+
+ # store second to last block plaintext
+ addi $T0, $OUTPUT, 16
+ @{[vse8_v $V25, $T0]}
+
+ ## xts last block
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V28]}
+ @{[aes_256_dec]}
+ @{[vxor_vv $V24, $V24, $V28]}
+
+ # store second to last block plaintext
+ @{[vse32_v $V24, $OUTPUT]}
+
+ ret
+.size aes_xts_dec_256,.-aes_xts_dec_256
+___
+}
+
+print $code;
+
+close STDOUT or die "error closing STDOUT: $!";
new file mode 100644
@@ -0,0 +1,415 @@
+#! /usr/bin/env perl
+# SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause
+#
+# This file is dual-licensed, meaning that you can use it under your
+# choice of either of the following two licenses:
+#
+# Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You can obtain
+# a copy in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+# or
+#
+# Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+# - RV64I
+# - RISC-V Vector ('V') with VLEN >= 128
+# - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
+# - RISC-V Vector AES block cipher extension ('Zvkned')
+
+use strict;
+use warnings;
+
+use FindBin qw($Bin);
+use lib "$Bin";
+use lib "$Bin/../../perlasm";
+use riscv;
+
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+my $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+my $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$output and open STDOUT,">$output";
+
+my $code=<<___;
+.text
+___
+
+################################################################################
+# void rv64i_zvkb_zvkned_ctr32_encrypt_blocks(const unsigned char *in,
+# unsigned char *out, size_t length,
+# const void *key,
+# unsigned char ivec[16]);
+{
+my ($INP, $OUTP, $LEN, $KEYP, $IVP) = ("a0", "a1", "a2", "a3", "a4");
+my ($T0, $T1, $T2, $T3) = ("t0", "t1", "t2", "t3");
+my ($VL) = ("t4");
+my ($LEN32) = ("t5");
+my ($CTR) = ("t6");
+my ($MASK) = ("v0");
+my ($V0, $V1, $V2, $V3, $V4, $V5, $V6, $V7,
+ $V8, $V9, $V10, $V11, $V12, $V13, $V14, $V15,
+ $V16, $V17, $V18, $V19, $V20, $V21, $V22, $V23,
+ $V24, $V25, $V26, $V27, $V28, $V29, $V30, $V31,
+) = map("v$_",(0..31));
+
+# Prepare the AES ctr input data into v16.
+sub init_aes_ctr_input {
+ my $code=<<___;
+ # Setup mask into v0
+ # The mask pattern for 4*N-th elements
+ # mask v0: [000100010001....]
+ # Note:
+ # We could setup the mask just for the maximum element length instead of
+ # the VLMAX.
+ li $T0, 0b10001000
+ @{[vsetvli $T2, "zero", "e8", "m1", "ta", "ma"]}
+ @{[vmv_v_x $MASK, $T0]}
+ # Load IV.
+ # v31:[IV0, IV1, IV2, big-endian count]
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V31, $IVP]}
+ # Convert the big-endian counter into little-endian.
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "mu"]}
+ @{[vrev8_v $V31, $V31, $MASK]}
+ # Splat the IV to v16
+ @{[vsetvli "zero", $LEN32, "e32", "m4", "ta", "ma"]}
+ @{[vmv_v_i $V16, 0]}
+ @{[vaesz_vs $V16, $V31]}
+ # Prepare the ctr pattern into v20
+ # v20: [x, x, x, 0, x, x, x, 1, x, x, x, 2, ...]
+ @{[viota_m $V20, $MASK, $MASK]}
+ # v16:[IV0, IV1, IV2, count+0, IV0, IV1, IV2, count+1, ...]
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "mu"]}
+ @{[vadd_vv $V16, $V16, $V20, $MASK]}
+___
+
+ return $code;
+}
+
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvkb_zvkned_ctr32_encrypt_blocks
+.type rv64i_zvkb_zvkned_ctr32_encrypt_blocks,\@function
+rv64i_zvkb_zvkned_ctr32_encrypt_blocks:
+ # The aes block size is 16 bytes.
+ # We try to get the minimum aes block number including the tail data.
+ addi $T0, $LEN, 15
+ # the minimum block number
+ srli $T0, $T0, 4
+ # We make the block number become e32 length here.
+ slli $LEN32, $T0, 2
+
+ # Load key length.
+ lwu $T0, 480($KEYP)
+ li $T1, 32
+ li $T2, 24
+ li $T3, 16
+
+ beq $T0, $T1, ctr32_encrypt_blocks_256
+ beq $T0, $T2, ctr32_encrypt_blocks_192
+ beq $T0, $T3, ctr32_encrypt_blocks_128
+
+ ret
+.size rv64i_zvkb_zvkned_ctr32_encrypt_blocks,.-rv64i_zvkb_zvkned_ctr32_encrypt_blocks
+___
+
+$code .= <<___;
+.p2align 3
+ctr32_encrypt_blocks_128:
+ # Load all 11 round keys to v1-v11 registers.
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V2, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V3, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V4, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V5, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V6, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V7, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V8, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V9, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V10, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V11, $KEYP]}
+
+ @{[init_aes_ctr_input]}
+
+ ##### AES body
+ j 2f
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "mu"]}
+ # Increase ctr in v16.
+ @{[vadd_vx $V16, $V16, $CTR, $MASK]}
+2:
+ # Prepare the AES ctr input into v24.
+ # The ctr data uses big-endian form.
+ @{[vmv_v_v $V24, $V16]}
+ @{[vrev8_v $V24, $V24, $MASK]}
+ srli $CTR, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ # Load plaintext in bytes into v20.
+ @{[vsetvli $T0, $LEN, "e8", "m4", "ta", "ma"]}
+ @{[vle8_v $V20, $INP]}
+ sub $LEN, $LEN, $T0
+ add $INP, $INP, $T0
+
+ @{[vsetvli "zero", $VL, "e32", "m4", "ta", "ma"]}
+ @{[vaesz_vs $V24, $V1]}
+ @{[vaesem_vs $V24, $V2]}
+ @{[vaesem_vs $V24, $V3]}
+ @{[vaesem_vs $V24, $V4]}
+ @{[vaesem_vs $V24, $V5]}
+ @{[vaesem_vs $V24, $V6]}
+ @{[vaesem_vs $V24, $V7]}
+ @{[vaesem_vs $V24, $V8]}
+ @{[vaesem_vs $V24, $V9]}
+ @{[vaesem_vs $V24, $V10]}
+ @{[vaesef_vs $V24, $V11]}
+
+ # ciphertext
+ @{[vsetvli "zero", $T0, "e8", "m4", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V20]}
+
+ # Store the ciphertext.
+ @{[vse8_v $V24, $OUTP]}
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN, 1b
+
+ ## store ctr iv
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "mu"]}
+ # Increase ctr in v16.
+ @{[vadd_vx $V16, $V16, $CTR, $MASK]}
+ # Convert ctr data back to big-endian.
+ @{[vrev8_v $V16, $V16, $MASK]}
+ @{[vse32_v $V16, $IVP]}
+
+ ret
+.size ctr32_encrypt_blocks_128,.-ctr32_encrypt_blocks_128
+___
+
+$code .= <<___;
+.p2align 3
+ctr32_encrypt_blocks_192:
+ # Load all 13 round keys to v1-v13 registers.
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V2, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V3, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V4, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V5, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V6, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V7, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V8, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V9, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V10, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V11, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V12, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V13, $KEYP]}
+
+ @{[init_aes_ctr_input]}
+
+ ##### AES body
+ j 2f
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "mu"]}
+ # Increase ctr in v16.
+ @{[vadd_vx $V16, $V16, $CTR, $MASK]}
+2:
+ # Prepare the AES ctr input into v24.
+ # The ctr data uses big-endian form.
+ @{[vmv_v_v $V24, $V16]}
+ @{[vrev8_v $V24, $V24, $MASK]}
+ srli $CTR, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ # Load plaintext in bytes into v20.
+ @{[vsetvli $T0, $LEN, "e8", "m4", "ta", "ma"]}
+ @{[vle8_v $V20, $INP]}
+ sub $LEN, $LEN, $T0
+ add $INP, $INP, $T0
+
+ @{[vsetvli "zero", $VL, "e32", "m4", "ta", "ma"]}
+ @{[vaesz_vs $V24, $V1]}
+ @{[vaesem_vs $V24, $V2]}
+ @{[vaesem_vs $V24, $V3]}
+ @{[vaesem_vs $V24, $V4]}
+ @{[vaesem_vs $V24, $V5]}
+ @{[vaesem_vs $V24, $V6]}
+ @{[vaesem_vs $V24, $V7]}
+ @{[vaesem_vs $V24, $V8]}
+ @{[vaesem_vs $V24, $V9]}
+ @{[vaesem_vs $V24, $V10]}
+ @{[vaesem_vs $V24, $V11]}
+ @{[vaesem_vs $V24, $V12]}
+ @{[vaesef_vs $V24, $V13]}
+
+ # ciphertext
+ @{[vsetvli "zero", $T0, "e8", "m4", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V20]}
+
+ # Store the ciphertext.
+ @{[vse8_v $V24, $OUTP]}
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN, 1b
+
+ ## store ctr iv
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "mu"]}
+ # Increase ctr in v16.
+ @{[vadd_vx $V16, $V16, $CTR, $MASK]}
+ # Convert ctr data back to big-endian.
+ @{[vrev8_v $V16, $V16, $MASK]}
+ @{[vse32_v $V16, $IVP]}
+
+ ret
+.size ctr32_encrypt_blocks_192,.-ctr32_encrypt_blocks_192
+___
+
+$code .= <<___;
+.p2align 3
+ctr32_encrypt_blocks_256:
+ # Load all 15 round keys to v1-v15 registers.
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V2, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V3, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V4, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V5, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V6, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V7, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V8, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V9, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V10, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V11, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V12, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V13, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V14, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V15, $KEYP]}
+
+ @{[init_aes_ctr_input]}
+
+ ##### AES body
+ j 2f
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "mu"]}
+ # Increase ctr in v16.
+ @{[vadd_vx $V16, $V16, $CTR, $MASK]}
+2:
+ # Prepare the AES ctr input into v24.
+ # The ctr data uses big-endian form.
+ @{[vmv_v_v $V24, $V16]}
+ @{[vrev8_v $V24, $V24, $MASK]}
+ srli $CTR, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ # Load plaintext in bytes into v20.
+ @{[vsetvli $T0, $LEN, "e8", "m4", "ta", "ma"]}
+ @{[vle8_v $V20, $INP]}
+ sub $LEN, $LEN, $T0
+ add $INP, $INP, $T0
+
+ @{[vsetvli "zero", $VL, "e32", "m4", "ta", "ma"]}
+ @{[vaesz_vs $V24, $V1]}
+ @{[vaesem_vs $V24, $V2]}
+ @{[vaesem_vs $V24, $V3]}
+ @{[vaesem_vs $V24, $V4]}
+ @{[vaesem_vs $V24, $V5]}
+ @{[vaesem_vs $V24, $V6]}
+ @{[vaesem_vs $V24, $V7]}
+ @{[vaesem_vs $V24, $V8]}
+ @{[vaesem_vs $V24, $V9]}
+ @{[vaesem_vs $V24, $V10]}
+ @{[vaesem_vs $V24, $V11]}
+ @{[vaesem_vs $V24, $V12]}
+ @{[vaesem_vs $V24, $V13]}
+ @{[vaesem_vs $V24, $V14]}
+ @{[vaesef_vs $V24, $V15]}
+
+ # ciphertext
+ @{[vsetvli "zero", $T0, "e8", "m4", "ta", "ma"]}
+ @{[vxor_vv $V24, $V24, $V20]}
+
+ # Store the ciphertext.
+ @{[vse8_v $V24, $OUTP]}
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN, 1b
+
+ ## store ctr iv
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "mu"]}
+ # Increase ctr in v16.
+ @{[vadd_vx $V16, $V16, $CTR, $MASK]}
+ # Convert ctr data back to big-endian.
+ @{[vrev8_v $V16, $V16, $MASK]}
+ @{[vse32_v $V16, $IVP]}
+
+ ret
+.size ctr32_encrypt_blocks_256,.-ctr32_encrypt_blocks_256
+___
+}
+
+print $code;
+
+close STDOUT or die "error closing STDOUT: $!";
@@ -67,6 +67,752 @@ my ($V0, $V1, $V2, $V3, $V4, $V5, $V6, $V7,
$V24, $V25, $V26, $V27, $V28, $V29, $V30, $V31,
) = map("v$_",(0..31));
+# Load all 11 round keys to v1-v11 registers.
+sub aes_128_load_key {
+ my $KEYP = shift;
+
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V2, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V3, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V4, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V5, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V6, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V7, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V8, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V9, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V10, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V11, $KEYP]}
+___
+
+ return $code;
+}
+
+# Load all 13 round keys to v1-v13 registers.
+sub aes_192_load_key {
+ my $KEYP = shift;
+
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V2, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V3, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V4, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V5, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V6, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V7, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V8, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V9, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V10, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V11, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V12, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V13, $KEYP]}
+___
+
+ return $code;
+}
+
+# Load all 15 round keys to v1-v15 registers.
+sub aes_256_load_key {
+ my $KEYP = shift;
+
+ my $code=<<___;
+ @{[vsetivli "zero", 4, "e32", "m1", "ta", "ma"]}
+ @{[vle32_v $V1, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V2, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V3, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V4, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V5, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V6, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V7, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V8, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V9, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V10, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V11, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V12, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V13, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V14, $KEYP]}
+ addi $KEYP, $KEYP, 16
+ @{[vle32_v $V15, $KEYP]}
+___
+
+ return $code;
+}
+
+# aes-128 encryption with round keys v1-v11
+sub aes_128_encrypt {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V1]} # with round key w[ 0, 3]
+ @{[vaesem_vs $V24, $V2]} # with round key w[ 4, 7]
+ @{[vaesem_vs $V24, $V3]} # with round key w[ 8,11]
+ @{[vaesem_vs $V24, $V4]} # with round key w[12,15]
+ @{[vaesem_vs $V24, $V5]} # with round key w[16,19]
+ @{[vaesem_vs $V24, $V6]} # with round key w[20,23]
+ @{[vaesem_vs $V24, $V7]} # with round key w[24,27]
+ @{[vaesem_vs $V24, $V8]} # with round key w[28,31]
+ @{[vaesem_vs $V24, $V9]} # with round key w[32,35]
+ @{[vaesem_vs $V24, $V10]} # with round key w[36,39]
+ @{[vaesef_vs $V24, $V11]} # with round key w[40,43]
+___
+
+ return $code;
+}
+
+# aes-128 decryption with round keys v1-v11
+sub aes_128_decrypt {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V11]} # with round key w[40,43]
+ @{[vaesdm_vs $V24, $V10]} # with round key w[36,39]
+ @{[vaesdm_vs $V24, $V9]} # with round key w[32,35]
+ @{[vaesdm_vs $V24, $V8]} # with round key w[28,31]
+ @{[vaesdm_vs $V24, $V7]} # with round key w[24,27]
+ @{[vaesdm_vs $V24, $V6]} # with round key w[20,23]
+ @{[vaesdm_vs $V24, $V5]} # with round key w[16,19]
+ @{[vaesdm_vs $V24, $V4]} # with round key w[12,15]
+ @{[vaesdm_vs $V24, $V3]} # with round key w[ 8,11]
+ @{[vaesdm_vs $V24, $V2]} # with round key w[ 4, 7]
+ @{[vaesdf_vs $V24, $V1]} # with round key w[ 0, 3]
+___
+
+ return $code;
+}
+
+# aes-192 encryption with round keys v1-v13
+sub aes_192_encrypt {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V1]} # with round key w[ 0, 3]
+ @{[vaesem_vs $V24, $V2]} # with round key w[ 4, 7]
+ @{[vaesem_vs $V24, $V3]} # with round key w[ 8,11]
+ @{[vaesem_vs $V24, $V4]} # with round key w[12,15]
+ @{[vaesem_vs $V24, $V5]} # with round key w[16,19]
+ @{[vaesem_vs $V24, $V6]} # with round key w[20,23]
+ @{[vaesem_vs $V24, $V7]} # with round key w[24,27]
+ @{[vaesem_vs $V24, $V8]} # with round key w[28,31]
+ @{[vaesem_vs $V24, $V9]} # with round key w[32,35]
+ @{[vaesem_vs $V24, $V10]} # with round key w[36,39]
+ @{[vaesem_vs $V24, $V11]} # with round key w[40,43]
+ @{[vaesem_vs $V24, $V12]} # with round key w[44,47]
+ @{[vaesef_vs $V24, $V13]} # with round key w[48,51]
+___
+
+ return $code;
+}
+
+# aes-192 decryption with round keys v1-v13
+sub aes_192_decrypt {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V13]} # with round key w[48,51]
+ @{[vaesdm_vs $V24, $V12]} # with round key w[44,47]
+ @{[vaesdm_vs $V24, $V11]} # with round key w[40,43]
+ @{[vaesdm_vs $V24, $V10]} # with round key w[36,39]
+ @{[vaesdm_vs $V24, $V9]} # with round key w[32,35]
+ @{[vaesdm_vs $V24, $V8]} # with round key w[28,31]
+ @{[vaesdm_vs $V24, $V7]} # with round key w[24,27]
+ @{[vaesdm_vs $V24, $V6]} # with round key w[20,23]
+ @{[vaesdm_vs $V24, $V5]} # with round key w[16,19]
+ @{[vaesdm_vs $V24, $V4]} # with round key w[12,15]
+ @{[vaesdm_vs $V24, $V3]} # with round key w[ 8,11]
+ @{[vaesdm_vs $V24, $V2]} # with round key w[ 4, 7]
+ @{[vaesdf_vs $V24, $V1]} # with round key w[ 0, 3]
+___
+
+ return $code;
+}
+
+# aes-256 encryption with round keys v1-v15
+sub aes_256_encrypt {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V1]} # with round key w[ 0, 3]
+ @{[vaesem_vs $V24, $V2]} # with round key w[ 4, 7]
+ @{[vaesem_vs $V24, $V3]} # with round key w[ 8,11]
+ @{[vaesem_vs $V24, $V4]} # with round key w[12,15]
+ @{[vaesem_vs $V24, $V5]} # with round key w[16,19]
+ @{[vaesem_vs $V24, $V6]} # with round key w[20,23]
+ @{[vaesem_vs $V24, $V7]} # with round key w[24,27]
+ @{[vaesem_vs $V24, $V8]} # with round key w[28,31]
+ @{[vaesem_vs $V24, $V9]} # with round key w[32,35]
+ @{[vaesem_vs $V24, $V10]} # with round key w[36,39]
+ @{[vaesem_vs $V24, $V11]} # with round key w[40,43]
+ @{[vaesem_vs $V24, $V12]} # with round key w[44,47]
+ @{[vaesem_vs $V24, $V13]} # with round key w[48,51]
+ @{[vaesem_vs $V24, $V14]} # with round key w[52,55]
+ @{[vaesef_vs $V24, $V15]} # with round key w[56,59]
+___
+
+ return $code;
+}
+
+# aes-256 decryption with round keys v1-v15
+sub aes_256_decrypt {
+ my $code=<<___;
+ @{[vaesz_vs $V24, $V15]} # with round key w[56,59]
+ @{[vaesdm_vs $V24, $V14]} # with round key w[52,55]
+ @{[vaesdm_vs $V24, $V13]} # with round key w[48,51]
+ @{[vaesdm_vs $V24, $V12]} # with round key w[44,47]
+ @{[vaesdm_vs $V24, $V11]} # with round key w[40,43]
+ @{[vaesdm_vs $V24, $V10]} # with round key w[36,39]
+ @{[vaesdm_vs $V24, $V9]} # with round key w[32,35]
+ @{[vaesdm_vs $V24, $V8]} # with round key w[28,31]
+ @{[vaesdm_vs $V24, $V7]} # with round key w[24,27]
+ @{[vaesdm_vs $V24, $V6]} # with round key w[20,23]
+ @{[vaesdm_vs $V24, $V5]} # with round key w[16,19]
+ @{[vaesdm_vs $V24, $V4]} # with round key w[12,15]
+ @{[vaesdm_vs $V24, $V3]} # with round key w[ 8,11]
+ @{[vaesdm_vs $V24, $V2]} # with round key w[ 4, 7]
+ @{[vaesdf_vs $V24, $V1]} # with round key w[ 0, 3]
+___
+
+ return $code;
+}
+
+{
+###############################################################################
+# void rv64i_zvkned_cbc_encrypt(const unsigned char *in, unsigned char *out,
+# size_t length, const AES_KEY *key,
+# unsigned char *ivec, const int enc);
+my ($INP, $OUTP, $LEN, $KEYP, $IVP, $ENC) = ("a0", "a1", "a2", "a3", "a4", "a5");
+my ($T0, $T1) = ("t0", "t1", "t2");
+
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvkned_cbc_encrypt
+.type rv64i_zvkned_cbc_encrypt,\@function
+rv64i_zvkned_cbc_encrypt:
+ # check whether the length is a multiple of 16 and >= 16
+ li $T1, 16
+ blt $LEN, $T1, L_end
+ andi $T1, $LEN, 15
+ bnez $T1, L_end
+
+ # Load key length.
+ lwu $T0, 480($KEYP)
+
+ # Get proper routine for key length.
+ li $T1, 16
+ beq $T1, $T0, L_cbc_enc_128
+
+ li $T1, 24
+ beq $T1, $T0, L_cbc_enc_192
+
+ li $T1, 32
+ beq $T1, $T0, L_cbc_enc_256
+
+ ret
+.size rv64i_zvkned_cbc_encrypt,.-rv64i_zvkned_cbc_encrypt
+___
+
+$code .= <<___;
+.p2align 3
+L_cbc_enc_128:
+ # Load all 11 round keys to v1-v11 registers.
+ @{[aes_128_load_key $KEYP]}
+
+ # Load IV.
+ @{[vle32_v $V16, $IVP]}
+
+ @{[vle32_v $V24, $INP]}
+ @{[vxor_vv $V24, $V24, $V16]}
+ j 2f
+
+1:
+ @{[vle32_v $V17, $INP]}
+ @{[vxor_vv $V24, $V24, $V17]}
+
+2:
+ # AES body
+ @{[aes_128_encrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ addi $INP, $INP, 16
+ addi $OUTP, $OUTP, 16
+ addi $LEN, $LEN, -16
+
+ bnez $LEN, 1b
+
+ @{[vse32_v $V24, $IVP]}
+
+ ret
+.size L_cbc_enc_128,.-L_cbc_enc_128
+___
+
+$code .= <<___;
+.p2align 3
+L_cbc_enc_192:
+ # Load all 13 round keys to v1-v13 registers.
+ @{[aes_192_load_key $KEYP]}
+
+ # Load IV.
+ @{[vle32_v $V16, $IVP]}
+
+ @{[vle32_v $V24, $INP]}
+ @{[vxor_vv $V24, $V24, $V16]}
+ j 2f
+
+1:
+ @{[vle32_v $V17, $INP]}
+ @{[vxor_vv $V24, $V24, $V17]}
+
+2:
+ # AES body
+ @{[aes_192_encrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ addi $INP, $INP, 16
+ addi $OUTP, $OUTP, 16
+ addi $LEN, $LEN, -16
+
+ bnez $LEN, 1b
+
+ @{[vse32_v $V24, $IVP]}
+
+ ret
+.size L_cbc_enc_192,.-L_cbc_enc_192
+___
+
+$code .= <<___;
+.p2align 3
+L_cbc_enc_256:
+ # Load all 15 round keys to v1-v15 registers.
+ @{[aes_256_load_key $KEYP]}
+
+ # Load IV.
+ @{[vle32_v $V16, $IVP]}
+
+ @{[vle32_v $V24, $INP]}
+ @{[vxor_vv $V24, $V24, $V16]}
+ j 2f
+
+1:
+ @{[vle32_v $V17, $INP]}
+ @{[vxor_vv $V24, $V24, $V17]}
+
+2:
+ # AES body
+ @{[aes_256_encrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ addi $INP, $INP, 16
+ addi $OUTP, $OUTP, 16
+ addi $LEN, $LEN, -16
+
+ bnez $LEN, 1b
+
+ @{[vse32_v $V24, $IVP]}
+
+ ret
+.size L_cbc_enc_256,.-L_cbc_enc_256
+___
+
+###############################################################################
+# void rv64i_zvkned_cbc_decrypt(const unsigned char *in, unsigned char *out,
+# size_t length, const AES_KEY *key,
+# unsigned char *ivec, const int enc);
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvkned_cbc_decrypt
+.type rv64i_zvkned_cbc_decrypt,\@function
+rv64i_zvkned_cbc_decrypt:
+ # check whether the length is a multiple of 16 and >= 16
+ li $T1, 16
+ blt $LEN, $T1, L_end
+ andi $T1, $LEN, 15
+ bnez $T1, L_end
+
+ # Load key length.
+ lwu $T0, 480($KEYP)
+
+ # Get proper routine for key length.
+ li $T1, 16
+ beq $T1, $T0, L_cbc_dec_128
+
+ li $T1, 24
+ beq $T1, $T0, L_cbc_dec_192
+
+ li $T1, 32
+ beq $T1, $T0, L_cbc_dec_256
+
+ ret
+.size rv64i_zvkned_cbc_decrypt,.-rv64i_zvkned_cbc_decrypt
+___
+
+$code .= <<___;
+.p2align 3
+L_cbc_dec_128:
+ # Load all 11 round keys to v1-v11 registers.
+ @{[aes_128_load_key $KEYP]}
+
+ # Load IV.
+ @{[vle32_v $V16, $IVP]}
+
+ @{[vle32_v $V24, $INP]}
+ @{[vmv_v_v $V17, $V24]}
+ j 2f
+
+1:
+ @{[vle32_v $V24, $INP]}
+ @{[vmv_v_v $V17, $V24]}
+ addi $OUTP, $OUTP, 16
+
+2:
+ # AES body
+ @{[aes_128_decrypt]}
+
+ @{[vxor_vv $V24, $V24, $V16]}
+ @{[vse32_v $V24, $OUTP]}
+ @{[vmv_v_v $V16, $V17]}
+
+ addi $LEN, $LEN, -16
+ addi $INP, $INP, 16
+
+ bnez $LEN, 1b
+
+ @{[vse32_v $V16, $IVP]}
+
+ ret
+.size L_cbc_dec_128,.-L_cbc_dec_128
+___
+
+$code .= <<___;
+.p2align 3
+L_cbc_dec_192:
+ # Load all 13 round keys to v1-v13 registers.
+ @{[aes_192_load_key $KEYP]}
+
+ # Load IV.
+ @{[vle32_v $V16, $IVP]}
+
+ @{[vle32_v $V24, $INP]}
+ @{[vmv_v_v $V17, $V24]}
+ j 2f
+
+1:
+ @{[vle32_v $V24, $INP]}
+ @{[vmv_v_v $V17, $V24]}
+ addi $OUTP, $OUTP, 16
+
+2:
+ # AES body
+ @{[aes_192_decrypt]}
+
+ @{[vxor_vv $V24, $V24, $V16]}
+ @{[vse32_v $V24, $OUTP]}
+ @{[vmv_v_v $V16, $V17]}
+
+ addi $LEN, $LEN, -16
+ addi $INP, $INP, 16
+
+ bnez $LEN, 1b
+
+ @{[vse32_v $V16, $IVP]}
+
+ ret
+.size L_cbc_dec_192,.-L_cbc_dec_192
+___
+
+$code .= <<___;
+.p2align 3
+L_cbc_dec_256:
+ # Load all 15 round keys to v1-v15 registers.
+ @{[aes_256_load_key $KEYP]}
+
+ # Load IV.
+ @{[vle32_v $V16, $IVP]}
+
+ @{[vle32_v $V24, $INP]}
+ @{[vmv_v_v $V17, $V24]}
+ j 2f
+
+1:
+ @{[vle32_v $V24, $INP]}
+ @{[vmv_v_v $V17, $V24]}
+ addi $OUTP, $OUTP, 16
+
+2:
+ # AES body
+ @{[aes_256_decrypt]}
+
+ @{[vxor_vv $V24, $V24, $V16]}
+ @{[vse32_v $V24, $OUTP]}
+ @{[vmv_v_v $V16, $V17]}
+
+ addi $LEN, $LEN, -16
+ addi $INP, $INP, 16
+
+ bnez $LEN, 1b
+
+ @{[vse32_v $V16, $IVP]}
+
+ ret
+.size L_cbc_dec_256,.-L_cbc_dec_256
+___
+}
+
+{
+###############################################################################
+# void rv64i_zvkned_ecb_encrypt(const unsigned char *in, unsigned char *out,
+# size_t length, const AES_KEY *key,
+# const int enc);
+my ($INP, $OUTP, $LEN, $KEYP, $ENC) = ("a0", "a1", "a2", "a3", "a4");
+my ($VL) = ("a5");
+my ($LEN32) = ("a6");
+my ($T0, $T1) = ("t0", "t1");
+
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvkned_ecb_encrypt
+.type rv64i_zvkned_ecb_encrypt,\@function
+rv64i_zvkned_ecb_encrypt:
+ # Make the LEN become e32 length.
+ srli $LEN32, $LEN, 2
+
+ # Load key length.
+ lwu $T0, 480($KEYP)
+
+ # Get proper routine for key length.
+ li $T1, 16
+ beq $T1, $T0, L_ecb_enc_128
+
+ li $T1, 24
+ beq $T1, $T0, L_ecb_enc_192
+
+ li $T1, 32
+ beq $T1, $T0, L_ecb_enc_256
+
+ ret
+.size rv64i_zvkned_ecb_encrypt,.-rv64i_zvkned_ecb_encrypt
+___
+
+$code .= <<___;
+.p2align 3
+L_ecb_enc_128:
+ # Load all 11 round keys to v1-v11 registers.
+ @{[aes_128_load_key $KEYP]}
+
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ @{[vle32_v $V24, $INP]}
+
+ # AES body
+ @{[aes_128_encrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ add $INP, $INP, $T0
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN32, 1b
+
+ ret
+.size L_ecb_enc_128,.-L_ecb_enc_128
+___
+
+$code .= <<___;
+.p2align 3
+L_ecb_enc_192:
+ # Load all 13 round keys to v1-v13 registers.
+ @{[aes_192_load_key $KEYP]}
+
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ @{[vle32_v $V24, $INP]}
+
+ # AES body
+ @{[aes_192_encrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ add $INP, $INP, $T0
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN32, 1b
+
+ ret
+.size L_ecb_enc_192,.-L_ecb_enc_192
+___
+
+$code .= <<___;
+.p2align 3
+L_ecb_enc_256:
+ # Load all 15 round keys to v1-v15 registers.
+ @{[aes_256_load_key $KEYP]}
+
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ @{[vle32_v $V24, $INP]}
+
+ # AES body
+ @{[aes_256_encrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ add $INP, $INP, $T0
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN32, 1b
+
+ ret
+.size L_ecb_enc_256,.-L_ecb_enc_256
+___
+
+###############################################################################
+# void rv64i_zvkned_ecb_decrypt(const unsigned char *in, unsigned char *out,
+# size_t length, const AES_KEY *key,
+# const int enc);
+$code .= <<___;
+.p2align 3
+.globl rv64i_zvkned_ecb_decrypt
+.type rv64i_zvkned_ecb_decrypt,\@function
+rv64i_zvkned_ecb_decrypt:
+ # Make the LEN become e32 length.
+ srli $LEN32, $LEN, 2
+
+ # Load key length.
+ lwu $T0, 480($KEYP)
+
+ # Get proper routine for key length.
+ li $T1, 16
+ beq $T1, $T0, L_ecb_dec_128
+
+ li $T1, 24
+ beq $T1, $T0, L_ecb_dec_192
+
+ li $T1, 32
+ beq $T1, $T0, L_ecb_dec_256
+
+ ret
+.size rv64i_zvkned_ecb_decrypt,.-rv64i_zvkned_ecb_decrypt
+___
+
+$code .= <<___;
+.p2align 3
+L_ecb_dec_128:
+ # Load all 11 round keys to v1-v11 registers.
+ @{[aes_128_load_key $KEYP]}
+
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ @{[vle32_v $V24, $INP]}
+
+ # AES body
+ @{[aes_128_decrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ add $INP, $INP, $T0
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN32, 1b
+
+ ret
+.size L_ecb_dec_128,.-L_ecb_dec_128
+___
+
+$code .= <<___;
+.p2align 3
+L_ecb_dec_192:
+ # Load all 13 round keys to v1-v13 registers.
+ @{[aes_192_load_key $KEYP]}
+
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ @{[vle32_v $V24, $INP]}
+
+ # AES body
+ @{[aes_192_decrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ add $INP, $INP, $T0
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN32, 1b
+
+ ret
+.size L_ecb_dec_192,.-L_ecb_dec_192
+___
+
+$code .= <<___;
+.p2align 3
+L_ecb_dec_256:
+ # Load all 15 round keys to v1-v15 registers.
+ @{[aes_256_load_key $KEYP]}
+
+1:
+ @{[vsetvli $VL, $LEN32, "e32", "m4", "ta", "ma"]}
+ slli $T0, $VL, 2
+ sub $LEN32, $LEN32, $VL
+
+ @{[vle32_v $V24, $INP]}
+
+ # AES body
+ @{[aes_256_decrypt]}
+
+ @{[vse32_v $V24, $OUTP]}
+
+ add $INP, $INP, $T0
+ add $OUTP, $OUTP, $T0
+
+ bnez $LEN32, 1b
+
+ ret
+.size L_ecb_dec_256,.-L_ecb_dec_256
+___
+}
+
{
################################################################################
# int rv64i_zvkned_set_encrypt_key(const unsigned char *userKey, const int bytes,