Message ID | 20240308010812.89848-2-alexei.starovoitov@gmail.com (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | bpf: Introduce BPF arena. | expand |
On Thu, Mar 7, 2024 at 5:08 PM Alexei Starovoitov <alexei.starovoitov@gmail.com> wrote: > > From: Alexei Starovoitov <ast@kernel.org> > > Introduce bpf_arena, which is a sparse shared memory region between the bpf > program and user space. > > Use cases: > 1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed > anonymous region, like memcached or any key/value storage. The bpf > program implements an in-kernel accelerator. XDP prog can search for > a key in bpf_arena and return a value without going to user space. > 2. The bpf program builds arbitrary data structures in bpf_arena (hash > tables, rb-trees, sparse arrays), while user space consumes it. > 3. bpf_arena is a "heap" of memory from the bpf program's point of view. > The user space may mmap it, but bpf program will not convert pointers > to user base at run-time to improve bpf program speed. > > Initially, the kernel vm_area and user vma are not populated. User space > can fault in pages within the range. While servicing a page fault, > bpf_arena logic will insert a new page into the kernel and user vmas. The > bpf program can allocate pages from that region via > bpf_arena_alloc_pages(). This kernel function will insert pages into the > kernel vm_area. The subsequent fault-in from user space will populate that > page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time > can be used to prevent fault-in from user space. In such a case, if a page > is not allocated by the bpf program and not present in the kernel vm_area, > the user process will segfault. This is useful for use cases 2 and 3 above. > > bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages > either at a specific address within the arena or allocates a range with the > maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees > pages and removes the range from the kernel vm_area and from user process > vmas. > > bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of > bpf program is more important than ease of sharing with user space. This is > use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended. > It will tell the verifier to treat the rX = bpf_arena_cast_user(rY) > instruction as a 32-bit move wX = wY, which will improve bpf prog > performance. Otherwise, bpf_arena_cast_user is translated by JIT to > conditionally add the upper 32 bits of user vm_start (if the pointer is not > NULL) to arena pointers before they are stored into memory. This way, user > space sees them as valid 64-bit pointers. > > Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF > backend generate the bpf_addr_space_cast() instruction to cast pointers > between address_space(1) which is reserved for bpf_arena pointers and > default address space zero. All arena pointers in a bpf program written in > C language are tagged as __attribute__((address_space(1))). Hence, clang > provides helpful diagnostics when pointers cross address space. Libbpf and > the kernel support only address_space == 1. All other address space > identifiers are reserved. > > rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the > verifier that rX->type = PTR_TO_ARENA. Any further operations on > PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will > mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate > them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar > to copy_from_kernel_nofault() except that no address checks are necessary. > The address is guaranteed to be in the 4GB range. If the page is not > present, the destination register is zeroed on read, and the operation is > ignored on write. > > rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type = > unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the > verifier converts such cast instructions to mov32. Otherwise, JIT will emit > native code equivalent to: > rX = (u32)rY; > if (rY) > rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */ > > After such conversion, the pointer becomes a valid user pointer within > bpf_arena range. The user process can access data structures created in > bpf_arena without any additional computations. For example, a linked list > built by a bpf program can be walked natively by user space. > > Reviewed-by: Barret Rhoden <brho@google.com> > Signed-off-by: Alexei Starovoitov <ast@kernel.org> > --- > include/linux/bpf.h | 7 +- > include/linux/bpf_types.h | 1 + > include/uapi/linux/bpf.h | 10 + > kernel/bpf/Makefile | 3 + > kernel/bpf/arena.c | 558 +++++++++++++++++++++++++++++++++ > kernel/bpf/core.c | 11 + > kernel/bpf/syscall.c | 36 +++ > kernel/bpf/verifier.c | 1 + > tools/include/uapi/linux/bpf.h | 10 + > 9 files changed, 635 insertions(+), 2 deletions(-) > create mode 100644 kernel/bpf/arena.c > [...] > > struct bpf_offload_dev; > @@ -2215,6 +2216,8 @@ int generic_map_delete_batch(struct bpf_map *map, > struct bpf_map *bpf_map_get_curr_or_next(u32 *id); > struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); > > +int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, nit: you use more meaningful node_id in arena_alloc_pages(), here "nid" was a big mystery when looking at just function definition > + unsigned long nr_pages, struct page **page_array); > #ifdef CONFIG_MEMCG_KMEM > void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, > int node); [...] > +u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) > +{ > + return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; > +} > + > +u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) > +{ > + return arena ? arena->user_vm_start : 0; > +} > + is it anticipated that these helpers can be called with NULL? I might see this later in the patch set, but if not, these NULL checks would be best removed to not create wrong expectations. > +static long arena_map_peek_elem(struct bpf_map *map, void *value) > +{ > + return -EOPNOTSUPP; > +} > + > +static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) > +{ > + return -EOPNOTSUPP; > +} > + > +static long arena_map_pop_elem(struct bpf_map *map, void *value) > +{ > + return -EOPNOTSUPP; > +} > + > +static long arena_map_delete_elem(struct bpf_map *map, void *value) > +{ > + return -EOPNOTSUPP; > +} > + > +static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) > +{ > + return -EOPNOTSUPP; > +} > + This is a separate topic, but I'll just mention it here. It was always confusing to me why we don't just treat all these callbacks as optional and return -EOPNOTSUPP in generic map code. Unless I miss something subtle, we should do a round of clean ups and remove dozens of unnecessary single line callbacks like these throughout the entire BPF kernel code. > +static long compute_pgoff(struct bpf_arena *arena, long uaddr) > +{ > + return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; > +} > + [...] > +static vm_fault_t arena_vm_fault(struct vm_fault *vmf) > +{ > + struct bpf_map *map = vmf->vma->vm_file->private_data; > + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); > + struct page *page; > + long kbase, kaddr; > + int ret; > + > + kbase = bpf_arena_get_kern_vm_start(arena); > + kaddr = kbase + (u32)(vmf->address & PAGE_MASK); > + > + guard(mutex)(&arena->lock); > + page = vmalloc_to_page((void *)kaddr); > + if (page) > + /* already have a page vmap-ed */ > + goto out; > + > + if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) > + /* User space requested to segfault when page is not allocated by bpf prog */ > + return VM_FAULT_SIGSEGV; > + > + ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); > + if (ret) > + return VM_FAULT_SIGSEGV; > + > + /* Account into memcg of the process that created bpf_arena */ > + ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); any specific reason to not take into account map->numa_node here? > + if (ret) { > + mtree_erase(&arena->mt, vmf->pgoff); > + return VM_FAULT_SIGSEGV; > + } > + > + ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); > + if (ret) { > + mtree_erase(&arena->mt, vmf->pgoff); > + __free_page(page); > + return VM_FAULT_SIGSEGV; > + } > +out: > + page_ref_add(page, 1); > + vmf->page = page; > + return 0; > +} > + [...] > +/* > + * Allocate pages and vmap them into kernel vmalloc area. > + * Later the pages will be mmaped into user space vma. > + */ > +static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) > +{ > + /* user_vm_end/start are fixed before bpf prog runs */ > + long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; > + u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); > + struct page **pages; > + long pgoff = 0; > + u32 uaddr32; > + int ret, i; > + > + if (page_cnt > page_cnt_max) > + return 0; > + > + if (uaddr) { > + if (uaddr & ~PAGE_MASK) > + return 0; > + pgoff = compute_pgoff(arena, uaddr); > + if (pgoff + page_cnt > page_cnt_max) As I mentioned offline, is this guaranteed to not overflow? it's not obvious because at least according to all the types (longs), uaddr can be arbitrary, so pgoff can be quite large, etc. Might be worthwhile rewriting as `pgoff > page_cnt_max - page_cnt` or something, just to make it clear in code it has no chance of overflowing. > + /* requested address will be outside of user VMA */ > + return 0; > + } > + > + /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ > + pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); > + if (!pages) > + return 0; > + > + guard(mutex)(&arena->lock); > + > + if (uaddr) > + ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, > + MT_ENTRY, GFP_KERNEL); > + else > + ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, > + page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); mtree_alloc_range() is lacking documentation, unfortunately, so it's not clear to me whether max should be just `page_cnt_max - 1` as you have or `page_cnt_max - page_cnt`. There is a "Test a single entry" in lib/test_maple_tree.c where min == max and size == 4096 which is expected to work, so I have a feeling that the correct max should be up to the maximum possible beginning of range, but I might be mistaken. Can you please double check? > + if (ret) > + goto out_free_pages; > + > + ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, > + node_id, page_cnt, pages); > + if (ret) > + goto out; > + > + uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); > + /* Earlier checks make sure that uaddr32 + page_cnt * PAGE_SIZE will not overflow 32-bit */ we checked that `uaddr32 + page_cnt * PAGE_SIZE - 1` won't overflow, full page_cnt * PAGE_SIZE can actually overflow, so comment is a bit imprecise. But it's not really clear why it matters here, tbh. kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE can actually update upper 32-bits of the kernel-side memory address, is that a problem? > + ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, > + kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); > + if (ret) { > + for (i = 0; i < page_cnt; i++) > + __free_page(pages[i]); > + goto out; > + } > + kvfree(pages); > + return clear_lo32(arena->user_vm_start) + uaddr32; > +out: > + mtree_erase(&arena->mt, pgoff); > +out_free_pages: > + kvfree(pages); > + return 0; > +} > + > +/* > + * If page is present in vmalloc area, unmap it from vmalloc area, > + * unmap it from all user space vma-s, > + * and free it. > + */ > +static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) > +{ > + struct vma_list *vml; > + > + list_for_each_entry(vml, &arena->vma_list, head) > + zap_page_range_single(vml->vma, uaddr, > + PAGE_SIZE * page_cnt, NULL); > +} > + > +static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) > +{ > + u64 full_uaddr, uaddr_end; > + long kaddr, pgoff, i; > + struct page *page; > + > + /* only aligned lower 32-bit are relevant */ > + uaddr = (u32)uaddr; > + uaddr &= PAGE_MASK; > + full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; > + uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); > + if (full_uaddr >= uaddr_end) > + return; > + > + page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; > + > + guard(mutex)(&arena->lock); > + > + pgoff = compute_pgoff(arena, uaddr); > + /* clear range */ > + mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); > + > + if (page_cnt > 1) > + /* bulk zap if multiple pages being freed */ > + zap_pages(arena, full_uaddr, page_cnt); > + > + kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; > + for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { > + page = vmalloc_to_page((void *)kaddr); > + if (!page) > + continue; > + if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ > + zap_pages(arena, full_uaddr, 1); The way you split these zap_pages for page_cnt == 1 and page_cnt > 1 is quite confusing. Why can't you just unconditionally zap_pages() regardless of page_cnt before this loop? And why for page_cnt == 1 we have `page_mapped(page)` check, but it's ok to not check this for page_cnt>1 case? This asymmetric handling is confusing and suggests something more is going on here. Or am I overthinking it? > + vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); > + __free_page(page); can something else in the kernel somehow get a refcnt on this page? I.e., is it ok to unconditionally free page here instead of some sort of put_page() instead? > + } > +} > + > +__bpf_kfunc_start_defs(); > + [...]
On Mon, Mar 11, 2024 at 3:01 PM Andrii Nakryiko <andrii.nakryiko@gmail.com> wrote: > > On Thu, Mar 7, 2024 at 5:08 PM Alexei Starovoitov > <alexei.starovoitov@gmail.com> wrote: > > > > From: Alexei Starovoitov <ast@kernel.org> > > > > Introduce bpf_arena, which is a sparse shared memory region between the bpf > > program and user space. > > > > Use cases: > > 1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed > > anonymous region, like memcached or any key/value storage. The bpf > > program implements an in-kernel accelerator. XDP prog can search for > > a key in bpf_arena and return a value without going to user space. > > 2. The bpf program builds arbitrary data structures in bpf_arena (hash > > tables, rb-trees, sparse arrays), while user space consumes it. > > 3. bpf_arena is a "heap" of memory from the bpf program's point of view. > > The user space may mmap it, but bpf program will not convert pointers > > to user base at run-time to improve bpf program speed. > > > > Initially, the kernel vm_area and user vma are not populated. User space > > can fault in pages within the range. While servicing a page fault, > > bpf_arena logic will insert a new page into the kernel and user vmas. The > > bpf program can allocate pages from that region via > > bpf_arena_alloc_pages(). This kernel function will insert pages into the > > kernel vm_area. The subsequent fault-in from user space will populate that > > page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time > > can be used to prevent fault-in from user space. In such a case, if a page > > is not allocated by the bpf program and not present in the kernel vm_area, > > the user process will segfault. This is useful for use cases 2 and 3 above. > > > > bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages > > either at a specific address within the arena or allocates a range with the > > maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees > > pages and removes the range from the kernel vm_area and from user process > > vmas. > > > > bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of > > bpf program is more important than ease of sharing with user space. This is > > use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended. > > It will tell the verifier to treat the rX = bpf_arena_cast_user(rY) > > instruction as a 32-bit move wX = wY, which will improve bpf prog > > performance. Otherwise, bpf_arena_cast_user is translated by JIT to > > conditionally add the upper 32 bits of user vm_start (if the pointer is not > > NULL) to arena pointers before they are stored into memory. This way, user > > space sees them as valid 64-bit pointers. > > > > Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF > > backend generate the bpf_addr_space_cast() instruction to cast pointers > > between address_space(1) which is reserved for bpf_arena pointers and > > default address space zero. All arena pointers in a bpf program written in > > C language are tagged as __attribute__((address_space(1))). Hence, clang > > provides helpful diagnostics when pointers cross address space. Libbpf and > > the kernel support only address_space == 1. All other address space > > identifiers are reserved. > > > > rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the > > verifier that rX->type = PTR_TO_ARENA. Any further operations on > > PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will > > mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate > > them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar > > to copy_from_kernel_nofault() except that no address checks are necessary. > > The address is guaranteed to be in the 4GB range. If the page is not > > present, the destination register is zeroed on read, and the operation is > > ignored on write. > > > > rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type = > > unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the > > verifier converts such cast instructions to mov32. Otherwise, JIT will emit > > native code equivalent to: > > rX = (u32)rY; > > if (rY) > > rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */ > > > > After such conversion, the pointer becomes a valid user pointer within > > bpf_arena range. The user process can access data structures created in > > bpf_arena without any additional computations. For example, a linked list > > built by a bpf program can be walked natively by user space. > > > > Reviewed-by: Barret Rhoden <brho@google.com> > > Signed-off-by: Alexei Starovoitov <ast@kernel.org> > > --- > > include/linux/bpf.h | 7 +- > > include/linux/bpf_types.h | 1 + > > include/uapi/linux/bpf.h | 10 + > > kernel/bpf/Makefile | 3 + > > kernel/bpf/arena.c | 558 +++++++++++++++++++++++++++++++++ > > kernel/bpf/core.c | 11 + > > kernel/bpf/syscall.c | 36 +++ > > kernel/bpf/verifier.c | 1 + > > tools/include/uapi/linux/bpf.h | 10 + > > 9 files changed, 635 insertions(+), 2 deletions(-) > > create mode 100644 kernel/bpf/arena.c > > > > [...] > > > > > struct bpf_offload_dev; > > @@ -2215,6 +2216,8 @@ int generic_map_delete_batch(struct bpf_map *map, > > struct bpf_map *bpf_map_get_curr_or_next(u32 *id); > > struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); > > > > +int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, > > nit: you use more meaningful node_id in arena_alloc_pages(), here > "nid" was a big mystery when looking at just function definition nid is a standard name in mm/. git grep -w nid mm/|wc -l 1064 git grep -w node_id mm/|wc -l 77 Also see slab_nid(), folio_nid(). > > + unsigned long nr_pages, struct page **page_array); > > #ifdef CONFIG_MEMCG_KMEM > > void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, > > int node); > > [...] > > > +u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) > > +{ > > + return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; > > +} > > + > > +u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) > > +{ > > + return arena ? arena->user_vm_start : 0; > > +} > > + > > is it anticipated that these helpers can be called with NULL? I might > see this later in the patch set, but if not, these NULL checks would > be best removed to not create wrong expectations. Looks like you figured it out. > > +static long arena_map_peek_elem(struct bpf_map *map, void *value) > > +{ > > + return -EOPNOTSUPP; > > +} > > + > > +static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) > > +{ > > + return -EOPNOTSUPP; > > +} > > + > > +static long arena_map_pop_elem(struct bpf_map *map, void *value) > > +{ > > + return -EOPNOTSUPP; > > +} > > + > > +static long arena_map_delete_elem(struct bpf_map *map, void *value) > > +{ > > + return -EOPNOTSUPP; > > +} > > + > > +static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) > > +{ > > + return -EOPNOTSUPP; > > +} > > + > > This is a separate topic, but I'll just mention it here. It was always > confusing to me why we don't just treat all these callbacks as > optional and return -EOPNOTSUPP in generic map code. Unless I miss > something subtle, we should do a round of clean ups and remove dozens > of unnecessary single line callbacks like these throughout the entire > BPF kernel code. yeah. could be a generic follow up. agree. > > +static long compute_pgoff(struct bpf_arena *arena, long uaddr) > > +{ > > + return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; > > +} > > + > > [...] > > > +static vm_fault_t arena_vm_fault(struct vm_fault *vmf) > > +{ > > + struct bpf_map *map = vmf->vma->vm_file->private_data; > > + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); > > + struct page *page; > > + long kbase, kaddr; > > + int ret; > > + > > + kbase = bpf_arena_get_kern_vm_start(arena); > > + kaddr = kbase + (u32)(vmf->address & PAGE_MASK); > > + > > + guard(mutex)(&arena->lock); > > + page = vmalloc_to_page((void *)kaddr); > > + if (page) > > + /* already have a page vmap-ed */ > > + goto out; > > + > > + if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) > > + /* User space requested to segfault when page is not allocated by bpf prog */ > > + return VM_FAULT_SIGSEGV; > > + > > + ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); > > + if (ret) > > + return VM_FAULT_SIGSEGV; > > + > > + /* Account into memcg of the process that created bpf_arena */ > > + ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); > > any specific reason to not take into account map->numa_node here? There are several reasons for this. 1. is to avoid expectations that map->num_node is meaningful for actual run-time allocations. Since arena_alloc_pages() take explicit nid and it would conflict if map->numa_node was also used. 2. In this case it's user space faulting in a page, so best to let NUMA_NO_NODE pick the right one. > > + if (ret) { > > + mtree_erase(&arena->mt, vmf->pgoff); > > + return VM_FAULT_SIGSEGV; > > + } > > + > > + ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); > > + if (ret) { > > + mtree_erase(&arena->mt, vmf->pgoff); > > + __free_page(page); > > + return VM_FAULT_SIGSEGV; > > + } > > +out: > > + page_ref_add(page, 1); > > + vmf->page = page; > > + return 0; > > +} > > + > > [...] > > > +/* > > + * Allocate pages and vmap them into kernel vmalloc area. > > + * Later the pages will be mmaped into user space vma. > > + */ > > +static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) > > +{ > > + /* user_vm_end/start are fixed before bpf prog runs */ > > + long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; > > + u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); > > + struct page **pages; > > + long pgoff = 0; > > + u32 uaddr32; > > + int ret, i; > > + > > + if (page_cnt > page_cnt_max) > > + return 0; > > + > > + if (uaddr) { > > + if (uaddr & ~PAGE_MASK) > > + return 0; > > + pgoff = compute_pgoff(arena, uaddr); > > + if (pgoff + page_cnt > page_cnt_max) > > As I mentioned offline, is this guaranteed to not overflow? it's not > obvious because at least according to all the types (longs), uaddr can > be arbitrary, so pgoff can be quite large, etc. Might be worthwhile > rewriting as `pgoff > page_cnt_max - page_cnt` or something, just to > make it clear in code it has no chance of overflowing. It cannot overflow. All three variables: page_cnt, pgoff, page_cnt_max are within u32 range. Look at how they're computed. > > + /* requested address will be outside of user VMA */ > > + return 0; > > + } > > + > > + /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ > > + pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); > > + if (!pages) > > + return 0; > > + > > + guard(mutex)(&arena->lock); > > + > > + if (uaddr) > > + ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, > > + MT_ENTRY, GFP_KERNEL); > > + else > > + ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, > > + page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); > > mtree_alloc_range() is lacking documentation, unfortunately, so it's > not clear to me whether max should be just `page_cnt_max - 1` as you > have or `page_cnt_max - page_cnt`. There is a "Test a single entry" in > lib/test_maple_tree.c where min == max and size == 4096 which is > expected to work, so I have a feeling that the correct max should be > up to the maximum possible beginning of range, but I might be > mistaken. Can you please double check? Not only I double checked this, the patch 12 selftest covers this boundary condition :) > > > + if (ret) > > + goto out_free_pages; > > + > > + ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, > > + node_id, page_cnt, pages); > > + if (ret) > > + goto out; > > + > > + uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); > > + /* Earlier checks make sure that uaddr32 + page_cnt * PAGE_SIZE will not overflow 32-bit */ > > we checked that `uaddr32 + page_cnt * PAGE_SIZE - 1` won't overflow, > full page_cnt * PAGE_SIZE can actually overflow, so comment is a bit > imprecise. But it's not really clear why it matters here, tbh. > kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE can actually update > upper 32-bits of the kernel-side memory address, is that a problem? There is a giant thread in v2 series between myself and Barrett that goes into length why we decided to prohibit overflow within lower 32-bit. The shortest tldr: technically we can allow lower 32-bit overflow, but the code gets very complex. > > > + ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, > > + kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); > > + if (ret) { > > + for (i = 0; i < page_cnt; i++) > > + __free_page(pages[i]); > > + goto out; > > + } > > + kvfree(pages); > > + return clear_lo32(arena->user_vm_start) + uaddr32; > > +out: > > + mtree_erase(&arena->mt, pgoff); > > +out_free_pages: > > + kvfree(pages); > > + return 0; > > +} > > + > > +/* > > + * If page is present in vmalloc area, unmap it from vmalloc area, > > + * unmap it from all user space vma-s, > > + * and free it. > > + */ > > +static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) > > +{ > > + struct vma_list *vml; > > + > > + list_for_each_entry(vml, &arena->vma_list, head) > > + zap_page_range_single(vml->vma, uaddr, > > + PAGE_SIZE * page_cnt, NULL); > > +} > > + > > +static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) > > +{ > > + u64 full_uaddr, uaddr_end; > > + long kaddr, pgoff, i; > > + struct page *page; > > + > > + /* only aligned lower 32-bit are relevant */ > > + uaddr = (u32)uaddr; > > + uaddr &= PAGE_MASK; > > + full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; > > + uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); > > + if (full_uaddr >= uaddr_end) > > + return; > > + > > + page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; > > + > > + guard(mutex)(&arena->lock); > > + > > + pgoff = compute_pgoff(arena, uaddr); > > + /* clear range */ > > + mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); > > + > > + if (page_cnt > 1) > > + /* bulk zap if multiple pages being freed */ > > + zap_pages(arena, full_uaddr, page_cnt); > > + > > + kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; > > + for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { > > + page = vmalloc_to_page((void *)kaddr); > > + if (!page) > > + continue; > > + if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ > > + zap_pages(arena, full_uaddr, 1); > > The way you split these zap_pages for page_cnt == 1 and page_cnt > 1 > is quite confusing. Why can't you just unconditionally zap_pages() > regardless of page_cnt before this loop? And why for page_cnt == 1 we > have `page_mapped(page)` check, but it's ok to not check this for > page_cnt>1 case? > > This asymmetric handling is confusing and suggests something more is > going on here. Or am I overthinking it? It's an important optimization for the common case of page_cnt==1. If page wasn't mapped into some user vma there is no need to call zap_pages which is slow. But when page_cnt is big it's much faster to do the batched zap which is what this code does. For the case of page_cnt=2 or small number there is no good optimization to do other than try to count whether all pages in this range are not page_mapped() and omit zap_page(). I don't think it's worth doing such optimization at this point, since page_cnt=1 is likely the most common case. If it changes, it can be optimized later. > > + vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); > > + __free_page(page); > > can something else in the kernel somehow get a refcnt on this page? > I.e., is it ok to unconditionally free page here instead of some sort > of put_page() instead? hmm. __free_page() does the refcnt. It's not an unconditional free. put_page() is for the case when folio is present. Here all of them are privately managed pages. All are single page individual allocations and a normal refcnt scheme applies. Which is what __free_page() does. Thanks for the review. I believe I answered all the questions. Looks like the only followup is to generalize all 'return -EOPNOTSUPP' across all map types. I'll add it to my todo. Unless somebody will have more free cycles.
On Mon, Mar 11, 2024 at 3:41 PM Alexei Starovoitov <alexei.starovoitov@gmail.com> wrote: > > On Mon, Mar 11, 2024 at 3:01 PM Andrii Nakryiko > <andrii.nakryiko@gmail.com> wrote: > > > > On Thu, Mar 7, 2024 at 5:08 PM Alexei Starovoitov > > <alexei.starovoitov@gmail.com> wrote: > > > > > > From: Alexei Starovoitov <ast@kernel.org> > > > > > > Introduce bpf_arena, which is a sparse shared memory region between the bpf > > > program and user space. > > > > > > Use cases: > > > 1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed > > > anonymous region, like memcached or any key/value storage. The bpf > > > program implements an in-kernel accelerator. XDP prog can search for > > > a key in bpf_arena and return a value without going to user space. > > > 2. The bpf program builds arbitrary data structures in bpf_arena (hash > > > tables, rb-trees, sparse arrays), while user space consumes it. > > > 3. bpf_arena is a "heap" of memory from the bpf program's point of view. > > > The user space may mmap it, but bpf program will not convert pointers > > > to user base at run-time to improve bpf program speed. > > > > > > Initially, the kernel vm_area and user vma are not populated. User space > > > can fault in pages within the range. While servicing a page fault, > > > bpf_arena logic will insert a new page into the kernel and user vmas. The > > > bpf program can allocate pages from that region via > > > bpf_arena_alloc_pages(). This kernel function will insert pages into the > > > kernel vm_area. The subsequent fault-in from user space will populate that > > > page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time > > > can be used to prevent fault-in from user space. In such a case, if a page > > > is not allocated by the bpf program and not present in the kernel vm_area, > > > the user process will segfault. This is useful for use cases 2 and 3 above. > > > > > > bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages > > > either at a specific address within the arena or allocates a range with the > > > maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees > > > pages and removes the range from the kernel vm_area and from user process > > > vmas. > > > > > > bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of > > > bpf program is more important than ease of sharing with user space. This is > > > use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended. > > > It will tell the verifier to treat the rX = bpf_arena_cast_user(rY) > > > instruction as a 32-bit move wX = wY, which will improve bpf prog > > > performance. Otherwise, bpf_arena_cast_user is translated by JIT to > > > conditionally add the upper 32 bits of user vm_start (if the pointer is not > > > NULL) to arena pointers before they are stored into memory. This way, user > > > space sees them as valid 64-bit pointers. > > > > > > Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF > > > backend generate the bpf_addr_space_cast() instruction to cast pointers > > > between address_space(1) which is reserved for bpf_arena pointers and > > > default address space zero. All arena pointers in a bpf program written in > > > C language are tagged as __attribute__((address_space(1))). Hence, clang > > > provides helpful diagnostics when pointers cross address space. Libbpf and > > > the kernel support only address_space == 1. All other address space > > > identifiers are reserved. > > > > > > rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the > > > verifier that rX->type = PTR_TO_ARENA. Any further operations on > > > PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will > > > mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate > > > them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar > > > to copy_from_kernel_nofault() except that no address checks are necessary. > > > The address is guaranteed to be in the 4GB range. If the page is not > > > present, the destination register is zeroed on read, and the operation is > > > ignored on write. > > > > > > rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type = > > > unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the > > > verifier converts such cast instructions to mov32. Otherwise, JIT will emit > > > native code equivalent to: > > > rX = (u32)rY; > > > if (rY) > > > rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */ > > > > > > After such conversion, the pointer becomes a valid user pointer within > > > bpf_arena range. The user process can access data structures created in > > > bpf_arena without any additional computations. For example, a linked list > > > built by a bpf program can be walked natively by user space. > > > > > > Reviewed-by: Barret Rhoden <brho@google.com> > > > Signed-off-by: Alexei Starovoitov <ast@kernel.org> > > > --- > > > include/linux/bpf.h | 7 +- > > > include/linux/bpf_types.h | 1 + > > > include/uapi/linux/bpf.h | 10 + > > > kernel/bpf/Makefile | 3 + > > > kernel/bpf/arena.c | 558 +++++++++++++++++++++++++++++++++ > > > kernel/bpf/core.c | 11 + > > > kernel/bpf/syscall.c | 36 +++ > > > kernel/bpf/verifier.c | 1 + > > > tools/include/uapi/linux/bpf.h | 10 + > > > 9 files changed, 635 insertions(+), 2 deletions(-) > > > create mode 100644 kernel/bpf/arena.c > > > > > > > [...] > > > > > > > > struct bpf_offload_dev; > > > @@ -2215,6 +2216,8 @@ int generic_map_delete_batch(struct bpf_map *map, > > > struct bpf_map *bpf_map_get_curr_or_next(u32 *id); > > > struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); > > > > > > +int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, > > > > nit: you use more meaningful node_id in arena_alloc_pages(), here > > "nid" was a big mystery when looking at just function definition > > nid is a standard name in mm/. > git grep -w nid mm/|wc -l > 1064 > git grep -w node_id mm/|wc -l > 77 > > Also see slab_nid(), folio_nid(). > ok > > > + unsigned long nr_pages, struct page **page_array); > > > #ifdef CONFIG_MEMCG_KMEM > > > void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, > > > int node); > > > > [...] > > > > > +u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) > > > +{ > > > + return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; > > > +} > > > + > > > +u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) > > > +{ > > > + return arena ? arena->user_vm_start : 0; > > > +} > > > + > > > > is it anticipated that these helpers can be called with NULL? I might > > see this later in the patch set, but if not, these NULL checks would > > be best removed to not create wrong expectations. > > Looks like you figured it out. yep > > > > +static long arena_map_peek_elem(struct bpf_map *map, void *value) > > > +{ > > > + return -EOPNOTSUPP; > > > +} > > > + > > > +static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) > > > +{ > > > + return -EOPNOTSUPP; > > > +} > > > + > > > +static long arena_map_pop_elem(struct bpf_map *map, void *value) > > > +{ > > > + return -EOPNOTSUPP; > > > +} > > > + > > > +static long arena_map_delete_elem(struct bpf_map *map, void *value) > > > +{ > > > + return -EOPNOTSUPP; > > > +} > > > + > > > +static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) > > > +{ > > > + return -EOPNOTSUPP; > > > +} > > > + > > > > This is a separate topic, but I'll just mention it here. It was always > > confusing to me why we don't just treat all these callbacks as > > optional and return -EOPNOTSUPP in generic map code. Unless I miss > > something subtle, we should do a round of clean ups and remove dozens > > of unnecessary single line callbacks like these throughout the entire > > BPF kernel code. > > yeah. could be a generic follow up. agree. > > > > +static long compute_pgoff(struct bpf_arena *arena, long uaddr) > > > +{ > > > + return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; > > > +} > > > + > > > > [...] > > > > > +static vm_fault_t arena_vm_fault(struct vm_fault *vmf) > > > +{ > > > + struct bpf_map *map = vmf->vma->vm_file->private_data; > > > + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); > > > + struct page *page; > > > + long kbase, kaddr; > > > + int ret; > > > + > > > + kbase = bpf_arena_get_kern_vm_start(arena); > > > + kaddr = kbase + (u32)(vmf->address & PAGE_MASK); > > > + > > > + guard(mutex)(&arena->lock); > > > + page = vmalloc_to_page((void *)kaddr); > > > + if (page) > > > + /* already have a page vmap-ed */ > > > + goto out; > > > + > > > + if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) > > > + /* User space requested to segfault when page is not allocated by bpf prog */ > > > + return VM_FAULT_SIGSEGV; > > > + > > > + ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); > > > + if (ret) > > > + return VM_FAULT_SIGSEGV; > > > + > > > + /* Account into memcg of the process that created bpf_arena */ > > > + ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); > > > > any specific reason to not take into account map->numa_node here? > > There are several reasons for this. > 1. is to avoid expectations that map->num_node is meaningful > for actual run-time allocations. > Since arena_alloc_pages() take explicit nid and it would conflict > if map->numa_node was also used. > 2. In this case it's user space faulting in a page, > so best to let NUMA_NO_NODE pick the right one. > ok > > > > + if (ret) { > > > + mtree_erase(&arena->mt, vmf->pgoff); > > > + return VM_FAULT_SIGSEGV; > > > + } > > > + > > > + ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); > > > + if (ret) { > > > + mtree_erase(&arena->mt, vmf->pgoff); > > > + __free_page(page); > > > + return VM_FAULT_SIGSEGV; > > > + } > > > +out: > > > + page_ref_add(page, 1); > > > + vmf->page = page; > > > + return 0; > > > +} > > > + > > > > [...] > > > > > +/* > > > + * Allocate pages and vmap them into kernel vmalloc area. > > > + * Later the pages will be mmaped into user space vma. > > > + */ > > > +static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) > > > +{ > > > + /* user_vm_end/start are fixed before bpf prog runs */ > > > + long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; > > > + u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); > > > + struct page **pages; > > > + long pgoff = 0; > > > + u32 uaddr32; > > > + int ret, i; > > > + > > > + if (page_cnt > page_cnt_max) > > > + return 0; > > > + > > > + if (uaddr) { > > > + if (uaddr & ~PAGE_MASK) > > > + return 0; > > > + pgoff = compute_pgoff(arena, uaddr); > > > + if (pgoff + page_cnt > page_cnt_max) > > > > As I mentioned offline, is this guaranteed to not overflow? it's not > > obvious because at least according to all the types (longs), uaddr can > > be arbitrary, so pgoff can be quite large, etc. Might be worthwhile > > rewriting as `pgoff > page_cnt_max - page_cnt` or something, just to > > make it clear in code it has no chance of overflowing. > > It cannot overflow. All three variables: > page_cnt, pgoff, page_cnt_max are within u32 range. > Look at how they're computed. my point was that we can make it obvious in the code without having to trace origins of those values outside of arena_alloc_pages(), but it's up to you > > > > + /* requested address will be outside of user VMA */ > > > + return 0; > > > + } > > > + > > > + /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ > > > + pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); > > > + if (!pages) > > > + return 0; > > > + > > > + guard(mutex)(&arena->lock); > > > + > > > + if (uaddr) > > > + ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, > > > + MT_ENTRY, GFP_KERNEL); > > > + else > > > + ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, > > > + page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); > > > > mtree_alloc_range() is lacking documentation, unfortunately, so it's > > not clear to me whether max should be just `page_cnt_max - 1` as you > > have or `page_cnt_max - page_cnt`. There is a "Test a single entry" in > > lib/test_maple_tree.c where min == max and size == 4096 which is > > expected to work, so I have a feeling that the correct max should be > > up to the maximum possible beginning of range, but I might be > > mistaken. Can you please double check? > > Not only I double checked this, the patch 12 selftest covers > this boundary condition :) > ok, cool. I wish this maple tree API was better documented. > > > > > + if (ret) > > > + goto out_free_pages; > > > + > > > + ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, > > > + node_id, page_cnt, pages); > > > + if (ret) > > > + goto out; > > > + > > > + uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); > > > + /* Earlier checks make sure that uaddr32 + page_cnt * PAGE_SIZE will not overflow 32-bit */ > > > > we checked that `uaddr32 + page_cnt * PAGE_SIZE - 1` won't overflow, > > full page_cnt * PAGE_SIZE can actually overflow, so comment is a bit > > imprecise. But it's not really clear why it matters here, tbh. > > kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE can actually update > > upper 32-bits of the kernel-side memory address, is that a problem? > > There is a giant thread in v2 series between myself and Barrett > that goes into length why we decided to prohibit overflow within lower 32-bit. > The shortest tldr: technically we can allow lower 32-bit overflow, > but the code gets very complex. no, I get that, my point was a bit different and purely pedantic. It doesn't overflow 32-bit only when viewed from user-space addresses POV. It seems like it can overflow when we translate it into kernel address by adding kernel_vm_start (`kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP)` doesn't guarantee 4GB alignment, IIUC). But I don't see what kernel-side overflow matters (yet the comment is next to the code that does kernel-side range mapping, which is why I commented, the placement of the comment is what makes it a bit more confusing). But I was pointing out that if the user-requested area is exactly 4GB and user_vm_start is aligned at the 4GB boundary, then user_vm_start + 4GB, technically is incrementing the upper 32 bits of user_vm_start. Which I don't think matters because it's the exclusive end of range. So it's just the comment is "off by one", because we checked that the last byte's address (which is user_vm_start + 4GB - 1) isn't overflowing the upper 32-bits. > > > > > > + ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, > > > + kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); > > > + if (ret) { > > > + for (i = 0; i < page_cnt; i++) > > > + __free_page(pages[i]); > > > + goto out; > > > + } > > > + kvfree(pages); > > > + return clear_lo32(arena->user_vm_start) + uaddr32; > > > +out: > > > + mtree_erase(&arena->mt, pgoff); > > > +out_free_pages: > > > + kvfree(pages); > > > + return 0; > > > +} > > > + > > > +/* > > > + * If page is present in vmalloc area, unmap it from vmalloc area, > > > + * unmap it from all user space vma-s, > > > + * and free it. > > > + */ > > > +static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) > > > +{ > > > + struct vma_list *vml; > > > + > > > + list_for_each_entry(vml, &arena->vma_list, head) > > > + zap_page_range_single(vml->vma, uaddr, > > > + PAGE_SIZE * page_cnt, NULL); > > > +} > > > + > > > +static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) > > > +{ > > > + u64 full_uaddr, uaddr_end; > > > + long kaddr, pgoff, i; > > > + struct page *page; > > > + > > > + /* only aligned lower 32-bit are relevant */ > > > + uaddr = (u32)uaddr; > > > + uaddr &= PAGE_MASK; > > > + full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; > > > + uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); > > > + if (full_uaddr >= uaddr_end) > > > + return; > > > + > > > + page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; > > > + > > > + guard(mutex)(&arena->lock); > > > + > > > + pgoff = compute_pgoff(arena, uaddr); > > > + /* clear range */ > > > + mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); > > > + > > > + if (page_cnt > 1) > > > + /* bulk zap if multiple pages being freed */ > > > + zap_pages(arena, full_uaddr, page_cnt); > > > + > > > + kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; > > > + for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { > > > + page = vmalloc_to_page((void *)kaddr); > > > + if (!page) > > > + continue; > > > + if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ > > > + zap_pages(arena, full_uaddr, 1); > > > > The way you split these zap_pages for page_cnt == 1 and page_cnt > 1 > > is quite confusing. Why can't you just unconditionally zap_pages() > > regardless of page_cnt before this loop? And why for page_cnt == 1 we > > have `page_mapped(page)` check, but it's ok to not check this for > > page_cnt>1 case? > > > > This asymmetric handling is confusing and suggests something more is > > going on here. Or am I overthinking it? > > It's an important optimization for the common case of page_cnt==1. > If page wasn't mapped into some user vma there is no need to call zap_pages > which is slow. > But when page_cnt is big it's much faster to do the batched zap > which is what this code does. > For the case of page_cnt=2 or small number there is no good optimization > to do other than try to count whether all pages in this range are > not page_mapped() and omit zap_page(). > I don't think it's worth doing such optimization at this point, > since page_cnt=1 is likely the most common case. > If it changes, it can be optimized later. yep, makes sense, and a small comment stating that would be useful, IMO :) > > > > + vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); > > > + __free_page(page); > > > > can something else in the kernel somehow get a refcnt on this page? > > I.e., is it ok to unconditionally free page here instead of some sort > > of put_page() instead? > > hmm. __free_page() does the refcnt. It's not an unconditional free. > put_page() is for the case when folio is present. Here all of them > are privately managed pages. All are single page individual allocations > and a normal refcnt scheme applies. Which is what __free_page() does. > ah, ok, I'm not familiar with mm APIs, hence my confusion, thanks. > Thanks for the review. > I believe I answered all the questions. Looks like the only yep, I've applied patches already, -EOPNOTSUPP is a completely independent potential clean up > followup is to generalize all 'return -EOPNOTSUPP' > across all map types. I'll add it to my todo. Unless somebody > will have more free cycles.
On Mon, Mar 11, 2024 at 3:59 PM Andrii Nakryiko <andrii.nakryiko@gmail.com> wrote: > > > no, I get that, my point was a bit different and purely pedantic. It > doesn't overflow 32-bit only when viewed from user-space addresses > POV. > > It seems like it can overflow when we translate it into kernel address > by adding kernel_vm_start (`kern_vm = get_vm_area(KERN_VM_SZ, > VM_SPARSE | VM_USERMAP)` doesn't guarantee 4GB alignment, IIUC). But I > don't see what kernel-side overflow matters (yet the comment is next > to the code that does kernel-side range mapping, which is why I > commented, the placement of the comment is what makes it a bit more > confusing). Got it. Ok. Will rephrase the comment. > But I was pointing out that if the user-requested area is exactly 4GB > and user_vm_start is aligned at the 4GB boundary, then user_vm_start + > 4GB, technically is incrementing the upper 32 bits of user_vm_start. > Which I don't think matters because it's the exclusive end of range. yes. should be fine. I didn't add a selftest for 4Gb, because not every CI has runners with this much memory. I guess selftest can try to allocate and skip the test if enomem without failing it. Will add it in the follow up. > > > The way you split these zap_pages for page_cnt == 1 and page_cnt > 1 > > > is quite confusing. Why can't you just unconditionally zap_pages() > > > regardless of page_cnt before this loop? And why for page_cnt == 1 we > > > have `page_mapped(page)` check, but it's ok to not check this for > > > page_cnt>1 case? > > > > > > This asymmetric handling is confusing and suggests something more is > > > going on here. Or am I overthinking it? > > > > It's an important optimization for the common case of page_cnt==1. > > If page wasn't mapped into some user vma there is no need to call zap_pages > > which is slow. > > But when page_cnt is big it's much faster to do the batched zap > > which is what this code does. > > For the case of page_cnt=2 or small number there is no good optimization > > to do other than try to count whether all pages in this range are > > not page_mapped() and omit zap_page(). > > I don't think it's worth doing such optimization at this point, > > since page_cnt=1 is likely the most common case. > > If it changes, it can be optimized later. > > yep, makes sense, and a small comment stating that would be useful, IMO :) Ok. Will add that too.
diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 95e07673cdc1..ea6ab6e0eef9 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -37,6 +37,7 @@ struct perf_event; struct bpf_prog; struct bpf_prog_aux; struct bpf_map; +struct bpf_arena; struct sock; struct seq_file; struct btf; @@ -528,8 +529,8 @@ void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock); void bpf_rb_root_free(const struct btf_field *field, void *rb_root, struct bpf_spin_lock *spin_lock); - - +u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); +u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); struct bpf_offload_dev; @@ -2215,6 +2216,8 @@ int generic_map_delete_batch(struct bpf_map *map, struct bpf_map *bpf_map_get_curr_or_next(u32 *id); struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); +int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, + unsigned long nr_pages, struct page **page_array); #ifdef CONFIG_MEMCG_KMEM void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, int node); diff --git a/include/linux/bpf_types.h b/include/linux/bpf_types.h index 94baced5a1ad..9f2a6b83b49e 100644 --- a/include/linux/bpf_types.h +++ b/include/linux/bpf_types.h @@ -132,6 +132,7 @@ BPF_MAP_TYPE(BPF_MAP_TYPE_STRUCT_OPS, bpf_struct_ops_map_ops) BPF_MAP_TYPE(BPF_MAP_TYPE_RINGBUF, ringbuf_map_ops) BPF_MAP_TYPE(BPF_MAP_TYPE_BLOOM_FILTER, bloom_filter_map_ops) BPF_MAP_TYPE(BPF_MAP_TYPE_USER_RINGBUF, user_ringbuf_map_ops) +BPF_MAP_TYPE(BPF_MAP_TYPE_ARENA, arena_map_ops) BPF_LINK_TYPE(BPF_LINK_TYPE_RAW_TRACEPOINT, raw_tracepoint) BPF_LINK_TYPE(BPF_LINK_TYPE_TRACING, tracing) diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 85ec7fc799d7..e30d943db8a4 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -1009,6 +1009,7 @@ enum bpf_map_type { BPF_MAP_TYPE_BLOOM_FILTER, BPF_MAP_TYPE_USER_RINGBUF, BPF_MAP_TYPE_CGRP_STORAGE, + BPF_MAP_TYPE_ARENA, __MAX_BPF_MAP_TYPE }; @@ -1396,6 +1397,12 @@ enum { /* BPF token FD is passed in a corresponding command's token_fd field */ BPF_F_TOKEN_FD = (1U << 16), + +/* When user space page faults in bpf_arena send SIGSEGV instead of inserting new page */ + BPF_F_SEGV_ON_FAULT = (1U << 17), + +/* Do not translate kernel bpf_arena pointers to user pointers */ + BPF_F_NO_USER_CONV = (1U << 18), }; /* Flags for BPF_PROG_QUERY. */ @@ -1467,6 +1474,9 @@ union bpf_attr { * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the * number of hash functions (if 0, the bloom filter will default * to using 5 hash functions). + * + * BPF_MAP_TYPE_ARENA - contains the address where user space + * is going to mmap() the arena. It has to be page aligned. */ __u64 map_extra; diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile index 4ce95acfcaa7..368c5d86b5b7 100644 --- a/kernel/bpf/Makefile +++ b/kernel/bpf/Makefile @@ -15,6 +15,9 @@ obj-${CONFIG_BPF_LSM} += bpf_inode_storage.o obj-$(CONFIG_BPF_SYSCALL) += disasm.o mprog.o obj-$(CONFIG_BPF_JIT) += trampoline.o obj-$(CONFIG_BPF_SYSCALL) += btf.o memalloc.o +ifeq ($(CONFIG_MMU)$(CONFIG_64BIT),yy) +obj-$(CONFIG_BPF_SYSCALL) += arena.o +endif obj-$(CONFIG_BPF_JIT) += dispatcher.o ifeq ($(CONFIG_NET),y) obj-$(CONFIG_BPF_SYSCALL) += devmap.o diff --git a/kernel/bpf/arena.c b/kernel/bpf/arena.c new file mode 100644 index 000000000000..86571e760dd6 --- /dev/null +++ b/kernel/bpf/arena.c @@ -0,0 +1,558 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/err.h> +#include <linux/btf_ids.h> +#include <linux/vmalloc.h> +#include <linux/pagemap.h> + +/* + * bpf_arena is a sparsely populated shared memory region between bpf program and + * user space process. + * + * For example on x86-64 the values could be: + * user_vm_start 7f7d26200000 // picked by mmap() + * kern_vm_start ffffc90001e69000 // picked by get_vm_area() + * For user space all pointers within the arena are normal 8-byte addresses. + * In this example 7f7d26200000 is the address of the first page (pgoff=0). + * The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr + * (u32)7f7d26200000 -> 26200000 + * hence + * ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb + * kernel memory region. + * + * BPF JITs generate the following code to access arena: + * mov eax, eax // eax has lower 32-bit of user pointer + * mov word ptr [rax + r12 + off], bx + * where r12 == kern_vm_start and off is s16. + * Hence allocate 4Gb + GUARD_SZ/2 on each side. + * + * Initially kernel vm_area and user vma are not populated. + * User space can fault-in any address which will insert the page + * into kernel and user vma. + * bpf program can allocate a page via bpf_arena_alloc_pages() kfunc + * which will insert it into kernel vm_area. + * The later fault-in from user space will populate that page into user vma. + */ + +/* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */ +#define GUARD_SZ (1ull << sizeof(((struct bpf_insn *)0)->off) * 8) +#define KERN_VM_SZ ((1ull << 32) + GUARD_SZ) + +struct bpf_arena { + struct bpf_map map; + u64 user_vm_start; + u64 user_vm_end; + struct vm_struct *kern_vm; + struct maple_tree mt; + struct list_head vma_list; + struct mutex lock; +}; + +u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) +{ + return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; +} + +u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) +{ + return arena ? arena->user_vm_start : 0; +} + +static long arena_map_peek_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) +{ + return -EOPNOTSUPP; +} + +static long arena_map_pop_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static long arena_map_delete_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + return -EOPNOTSUPP; +} + +static long compute_pgoff(struct bpf_arena *arena, long uaddr) +{ + return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; +} + +static struct bpf_map *arena_map_alloc(union bpf_attr *attr) +{ + struct vm_struct *kern_vm; + int numa_node = bpf_map_attr_numa_node(attr); + struct bpf_arena *arena; + u64 vm_range; + int err = -ENOMEM; + + if (attr->key_size || attr->value_size || attr->max_entries == 0 || + /* BPF_F_MMAPABLE must be set */ + !(attr->map_flags & BPF_F_MMAPABLE) || + /* No unsupported flags present */ + (attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV))) + return ERR_PTR(-EINVAL); + + if (attr->map_extra & ~PAGE_MASK) + /* If non-zero the map_extra is an expected user VMA start address */ + return ERR_PTR(-EINVAL); + + vm_range = (u64)attr->max_entries * PAGE_SIZE; + if (vm_range > (1ull << 32)) + return ERR_PTR(-E2BIG); + + if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32)) + /* user vma must not cross 32-bit boundary */ + return ERR_PTR(-ERANGE); + + kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP); + if (!kern_vm) + return ERR_PTR(-ENOMEM); + + arena = bpf_map_area_alloc(sizeof(*arena), numa_node); + if (!arena) + goto err; + + arena->kern_vm = kern_vm; + arena->user_vm_start = attr->map_extra; + if (arena->user_vm_start) + arena->user_vm_end = arena->user_vm_start + vm_range; + + INIT_LIST_HEAD(&arena->vma_list); + bpf_map_init_from_attr(&arena->map, attr); + mt_init_flags(&arena->mt, MT_FLAGS_ALLOC_RANGE); + mutex_init(&arena->lock); + + return &arena->map; +err: + free_vm_area(kern_vm); + return ERR_PTR(err); +} + +static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data) +{ + struct page *page; + pte_t pte; + + pte = ptep_get(ptep); + if (!pte_present(pte)) /* sanity check */ + return 0; + page = pte_page(pte); + /* + * We do not update pte here: + * 1. Nobody should be accessing bpf_arena's range outside of a kernel bug + * 2. TLB flushing is batched or deferred. Even if we clear pte, + * the TLB entries can stick around and continue to permit access to + * the freed page. So it all relies on 1. + */ + __free_page(page); + return 0; +} + +static void arena_map_free(struct bpf_map *map) +{ + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + /* + * Check that user vma-s are not around when bpf map is freed. + * mmap() holds vm_file which holds bpf_map refcnt. + * munmap() must have happened on vma followed by arena_vm_close() + * which would clear arena->vma_list. + */ + if (WARN_ON_ONCE(!list_empty(&arena->vma_list))) + return; + + /* + * free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area(). + * It unmaps everything from vmalloc area and clears pgtables. + * Call apply_to_existing_page_range() first to find populated ptes and + * free those pages. + */ + apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena), + KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL); + free_vm_area(arena->kern_vm); + mtree_destroy(&arena->mt); + bpf_map_area_free(arena); +} + +static void *arena_map_lookup_elem(struct bpf_map *map, void *key) +{ + return ERR_PTR(-EINVAL); +} + +static long arena_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + return -EOPNOTSUPP; +} + +static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf, + const struct btf_type *key_type, const struct btf_type *value_type) +{ + return 0; +} + +static u64 arena_map_mem_usage(const struct bpf_map *map) +{ + return 0; +} + +struct vma_list { + struct vm_area_struct *vma; + struct list_head head; +}; + +static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma) +{ + struct vma_list *vml; + + vml = kmalloc(sizeof(*vml), GFP_KERNEL); + if (!vml) + return -ENOMEM; + vma->vm_private_data = vml; + vml->vma = vma; + list_add(&vml->head, &arena->vma_list); + return 0; +} + +static void arena_vm_close(struct vm_area_struct *vma) +{ + struct bpf_map *map = vma->vm_file->private_data; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + struct vma_list *vml; + + guard(mutex)(&arena->lock); + vml = vma->vm_private_data; + list_del(&vml->head); + vma->vm_private_data = NULL; + kfree(vml); +} + +#define MT_ENTRY ((void *)&arena_map_ops) /* unused. has to be valid pointer */ + +static vm_fault_t arena_vm_fault(struct vm_fault *vmf) +{ + struct bpf_map *map = vmf->vma->vm_file->private_data; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + struct page *page; + long kbase, kaddr; + int ret; + + kbase = bpf_arena_get_kern_vm_start(arena); + kaddr = kbase + (u32)(vmf->address & PAGE_MASK); + + guard(mutex)(&arena->lock); + page = vmalloc_to_page((void *)kaddr); + if (page) + /* already have a page vmap-ed */ + goto out; + + if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) + /* User space requested to segfault when page is not allocated by bpf prog */ + return VM_FAULT_SIGSEGV; + + ret = mtree_insert(&arena->mt, vmf->pgoff, MT_ENTRY, GFP_KERNEL); + if (ret) + return VM_FAULT_SIGSEGV; + + /* Account into memcg of the process that created bpf_arena */ + ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page); + if (ret) { + mtree_erase(&arena->mt, vmf->pgoff); + return VM_FAULT_SIGSEGV; + } + + ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); + if (ret) { + mtree_erase(&arena->mt, vmf->pgoff); + __free_page(page); + return VM_FAULT_SIGSEGV; + } +out: + page_ref_add(page, 1); + vmf->page = page; + return 0; +} + +static const struct vm_operations_struct arena_vm_ops = { + .close = arena_vm_close, + .fault = arena_vm_fault, +}; + +static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags) +{ + struct bpf_map *map = filp->private_data; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + long ret; + + if (pgoff) + return -EINVAL; + if (len > (1ull << 32)) + return -E2BIG; + + /* if user_vm_start was specified at arena creation time */ + if (arena->user_vm_start) { + if (len > arena->user_vm_end - arena->user_vm_start) + return -E2BIG; + if (len != arena->user_vm_end - arena->user_vm_start) + return -EINVAL; + if (addr != arena->user_vm_start) + return -EINVAL; + } + + ret = current->mm->get_unmapped_area(filp, addr, len * 2, 0, flags); + if (IS_ERR_VALUE(ret)) + return ret; + if ((ret >> 32) == ((ret + len - 1) >> 32)) + return ret; + if (WARN_ON_ONCE(arena->user_vm_start)) + /* checks at map creation time should prevent this */ + return -EFAULT; + return round_up(ret, 1ull << 32); +} + +static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) +{ + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + guard(mutex)(&arena->lock); + if (arena->user_vm_start && arena->user_vm_start != vma->vm_start) + /* + * If map_extra was not specified at arena creation time then + * 1st user process can do mmap(NULL, ...) to pick user_vm_start + * 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..); + * or + * specify addr in map_extra and + * use the same addr later with mmap(addr, MAP_FIXED..); + */ + return -EBUSY; + + if (arena->user_vm_end && arena->user_vm_end != vma->vm_end) + /* all user processes must have the same size of mmap-ed region */ + return -EBUSY; + + /* Earlier checks should prevent this */ + if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > (1ull << 32) || vma->vm_pgoff)) + return -EFAULT; + + if (remember_vma(arena, vma)) + return -ENOMEM; + + arena->user_vm_start = vma->vm_start; + arena->user_vm_end = vma->vm_end; + /* + * bpf_map_mmap() checks that it's being mmaped as VM_SHARED and + * clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid + * potential change of user_vm_start. + */ + vm_flags_set(vma, VM_DONTEXPAND); + vma->vm_ops = &arena_vm_ops; + return 0; +} + +static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) +{ + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if ((u64)off > arena->user_vm_end - arena->user_vm_start) + return -ERANGE; + *imm = (unsigned long)arena->user_vm_start; + return 0; +} + +BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena) +const struct bpf_map_ops arena_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = arena_map_alloc, + .map_free = arena_map_free, + .map_direct_value_addr = arena_map_direct_value_addr, + .map_mmap = arena_map_mmap, + .map_get_unmapped_area = arena_get_unmapped_area, + .map_get_next_key = arena_map_get_next_key, + .map_push_elem = arena_map_push_elem, + .map_peek_elem = arena_map_peek_elem, + .map_pop_elem = arena_map_pop_elem, + .map_lookup_elem = arena_map_lookup_elem, + .map_update_elem = arena_map_update_elem, + .map_delete_elem = arena_map_delete_elem, + .map_check_btf = arena_map_check_btf, + .map_mem_usage = arena_map_mem_usage, + .map_btf_id = &bpf_arena_map_btf_ids[0], +}; + +static u64 clear_lo32(u64 val) +{ + return val & ~(u64)~0U; +} + +/* + * Allocate pages and vmap them into kernel vmalloc area. + * Later the pages will be mmaped into user space vma. + */ +static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) +{ + /* user_vm_end/start are fixed before bpf prog runs */ + long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; + u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); + struct page **pages; + long pgoff = 0; + u32 uaddr32; + int ret, i; + + if (page_cnt > page_cnt_max) + return 0; + + if (uaddr) { + if (uaddr & ~PAGE_MASK) + return 0; + pgoff = compute_pgoff(arena, uaddr); + if (pgoff + page_cnt > page_cnt_max) + /* requested address will be outside of user VMA */ + return 0; + } + + /* zeroing is needed, since alloc_pages_bulk_array() only fills in non-zero entries */ + pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); + if (!pages) + return 0; + + guard(mutex)(&arena->lock); + + if (uaddr) + ret = mtree_insert_range(&arena->mt, pgoff, pgoff + page_cnt - 1, + MT_ENTRY, GFP_KERNEL); + else + ret = mtree_alloc_range(&arena->mt, &pgoff, MT_ENTRY, + page_cnt, 0, page_cnt_max - 1, GFP_KERNEL); + if (ret) + goto out_free_pages; + + ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO, + node_id, page_cnt, pages); + if (ret) + goto out; + + uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); + /* Earlier checks make sure that uaddr32 + page_cnt * PAGE_SIZE will not overflow 32-bit */ + ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, + kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); + if (ret) { + for (i = 0; i < page_cnt; i++) + __free_page(pages[i]); + goto out; + } + kvfree(pages); + return clear_lo32(arena->user_vm_start) + uaddr32; +out: + mtree_erase(&arena->mt, pgoff); +out_free_pages: + kvfree(pages); + return 0; +} + +/* + * If page is present in vmalloc area, unmap it from vmalloc area, + * unmap it from all user space vma-s, + * and free it. + */ +static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) +{ + struct vma_list *vml; + + list_for_each_entry(vml, &arena->vma_list, head) + zap_page_range_single(vml->vma, uaddr, + PAGE_SIZE * page_cnt, NULL); +} + +static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) +{ + u64 full_uaddr, uaddr_end; + long kaddr, pgoff, i; + struct page *page; + + /* only aligned lower 32-bit are relevant */ + uaddr = (u32)uaddr; + uaddr &= PAGE_MASK; + full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; + uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); + if (full_uaddr >= uaddr_end) + return; + + page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; + + guard(mutex)(&arena->lock); + + pgoff = compute_pgoff(arena, uaddr); + /* clear range */ + mtree_store_range(&arena->mt, pgoff, pgoff + page_cnt - 1, NULL, GFP_KERNEL); + + if (page_cnt > 1) + /* bulk zap if multiple pages being freed */ + zap_pages(arena, full_uaddr, page_cnt); + + kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; + for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { + page = vmalloc_to_page((void *)kaddr); + if (!page) + continue; + if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ + zap_pages(arena, full_uaddr, 1); + vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); + __free_page(page); + } +} + +__bpf_kfunc_start_defs(); + +__bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt, + int node_id, u64 flags) +{ + struct bpf_map *map = p__map; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt) + return NULL; + + return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id); +} + +__bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt) +{ + struct bpf_map *map = p__map; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign) + return; + arena_free_pages(arena, (long)ptr__ign, page_cnt); +} +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(arena_kfuncs) +BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE) +BTF_KFUNCS_END(arena_kfuncs) + +static const struct btf_kfunc_id_set common_kfunc_set = { + .owner = THIS_MODULE, + .set = &arena_kfuncs, +}; + +static int __init kfunc_init(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); +} +late_initcall(kfunc_init); diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index 134b7979f537..a8ecf69c7754 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -2976,6 +2976,17 @@ void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, { } +/* for configs without MMU or 32-bit */ +__weak const struct bpf_map_ops arena_map_ops; +__weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) +{ + return 0; +} +__weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) +{ + return 0; +} + #ifdef CONFIG_BPF_SYSCALL static int __init bpf_global_ma_init(void) { diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index f63f4da4db5e..67923e41a07e 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -164,6 +164,7 @@ static int bpf_map_update_value(struct bpf_map *map, struct file *map_file, if (bpf_map_is_offloaded(map)) { return bpf_map_offload_update_elem(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_CPUMAP || + map->map_type == BPF_MAP_TYPE_ARENA || map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { return map->ops->map_update_elem(map, key, value, flags); } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH || @@ -479,6 +480,39 @@ static void bpf_map_release_memcg(struct bpf_map *map) } #endif +int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, + unsigned long nr_pages, struct page **pages) +{ + unsigned long i, j; + struct page *pg; + int ret = 0; +#ifdef CONFIG_MEMCG_KMEM + struct mem_cgroup *memcg, *old_memcg; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); +#endif + for (i = 0; i < nr_pages; i++) { + pg = alloc_pages_node(nid, gfp | __GFP_ACCOUNT, 0); + + if (pg) { + pages[i] = pg; + continue; + } + for (j = 0; j < i; j++) + __free_page(pages[j]); + ret = -ENOMEM; + break; + } + +#ifdef CONFIG_MEMCG_KMEM + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); +#endif + return ret; +} + + static int btf_field_cmp(const void *a, const void *b) { const struct btf_field *f1 = a, *f2 = b; @@ -1176,6 +1210,7 @@ static int map_create(union bpf_attr *attr) } if (attr->map_type != BPF_MAP_TYPE_BLOOM_FILTER && + attr->map_type != BPF_MAP_TYPE_ARENA && attr->map_extra != 0) return -EINVAL; @@ -1265,6 +1300,7 @@ static int map_create(union bpf_attr *attr) case BPF_MAP_TYPE_LRU_PERCPU_HASH: case BPF_MAP_TYPE_STRUCT_OPS: case BPF_MAP_TYPE_CPUMAP: + case BPF_MAP_TYPE_ARENA: if (!bpf_token_capable(token, CAP_BPF)) goto put_token; break; diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index bf084c693507..fbcf2e5e635a 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -18108,6 +18108,7 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env, case BPF_MAP_TYPE_CGRP_STORAGE: case BPF_MAP_TYPE_QUEUE: case BPF_MAP_TYPE_STACK: + case BPF_MAP_TYPE_ARENA: break; default: verbose(env, diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h index 85ec7fc799d7..e30d943db8a4 100644 --- a/tools/include/uapi/linux/bpf.h +++ b/tools/include/uapi/linux/bpf.h @@ -1009,6 +1009,7 @@ enum bpf_map_type { BPF_MAP_TYPE_BLOOM_FILTER, BPF_MAP_TYPE_USER_RINGBUF, BPF_MAP_TYPE_CGRP_STORAGE, + BPF_MAP_TYPE_ARENA, __MAX_BPF_MAP_TYPE }; @@ -1396,6 +1397,12 @@ enum { /* BPF token FD is passed in a corresponding command's token_fd field */ BPF_F_TOKEN_FD = (1U << 16), + +/* When user space page faults in bpf_arena send SIGSEGV instead of inserting new page */ + BPF_F_SEGV_ON_FAULT = (1U << 17), + +/* Do not translate kernel bpf_arena pointers to user pointers */ + BPF_F_NO_USER_CONV = (1U << 18), }; /* Flags for BPF_PROG_QUERY. */ @@ -1467,6 +1474,9 @@ union bpf_attr { * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the * number of hash functions (if 0, the bloom filter will default * to using 5 hash functions). + * + * BPF_MAP_TYPE_ARENA - contains the address where user space + * is going to mmap() the arena. It has to be page aligned. */ __u64 map_extra;