Message ID | 20240321124640.8870-1-puranjay12@gmail.com (mailing list archive) |
---|---|
State | Superseded |
Delegated to: | BPF |
Headers | show |
Series | [bpf,v4] bpf: verifier: prevent userspace memory access | expand |
On Thu, 2024-03-21 at 12:46 +0000, Puranjay Mohan wrote: > With BPF_PROBE_MEM, BPF allows de-referencing an untrusted pointer. > To > thwart invalid memory accesses, the JITs add an exception table entry > for all such accesses. But in case the src_reg + offset overflows and > turns into a userspace address, the BPF program might read that > memory if > the user has mapped it. > > There are architectural features that prevent the kernel from > accessing > userspace memory, like Privileged Access Never (PAN) on ARM64, > Supervisor Mode Access Prevention (SMAP) on x86-64, Supervisor User > Memory access (SUM) on RISC-V, etc. But BPF should not rely on the > existence of these features. > > Make the verifier add guard instructions around such memory accesses > and > skip the load if the address falls into the userspace region. > > The JITs need to implement bpf_arch_uaddress_limit() to define where > the userspace addresses end for that architecture or TASK_SIZE is > taken > as default. > > The implementation is as follows: > > REG_AX = SRC_REG > if(offset) > REG_AX += offset; > REG_AX >>= 32; > if (REG_AX <= (uaddress_limit >> 32)) > DST_REG = 0; > else > DST_REG = *(size *)(SRC_REG + offset); > > Comparing just the upper 32 bits of the load address with the upper > 32 bits of uaddress_limit implies that the values are being aligned > down > to a 4GB boundary before comparison. > > The above means that all loads with address <= uaddress_limit + 4GB > are > skipped. This is acceptable because there is a large hole (much > larger > than 4GB) between userspace and kernel space memory, therefore a > correctly functioning BPF program should not access this 4GB memory > above the userspace. > > Let's analyze what this patch does to the following fentry program > dereferencing an untrusted pointer: > > SEC("fentry/tcp_v4_connect") > int BPF_PROG(fentry_tcp_v4_connect, struct sock *sk) > { > *(volatile long *)sk; > return 0; > } > > BPF Program before | BPF Program after > ------------------ | ----------------- > > 0: (79) r1 = *(u64 *)(r1 +0) 0: (79) r1 = *(u64 *)(r1 +0) > ------------------------------------------------------------------- > ---- > 1: (79) r1 = *(u64 *)(r1 +0) --\ 1: (bf) r11 = r1 > ----------------------------\ \ 2: (77) r11 >>= 32 > 2: (b7) r0 = 0 \ \ 3: (b5) if r11 <= 0x8000 goto > pc+2 > 3: (95) exit \ \-> 4: (79) r1 = *(u64 *)(r1 +0) > \ 5: (05) goto pc+1 > \ 6: (b7) r1 = 0 > \--------------------------------- > ----- > 7: (b7) r0 = 0 > 8: (95) exit > > As you can see from above, in the best case (off=0), 5 extra > instructions > are emitted. > > Now, we analyse the same program after it has gone through the JITs > of > X86-64, ARM64, and RISC-V architectures. We follow the single load > instruction that has the untrusted pointer and see what > instrumentation > has been added around it. > > x86-64 JIT > ========== > JIT's Instrumentation Verifier's > Instrumentation > (upstream) (This patch) > --------------------- ------------------------- > - > > 0: nopl 0x0(%rax,%rax,1) 0: nopl > 0x0(%rax,%rax,1) > 5: xchg %ax,%ax 5: xchg %ax,%ax > 7: push %rbp 7: push %rbp > 8: mov %rsp,%rbp 8: mov %rsp,%rbp > b: mov 0x0(%rdi),%rdi b: mov > 0x0(%rdi),%rdi > ------------------------------------------------------------------- > ----- > f: movabs $0x800000000000,%r11 f: mov %rdi,%r10 > 19: cmp %r11,%rdi 12: shr $0x20,%r10 > 1c: jb 0x000000000000002a 16: cmp $0x8000,%r10 > 1e: mov %rdi,%r11 1d: jbe > 0x0000000000000025 > 21: add $0x0,%r11 /--> 1f: mov > 0x0(%rdi),%rdi > 28: jae 0x000000000000002e / 23: jmp > 0x0000000000000027 > 2a: xor %edi,%edi / 25: xor %edi,%edi > 2c: jmp 0x0000000000000032 / /------------------------------- > ----- > 2e: mov 0x0(%rdi),%rdi ---/ / 27: xor %eax,%eax > ---------------------------------/ 29: leave > 32: xor %eax,%eax 2a: ret > 34: leave > 35: ret > > The x86-64 JIT already emits some instructions to protect against > user > memory access. The implementation in this patch leads to a smaller > number of instructions being emitted. In the worst case the JIT will > emit 9 extra instructions and this patch decreases it to 7. > > ARM64 JIT > ========= > > No Intrumentation Verifier's > Instrumentation > (upstream) (This patch) > ----------------- --------------------- > ----- > > 0: add x9, x30, #0x0 0: add x9, x30, > #0x0 > 4: nop 4: nop > 8: paciasp 8: paciasp > c: stp x29, x30, [sp, #-16]! c: stp x29, x30, > [sp, #-16]! > 10: mov x29, sp 10: mov x29, sp > 14: stp x19, x20, [sp, #-16]! 14: stp x19, x20, > [sp, #-16]! > 18: stp x21, x22, [sp, #-16]! 18: stp x21, x22, > [sp, #-16]! > 1c: stp x25, x26, [sp, #-16]! 1c: stp x25, x26, > [sp, #-16]! > 20: stp x27, x28, [sp, #-16]! 20: stp x27, x28, > [sp, #-16]! > 24: mov x25, sp 24: mov x25, sp > 28: mov x26, #0x0 28: mov x26, #0x0 > 2c: sub x27, x25, #0x0 2c: sub x27, x25, > #0x0 > 30: sub sp, sp, #0x0 30: sub sp, sp, > #0x0 > 34: ldr x0, [x0] 34: ldr x0, [x0] > --------------------------------------------------------------------- > ----------- > 38: ldr x0, [x0] ----------\ 38: add x9, x0, > #0x0 > -----------------------------------\\ 3c: lsr x9, x9, #32 > 3c: mov x7, #0x0 \\ 40: cmp x9, #0x10, > lsl #12 > 40: mov sp, sp \\ 44: b.ls > 0x0000000000000050 > 44: ldp x27, x28, [sp], #16 \\--> 48: ldr x0, [x0] > 48: ldp x25, x26, [sp], #16 \ 4c: b > 0x0000000000000054 > 4c: ldp x21, x22, [sp], #16 \ 50: mov x0, #0x0 > 50: ldp x19, x20, [sp], #16 \--------------------------- > ------------ > 54: ldp x29, x30, [sp], #16 54: mov x7, #0x0 > 58: add x0, x7, #0x0 58: mov sp, sp > 5c: autiasp 5c: ldp x27, x28, > [sp], #16 > 60: ret 60: ldp x25, x26, > [sp], #16 > 64: nop 64: ldp x21, x22, > [sp], #16 > 68: ldr x10, 0x0000000000000070 68: ldp x19, x20, > [sp], #16 > 6c: br x10 6c: ldp x29, x30, > [sp], #16 > 70: add x0, x7, > #0x0 > 74: autiasp > 78: ret > 7c: nop > 80: ldr x10, > 0x0000000000000088 > 84: br x10 > > There are 6 extra instructions added in ARM64 in the best case. This > will > become 7 in the worst case (off != 0). > > RISC-V JIT (RISCV_ISA_C Disabled) > ========== > > No Intrumentation Verifier's Instrumentation > (upstream) (This patch) > ----------------- -------------------------- > > 0: nop 0: nop > 4: nop 4: nop > 8: li a6, 33 8: li a6, 33 > c: addi sp, sp, -16 c: addi sp, sp, -16 > 10: sd s0, 8(sp) 10: sd s0, 8(sp) > 14: addi s0, sp, 16 14: addi s0, sp, 16 > 18: ld a0, 0(a0) 18: ld a0, 0(a0) > --------------------------------------------------------------- > 1c: ld a0, 0(a0) --\ 1c: mv t0, a0 > --------------------------\ \ 20: srli t0, t0, 32 > 20: li a5, 0 \ \ 24: lui t1, 4096 > 24: ld s0, 8(sp) \ \ 28: sext.w t1, t1 > 28: addi sp, sp, 16 \ \ 2c: bgeu t1, t0, 12 > 2c: sext.w a0, a5 \ \--> 30: ld a0, 0(a0) > 30: ret \ 34: j 8 > \ 38: li a0, 0 > \------------------------------ > 3c: li a5, 0 > 40: ld s0, 8(sp) > 44: addi sp, sp, 16 > 48: sext.w a0, a5 > 4c: ret > > There are 7 extra instructions added in RISC-V. > > Fixes: 800834285361 ("bpf, arm64: Add BPF exception tables") > Reported-by: Breno Leitao <leitao@debian.org> > Suggested-by: Alexei Starovoitov <ast@kernel.org> > Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> > --- > V3: > https://lore.kernel.org/bpf/20240321120842.78983-1-puranjay12@gmail.com/ > Changes in V4: > - Disable this feature on architectures that don't define > CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE. > - By doing the above, we don't need anything explicitly for s390x. > > V2: > https://lore.kernel.org/bpf/20240321101058.68530-1-puranjay12@gmail.com/ > Changes in V3: > - Return 0 from bpf_arch_uaddress_limit() in disabled case because it > returns u64. > - Modify the check in verifier to no do instrumentation when > uaddress_limit > is 0. > > V1: > https://lore.kernel.org/bpf/20240320105436.4781-1-puranjay12@gmail.com/ > Changes in V2: > - Disable this feature on s390x. > --- > arch/x86/net/bpf_jit_comp.c | 72 +++++------------------------------ > -- > include/linux/filter.h | 1 + > kernel/bpf/core.c | 9 +++++ > kernel/bpf/verifier.c | 30 ++++++++++++++++ > 4 files changed, 48 insertions(+), 64 deletions(-) Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
On 3/21/24 1:46 PM, Puranjay Mohan wrote: > With BPF_PROBE_MEM, BPF allows de-referencing an untrusted pointer. To > thwart invalid memory accesses, the JITs add an exception table entry > for all such accesses. But in case the src_reg + offset overflows and > turns into a userspace address, the BPF program might read that memory if > the user has mapped it. > > There are architectural features that prevent the kernel from accessing > userspace memory, like Privileged Access Never (PAN) on ARM64, > Supervisor Mode Access Prevention (SMAP) on x86-64, Supervisor User > Memory access (SUM) on RISC-V, etc. But BPF should not rely on the > existence of these features. > > Make the verifier add guard instructions around such memory accesses and > skip the load if the address falls into the userspace region. > > The JITs need to implement bpf_arch_uaddress_limit() to define where > the userspace addresses end for that architecture or TASK_SIZE is taken > as default. > > The implementation is as follows: > > REG_AX = SRC_REG > if(offset) > REG_AX += offset; > REG_AX >>= 32; > if (REG_AX <= (uaddress_limit >> 32)) > DST_REG = 0; > else > DST_REG = *(size *)(SRC_REG + offset); > > Comparing just the upper 32 bits of the load address with the upper > 32 bits of uaddress_limit implies that the values are being aligned down > to a 4GB boundary before comparison. > > The above means that all loads with address <= uaddress_limit + 4GB are > skipped. This is acceptable because there is a large hole (much larger > than 4GB) between userspace and kernel space memory, therefore a > correctly functioning BPF program should not access this 4GB memory > above the userspace. > > Let's analyze what this patch does to the following fentry program > dereferencing an untrusted pointer: > > SEC("fentry/tcp_v4_connect") > int BPF_PROG(fentry_tcp_v4_connect, struct sock *sk) > { > *(volatile long *)sk; > return 0; > } > > BPF Program before | BPF Program after > ------------------ | ----------------- > > 0: (79) r1 = *(u64 *)(r1 +0) 0: (79) r1 = *(u64 *)(r1 +0) > ----------------------------------------------------------------------- > 1: (79) r1 = *(u64 *)(r1 +0) --\ 1: (bf) r11 = r1 > ----------------------------\ \ 2: (77) r11 >>= 32 > 2: (b7) r0 = 0 \ \ 3: (b5) if r11 <= 0x8000 goto pc+2 > 3: (95) exit \ \-> 4: (79) r1 = *(u64 *)(r1 +0) > \ 5: (05) goto pc+1 > \ 6: (b7) r1 = 0 > \-------------------------------------- > 7: (b7) r0 = 0 > 8: (95) exit > > As you can see from above, in the best case (off=0), 5 extra instructions > are emitted. > > Now, we analyse the same program after it has gone through the JITs of > X86-64, ARM64, and RISC-V architectures. We follow the single load > instruction that has the untrusted pointer and see what instrumentation > has been added around it. > > x86-64 JIT > ========== > JIT's Instrumentation Verifier's Instrumentation > (upstream) (This patch) > --------------------- -------------------------- > > 0: nopl 0x0(%rax,%rax,1) 0: nopl 0x0(%rax,%rax,1) > 5: xchg %ax,%ax 5: xchg %ax,%ax > 7: push %rbp 7: push %rbp > 8: mov %rsp,%rbp 8: mov %rsp,%rbp > b: mov 0x0(%rdi),%rdi b: mov 0x0(%rdi),%rdi > ------------------------------------------------------------------------ > f: movabs $0x800000000000,%r11 f: mov %rdi,%r10 > 19: cmp %r11,%rdi 12: shr $0x20,%r10 > 1c: jb 0x000000000000002a 16: cmp $0x8000,%r10 > 1e: mov %rdi,%r11 1d: jbe 0x0000000000000025 > 21: add $0x0,%r11 /--> 1f: mov 0x0(%rdi),%rdi > 28: jae 0x000000000000002e / 23: jmp 0x0000000000000027 > 2a: xor %edi,%edi / 25: xor %edi,%edi > 2c: jmp 0x0000000000000032 / /------------------------------------ > 2e: mov 0x0(%rdi),%rdi ---/ / 27: xor %eax,%eax > ---------------------------------/ 29: leave > 32: xor %eax,%eax 2a: ret > 34: leave > 35: ret > > The x86-64 JIT already emits some instructions to protect against user > memory access. The implementation in this patch leads to a smaller > number of instructions being emitted. In the worst case the JIT will > emit 9 extra instructions and this patch decreases it to 7. > > ARM64 JIT > ========= > > No Intrumentation Verifier's Instrumentation > (upstream) (This patch) > ----------------- -------------------------- > > 0: add x9, x30, #0x0 0: add x9, x30, #0x0 > 4: nop 4: nop > 8: paciasp 8: paciasp > c: stp x29, x30, [sp, #-16]! c: stp x29, x30, [sp, #-16]! > 10: mov x29, sp 10: mov x29, sp > 14: stp x19, x20, [sp, #-16]! 14: stp x19, x20, [sp, #-16]! > 18: stp x21, x22, [sp, #-16]! 18: stp x21, x22, [sp, #-16]! > 1c: stp x25, x26, [sp, #-16]! 1c: stp x25, x26, [sp, #-16]! > 20: stp x27, x28, [sp, #-16]! 20: stp x27, x28, [sp, #-16]! > 24: mov x25, sp 24: mov x25, sp > 28: mov x26, #0x0 28: mov x26, #0x0 > 2c: sub x27, x25, #0x0 2c: sub x27, x25, #0x0 > 30: sub sp, sp, #0x0 30: sub sp, sp, #0x0 > 34: ldr x0, [x0] 34: ldr x0, [x0] > -------------------------------------------------------------------------------- > 38: ldr x0, [x0] ----------\ 38: add x9, x0, #0x0 > -----------------------------------\\ 3c: lsr x9, x9, #32 > 3c: mov x7, #0x0 \\ 40: cmp x9, #0x10, lsl #12 > 40: mov sp, sp \\ 44: b.ls 0x0000000000000050 > 44: ldp x27, x28, [sp], #16 \\--> 48: ldr x0, [x0] > 48: ldp x25, x26, [sp], #16 \ 4c: b 0x0000000000000054 > 4c: ldp x21, x22, [sp], #16 \ 50: mov x0, #0x0 > 50: ldp x19, x20, [sp], #16 \--------------------------------------- > 54: ldp x29, x30, [sp], #16 54: mov x7, #0x0 > 58: add x0, x7, #0x0 58: mov sp, sp > 5c: autiasp 5c: ldp x27, x28, [sp], #16 > 60: ret 60: ldp x25, x26, [sp], #16 > 64: nop 64: ldp x21, x22, [sp], #16 > 68: ldr x10, 0x0000000000000070 68: ldp x19, x20, [sp], #16 > 6c: br x10 6c: ldp x29, x30, [sp], #16 > 70: add x0, x7, #0x0 > 74: autiasp > 78: ret > 7c: nop > 80: ldr x10, 0x0000000000000088 > 84: br x10 > > There are 6 extra instructions added in ARM64 in the best case. This will > become 7 in the worst case (off != 0). > > RISC-V JIT (RISCV_ISA_C Disabled) > ========== > > No Intrumentation Verifier's Instrumentation > (upstream) (This patch) > ----------------- -------------------------- > > 0: nop 0: nop > 4: nop 4: nop > 8: li a6, 33 8: li a6, 33 > c: addi sp, sp, -16 c: addi sp, sp, -16 > 10: sd s0, 8(sp) 10: sd s0, 8(sp) > 14: addi s0, sp, 16 14: addi s0, sp, 16 > 18: ld a0, 0(a0) 18: ld a0, 0(a0) > --------------------------------------------------------------- > 1c: ld a0, 0(a0) --\ 1c: mv t0, a0 > --------------------------\ \ 20: srli t0, t0, 32 > 20: li a5, 0 \ \ 24: lui t1, 4096 > 24: ld s0, 8(sp) \ \ 28: sext.w t1, t1 > 28: addi sp, sp, 16 \ \ 2c: bgeu t1, t0, 12 > 2c: sext.w a0, a5 \ \--> 30: ld a0, 0(a0) > 30: ret \ 34: j 8 > \ 38: li a0, 0 > \------------------------------ > 3c: li a5, 0 > 40: ld s0, 8(sp) > 44: addi sp, sp, 16 > 48: sext.w a0, a5 > 4c: ret > > There are 7 extra instructions added in RISC-V. > > Fixes: 800834285361 ("bpf, arm64: Add BPF exception tables") > Reported-by: Breno Leitao <leitao@debian.org> > Suggested-by: Alexei Starovoitov <ast@kernel.org> > Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> > --- > V3: https://lore.kernel.org/bpf/20240321120842.78983-1-puranjay12@gmail.com/ > Changes in V4: > - Disable this feature on architectures that don't define > CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE. > - By doing the above, we don't need anything explicitly for s390x. > > V2: https://lore.kernel.org/bpf/20240321101058.68530-1-puranjay12@gmail.com/ > Changes in V3: > - Return 0 from bpf_arch_uaddress_limit() in disabled case because it > returns u64. > - Modify the check in verifier to no do instrumentation when uaddress_limit > is 0. > > V1: https://lore.kernel.org/bpf/20240320105436.4781-1-puranjay12@gmail.com/ > Changes in V2: > - Disable this feature on s390x. > --- > arch/x86/net/bpf_jit_comp.c | 72 +++++-------------------------------- > include/linux/filter.h | 1 + > kernel/bpf/core.c | 9 +++++ > kernel/bpf/verifier.c | 30 ++++++++++++++++ > 4 files changed, 48 insertions(+), 64 deletions(-) > > diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c > index 4900b1ee019f..9b3136187938 100644 > --- a/arch/x86/net/bpf_jit_comp.c > +++ b/arch/x86/net/bpf_jit_comp.c > @@ -1327,7 +1327,6 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image > u8 b2 = 0, b3 = 0; > u8 *start_of_ldx; > s64 jmp_offset; > - s16 insn_off; > u8 jmp_cond; > u8 *func; > int nops; > @@ -1802,78 +1801,18 @@ st: if (is_imm8(insn->off)) > case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: > case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: > case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: > - insn_off = insn->off; > - > - if (BPF_MODE(insn->code) == BPF_PROBE_MEM || > - BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { > - /* Conservatively check that src_reg + insn->off is a kernel address: > - * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE > - * src_reg is used as scratch for src_reg += insn->off and restored > - * after emit_ldx if necessary > - */ > - > - u64 limit = TASK_SIZE_MAX + PAGE_SIZE; > - u8 *end_of_jmp; > - > - /* At end of these emitted checks, insn->off will have been added > - * to src_reg, so no need to do relative load with insn->off offset > - */ > - insn_off = 0; > - > - /* movabsq r11, limit */ > - EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG)); > - EMIT((u32)limit, 4); > - EMIT(limit >> 32, 4); > - > - if (insn->off) { > - /* add src_reg, insn->off */ > - maybe_emit_1mod(&prog, src_reg, true); > - EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off); > - } > - > - /* cmp src_reg, r11 */ > - maybe_emit_mod(&prog, src_reg, AUX_REG, true); > - EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG)); > - > - /* if unsigned '>=', goto load */ > - EMIT2(X86_JAE, 0); > - end_of_jmp = prog; > - > - /* xor dst_reg, dst_reg */ > - emit_mov_imm32(&prog, false, dst_reg, 0); > - /* jmp byte_after_ldx */ > - EMIT2(0xEB, 0); > - > - /* populate jmp_offset for JAE above to jump to start_of_ldx */ > - start_of_ldx = prog; > - end_of_jmp[-1] = start_of_ldx - end_of_jmp; > - } > + start_of_ldx = prog; > if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || > BPF_MODE(insn->code) == BPF_MEMSX) > - emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); > + emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); > else > - emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); > + emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); > if (BPF_MODE(insn->code) == BPF_PROBE_MEM || > BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { > struct exception_table_entry *ex; > u8 *_insn = image + proglen + (start_of_ldx - temp); > s64 delta; > > - /* populate jmp_offset for JMP above */ > - start_of_ldx[-1] = prog - start_of_ldx; > - > - if (insn->off && src_reg != dst_reg) { > - /* sub src_reg, insn->off > - * Restore src_reg after "add src_reg, insn->off" in prev > - * if statement. But if src_reg == dst_reg, emit_ldx > - * above already clobbered src_reg, so no need to restore. > - * If add src_reg, insn->off was unnecessary, no need to > - * restore either. > - */ > - maybe_emit_1mod(&prog, src_reg, true); > - EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off); > - } > - > if (!bpf_prog->aux->extable) > break; > > @@ -3473,3 +3412,8 @@ bool bpf_jit_supports_ptr_xchg(void) > { > return true; > } > + > +u64 bpf_arch_uaddress_limit(void) > +{ > + return TASK_SIZE_MAX + PAGE_SIZE; > +} > diff --git a/include/linux/filter.h b/include/linux/filter.h > index c0d51bff8f96..cf12bfa2a78c 100644 > --- a/include/linux/filter.h > +++ b/include/linux/filter.h > @@ -965,6 +965,7 @@ bool bpf_jit_supports_far_kfunc_call(void); > bool bpf_jit_supports_exceptions(void); > bool bpf_jit_supports_ptr_xchg(void); > bool bpf_jit_supports_arena(void); > +u64 bpf_arch_uaddress_limit(void); > void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); > bool bpf_helper_changes_pkt_data(void *func); > > diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c > index 5aacb1d3c4cc..a04695ca82b9 100644 > --- a/kernel/bpf/core.c > +++ b/kernel/bpf/core.c > @@ -2958,6 +2958,15 @@ bool __weak bpf_jit_supports_arena(void) > return false; > } > > +u64 __weak bpf_arch_uaddress_limit(void) > +{ > +#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE) > + return TASK_SIZE; > +#else > + return 0; > +#endif > +} > + > /* Return TRUE if the JIT backend satisfies the following two conditions: > * 1) JIT backend supports atomic_xchg() on pointer-sized words. > * 2) Under the specific arch, the implementation of xchg() is the same > diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c > index de7813947981..7ce56da6cfa4 100644 > --- a/kernel/bpf/verifier.c > +++ b/kernel/bpf/verifier.c > @@ -19657,6 +19657,36 @@ static int do_misc_fixups(struct bpf_verifier_env *env) > goto next_insn; > } > > + /* Make it impossible to de-reference a userspace address */ > + if (BPF_CLASS(insn->code) == BPF_LDX && > + (BPF_MODE(insn->code) == BPF_PROBE_MEM || > + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { > + struct bpf_insn *patch = &insn_buf[0]; > + u64 uaddress_limit = bpf_arch_uaddress_limit(); > + > + if (!uaddress_limit) > + goto next_insn; > + > + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); > + if (insn->off) > + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); > + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); > + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); > + *patch++ = *insn; > + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); > + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); But how does this address other cases where we could fault e.g. non-canonical, vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() to really address all the cases aside from the overflow (good catch btw!) where kernel turns into user address. Thanks, Daniel
Daniel Borkmann <daniel@iogearbox.net> writes: > On 3/21/24 1:46 PM, Puranjay Mohan wrote: >> With BPF_PROBE_MEM, BPF allows de-referencing an untrusted pointer. To >> thwart invalid memory accesses, the JITs add an exception table entry >> for all such accesses. But in case the src_reg + offset overflows and >> turns into a userspace address, the BPF program might read that memory if >> the user has mapped it. >> >> There are architectural features that prevent the kernel from accessing >> userspace memory, like Privileged Access Never (PAN) on ARM64, >> Supervisor Mode Access Prevention (SMAP) on x86-64, Supervisor User >> Memory access (SUM) on RISC-V, etc. But BPF should not rely on the >> existence of these features. >> >> Make the verifier add guard instructions around such memory accesses and >> skip the load if the address falls into the userspace region. >> >> The JITs need to implement bpf_arch_uaddress_limit() to define where >> the userspace addresses end for that architecture or TASK_SIZE is taken >> as default. >> >> The implementation is as follows: >> >> REG_AX = SRC_REG >> if(offset) >> REG_AX += offset; >> REG_AX >>= 32; >> if (REG_AX <= (uaddress_limit >> 32)) >> DST_REG = 0; >> else >> DST_REG = *(size *)(SRC_REG + offset); >> >> Comparing just the upper 32 bits of the load address with the upper >> 32 bits of uaddress_limit implies that the values are being aligned down >> to a 4GB boundary before comparison. >> >> The above means that all loads with address <= uaddress_limit + 4GB are >> skipped. This is acceptable because there is a large hole (much larger >> than 4GB) between userspace and kernel space memory, therefore a >> correctly functioning BPF program should not access this 4GB memory >> above the userspace. >> >> Let's analyze what this patch does to the following fentry program >> dereferencing an untrusted pointer: >> >> SEC("fentry/tcp_v4_connect") >> int BPF_PROG(fentry_tcp_v4_connect, struct sock *sk) >> { >> *(volatile long *)sk; >> return 0; >> } >> >> BPF Program before | BPF Program after >> ------------------ | ----------------- >> >> 0: (79) r1 = *(u64 *)(r1 +0) 0: (79) r1 = *(u64 *)(r1 +0) >> ----------------------------------------------------------------------- >> 1: (79) r1 = *(u64 *)(r1 +0) --\ 1: (bf) r11 = r1 >> ----------------------------\ \ 2: (77) r11 >>= 32 >> 2: (b7) r0 = 0 \ \ 3: (b5) if r11 <= 0x8000 goto pc+2 >> 3: (95) exit \ \-> 4: (79) r1 = *(u64 *)(r1 +0) >> \ 5: (05) goto pc+1 >> \ 6: (b7) r1 = 0 >> \-------------------------------------- >> 7: (b7) r0 = 0 >> 8: (95) exit >> >> As you can see from above, in the best case (off=0), 5 extra instructions >> are emitted. >> >> Now, we analyse the same program after it has gone through the JITs of >> X86-64, ARM64, and RISC-V architectures. We follow the single load >> instruction that has the untrusted pointer and see what instrumentation >> has been added around it. >> >> x86-64 JIT >> ========== >> JIT's Instrumentation Verifier's Instrumentation >> (upstream) (This patch) >> --------------------- -------------------------- >> >> 0: nopl 0x0(%rax,%rax,1) 0: nopl 0x0(%rax,%rax,1) >> 5: xchg %ax,%ax 5: xchg %ax,%ax >> 7: push %rbp 7: push %rbp >> 8: mov %rsp,%rbp 8: mov %rsp,%rbp >> b: mov 0x0(%rdi),%rdi b: mov 0x0(%rdi),%rdi >> ------------------------------------------------------------------------ >> f: movabs $0x800000000000,%r11 f: mov %rdi,%r10 >> 19: cmp %r11,%rdi 12: shr $0x20,%r10 >> 1c: jb 0x000000000000002a 16: cmp $0x8000,%r10 >> 1e: mov %rdi,%r11 1d: jbe 0x0000000000000025 >> 21: add $0x0,%r11 /--> 1f: mov 0x0(%rdi),%rdi >> 28: jae 0x000000000000002e / 23: jmp 0x0000000000000027 >> 2a: xor %edi,%edi / 25: xor %edi,%edi >> 2c: jmp 0x0000000000000032 / /------------------------------------ >> 2e: mov 0x0(%rdi),%rdi ---/ / 27: xor %eax,%eax >> ---------------------------------/ 29: leave >> 32: xor %eax,%eax 2a: ret >> 34: leave >> 35: ret >> >> The x86-64 JIT already emits some instructions to protect against user >> memory access. The implementation in this patch leads to a smaller >> number of instructions being emitted. In the worst case the JIT will >> emit 9 extra instructions and this patch decreases it to 7. >> >> ARM64 JIT >> ========= >> >> No Intrumentation Verifier's Instrumentation >> (upstream) (This patch) >> ----------------- -------------------------- >> >> 0: add x9, x30, #0x0 0: add x9, x30, #0x0 >> 4: nop 4: nop >> 8: paciasp 8: paciasp >> c: stp x29, x30, [sp, #-16]! c: stp x29, x30, [sp, #-16]! >> 10: mov x29, sp 10: mov x29, sp >> 14: stp x19, x20, [sp, #-16]! 14: stp x19, x20, [sp, #-16]! >> 18: stp x21, x22, [sp, #-16]! 18: stp x21, x22, [sp, #-16]! >> 1c: stp x25, x26, [sp, #-16]! 1c: stp x25, x26, [sp, #-16]! >> 20: stp x27, x28, [sp, #-16]! 20: stp x27, x28, [sp, #-16]! >> 24: mov x25, sp 24: mov x25, sp >> 28: mov x26, #0x0 28: mov x26, #0x0 >> 2c: sub x27, x25, #0x0 2c: sub x27, x25, #0x0 >> 30: sub sp, sp, #0x0 30: sub sp, sp, #0x0 >> 34: ldr x0, [x0] 34: ldr x0, [x0] >> -------------------------------------------------------------------------------- >> 38: ldr x0, [x0] ----------\ 38: add x9, x0, #0x0 >> -----------------------------------\\ 3c: lsr x9, x9, #32 >> 3c: mov x7, #0x0 \\ 40: cmp x9, #0x10, lsl #12 >> 40: mov sp, sp \\ 44: b.ls 0x0000000000000050 >> 44: ldp x27, x28, [sp], #16 \\--> 48: ldr x0, [x0] >> 48: ldp x25, x26, [sp], #16 \ 4c: b 0x0000000000000054 >> 4c: ldp x21, x22, [sp], #16 \ 50: mov x0, #0x0 >> 50: ldp x19, x20, [sp], #16 \--------------------------------------- >> 54: ldp x29, x30, [sp], #16 54: mov x7, #0x0 >> 58: add x0, x7, #0x0 58: mov sp, sp >> 5c: autiasp 5c: ldp x27, x28, [sp], #16 >> 60: ret 60: ldp x25, x26, [sp], #16 >> 64: nop 64: ldp x21, x22, [sp], #16 >> 68: ldr x10, 0x0000000000000070 68: ldp x19, x20, [sp], #16 >> 6c: br x10 6c: ldp x29, x30, [sp], #16 >> 70: add x0, x7, #0x0 >> 74: autiasp >> 78: ret >> 7c: nop >> 80: ldr x10, 0x0000000000000088 >> 84: br x10 >> >> There are 6 extra instructions added in ARM64 in the best case. This will >> become 7 in the worst case (off != 0). >> >> RISC-V JIT (RISCV_ISA_C Disabled) >> ========== >> >> No Intrumentation Verifier's Instrumentation >> (upstream) (This patch) >> ----------------- -------------------------- >> >> 0: nop 0: nop >> 4: nop 4: nop >> 8: li a6, 33 8: li a6, 33 >> c: addi sp, sp, -16 c: addi sp, sp, -16 >> 10: sd s0, 8(sp) 10: sd s0, 8(sp) >> 14: addi s0, sp, 16 14: addi s0, sp, 16 >> 18: ld a0, 0(a0) 18: ld a0, 0(a0) >> --------------------------------------------------------------- >> 1c: ld a0, 0(a0) --\ 1c: mv t0, a0 >> --------------------------\ \ 20: srli t0, t0, 32 >> 20: li a5, 0 \ \ 24: lui t1, 4096 >> 24: ld s0, 8(sp) \ \ 28: sext.w t1, t1 >> 28: addi sp, sp, 16 \ \ 2c: bgeu t1, t0, 12 >> 2c: sext.w a0, a5 \ \--> 30: ld a0, 0(a0) >> 30: ret \ 34: j 8 >> \ 38: li a0, 0 >> \------------------------------ >> 3c: li a5, 0 >> 40: ld s0, 8(sp) >> 44: addi sp, sp, 16 >> 48: sext.w a0, a5 >> 4c: ret >> >> There are 7 extra instructions added in RISC-V. >> >> Fixes: 800834285361 ("bpf, arm64: Add BPF exception tables") >> Reported-by: Breno Leitao <leitao@debian.org> >> Suggested-by: Alexei Starovoitov <ast@kernel.org> >> Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> >> --- >> V3: https://lore.kernel.org/bpf/20240321120842.78983-1-puranjay12@gmail.com/ >> Changes in V4: >> - Disable this feature on architectures that don't define >> CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE. >> - By doing the above, we don't need anything explicitly for s390x. >> >> V2: https://lore.kernel.org/bpf/20240321101058.68530-1-puranjay12@gmail.com/ >> Changes in V3: >> - Return 0 from bpf_arch_uaddress_limit() in disabled case because it >> returns u64. >> - Modify the check in verifier to no do instrumentation when uaddress_limit >> is 0. >> >> V1: https://lore.kernel.org/bpf/20240320105436.4781-1-puranjay12@gmail.com/ >> Changes in V2: >> - Disable this feature on s390x. >> --- >> arch/x86/net/bpf_jit_comp.c | 72 +++++-------------------------------- >> include/linux/filter.h | 1 + >> kernel/bpf/core.c | 9 +++++ >> kernel/bpf/verifier.c | 30 ++++++++++++++++ >> 4 files changed, 48 insertions(+), 64 deletions(-) >> >> diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c >> index 4900b1ee019f..9b3136187938 100644 >> --- a/arch/x86/net/bpf_jit_comp.c >> +++ b/arch/x86/net/bpf_jit_comp.c >> @@ -1327,7 +1327,6 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image >> u8 b2 = 0, b3 = 0; >> u8 *start_of_ldx; >> s64 jmp_offset; >> - s16 insn_off; >> u8 jmp_cond; >> u8 *func; >> int nops; >> @@ -1802,78 +1801,18 @@ st: if (is_imm8(insn->off)) >> case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: >> case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: >> case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: >> - insn_off = insn->off; >> - >> - if (BPF_MODE(insn->code) == BPF_PROBE_MEM || >> - BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { >> - /* Conservatively check that src_reg + insn->off is a kernel address: >> - * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE >> - * src_reg is used as scratch for src_reg += insn->off and restored >> - * after emit_ldx if necessary >> - */ >> - >> - u64 limit = TASK_SIZE_MAX + PAGE_SIZE; >> - u8 *end_of_jmp; >> - >> - /* At end of these emitted checks, insn->off will have been added >> - * to src_reg, so no need to do relative load with insn->off offset >> - */ >> - insn_off = 0; >> - >> - /* movabsq r11, limit */ >> - EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG)); >> - EMIT((u32)limit, 4); >> - EMIT(limit >> 32, 4); >> - >> - if (insn->off) { >> - /* add src_reg, insn->off */ >> - maybe_emit_1mod(&prog, src_reg, true); >> - EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off); >> - } >> - >> - /* cmp src_reg, r11 */ >> - maybe_emit_mod(&prog, src_reg, AUX_REG, true); >> - EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG)); >> - >> - /* if unsigned '>=', goto load */ >> - EMIT2(X86_JAE, 0); >> - end_of_jmp = prog; >> - >> - /* xor dst_reg, dst_reg */ >> - emit_mov_imm32(&prog, false, dst_reg, 0); >> - /* jmp byte_after_ldx */ >> - EMIT2(0xEB, 0); >> - >> - /* populate jmp_offset for JAE above to jump to start_of_ldx */ >> - start_of_ldx = prog; >> - end_of_jmp[-1] = start_of_ldx - end_of_jmp; >> - } >> + start_of_ldx = prog; >> if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || >> BPF_MODE(insn->code) == BPF_MEMSX) >> - emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); >> + emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); >> else >> - emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); >> + emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); >> if (BPF_MODE(insn->code) == BPF_PROBE_MEM || >> BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { >> struct exception_table_entry *ex; >> u8 *_insn = image + proglen + (start_of_ldx - temp); >> s64 delta; >> >> - /* populate jmp_offset for JMP above */ >> - start_of_ldx[-1] = prog - start_of_ldx; >> - >> - if (insn->off && src_reg != dst_reg) { >> - /* sub src_reg, insn->off >> - * Restore src_reg after "add src_reg, insn->off" in prev >> - * if statement. But if src_reg == dst_reg, emit_ldx >> - * above already clobbered src_reg, so no need to restore. >> - * If add src_reg, insn->off was unnecessary, no need to >> - * restore either. >> - */ >> - maybe_emit_1mod(&prog, src_reg, true); >> - EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off); >> - } >> - >> if (!bpf_prog->aux->extable) >> break; >> >> @@ -3473,3 +3412,8 @@ bool bpf_jit_supports_ptr_xchg(void) >> { >> return true; >> } >> + >> +u64 bpf_arch_uaddress_limit(void) >> +{ >> + return TASK_SIZE_MAX + PAGE_SIZE; >> +} >> diff --git a/include/linux/filter.h b/include/linux/filter.h >> index c0d51bff8f96..cf12bfa2a78c 100644 >> --- a/include/linux/filter.h >> +++ b/include/linux/filter.h >> @@ -965,6 +965,7 @@ bool bpf_jit_supports_far_kfunc_call(void); >> bool bpf_jit_supports_exceptions(void); >> bool bpf_jit_supports_ptr_xchg(void); >> bool bpf_jit_supports_arena(void); >> +u64 bpf_arch_uaddress_limit(void); >> void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); >> bool bpf_helper_changes_pkt_data(void *func); >> >> diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c >> index 5aacb1d3c4cc..a04695ca82b9 100644 >> --- a/kernel/bpf/core.c >> +++ b/kernel/bpf/core.c >> @@ -2958,6 +2958,15 @@ bool __weak bpf_jit_supports_arena(void) >> return false; >> } >> >> +u64 __weak bpf_arch_uaddress_limit(void) >> +{ >> +#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE) >> + return TASK_SIZE; >> +#else >> + return 0; >> +#endif >> +} >> + >> /* Return TRUE if the JIT backend satisfies the following two conditions: >> * 1) JIT backend supports atomic_xchg() on pointer-sized words. >> * 2) Under the specific arch, the implementation of xchg() is the same >> diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c >> index de7813947981..7ce56da6cfa4 100644 >> --- a/kernel/bpf/verifier.c >> +++ b/kernel/bpf/verifier.c >> @@ -19657,6 +19657,36 @@ static int do_misc_fixups(struct bpf_verifier_env *env) >> goto next_insn; >> } >> >> + /* Make it impossible to de-reference a userspace address */ >> + if (BPF_CLASS(insn->code) == BPF_LDX && >> + (BPF_MODE(insn->code) == BPF_PROBE_MEM || >> + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { >> + struct bpf_insn *patch = &insn_buf[0]; >> + u64 uaddress_limit = bpf_arch_uaddress_limit(); >> + >> + if (!uaddress_limit) >> + goto next_insn; >> + >> + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); >> + if (insn->off) >> + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); >> + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); >> + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); >> + *patch++ = *insn; >> + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); >> + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); > > But how does this address other cases where we could fault e.g. non-canonical, > vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() > to really address all the cases aside from the overflow (good catch btw!) where kernel > turns into user address. So, we are trying to ~simulate a call to copy_from_kernel_nofault_allowed() here. If the address under consideration is below TASK_SIZE (TASK_SIZE + 4GB to be precise) then we skip that load because that address could be mapped by the user. If the address is above TASK_SIZE + 4GB, we allow the load and it could cause a fault if the address is invalid, non-canonical etc. Taking the fault is fine because JIT will add an exception table entry for for that load with BPF_PBOBE_MEM. The vsyscall page is special, this approach skips all loads from this page. I am not sure if that is acceptable. Thanks, Puranjay
On 3/22/24 4:05 PM, Puranjay Mohan wrote: [...] >>> + /* Make it impossible to de-reference a userspace address */ >>> + if (BPF_CLASS(insn->code) == BPF_LDX && >>> + (BPF_MODE(insn->code) == BPF_PROBE_MEM || >>> + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { >>> + struct bpf_insn *patch = &insn_buf[0]; >>> + u64 uaddress_limit = bpf_arch_uaddress_limit(); >>> + >>> + if (!uaddress_limit) >>> + goto next_insn; >>> + >>> + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); >>> + if (insn->off) >>> + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); >>> + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); >>> + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); >>> + *patch++ = *insn; >>> + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); >>> + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); >> >> But how does this address other cases where we could fault e.g. non-canonical, >> vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() >> to really address all the cases aside from the overflow (good catch btw!) where kernel >> turns into user address. > > So, we are trying to ~simulate a call to > copy_from_kernel_nofault_allowed() here. If the address under > consideration is below TASK_SIZE (TASK_SIZE + 4GB to be precise) then we > skip that load because that address could be mapped by the user. > > If the address is above TASK_SIZE + 4GB, we allow the load and it could > cause a fault if the address is invalid, non-canonical etc. Taking the > fault is fine because JIT will add an exception table entry for > for that load with BPF_PBOBE_MEM. Are you sure? I don't think the kernel handles non-canonical fixup. > The vsyscall page is special, this approach skips all loads from this > page. I am not sure if that is acceptable. The bpf_probe_read_kernel() does handle it fine via copy_from_kernel_nofault(). So there is tail risk that BPF_PROBE_* could trigger a crash. Other archs might have other quirks, e.g. in case of loongarch it says highest bit set means kernel space.
Daniel Borkmann <daniel@iogearbox.net> writes: > On 3/22/24 4:05 PM, Puranjay Mohan wrote: > [...] >>>> + /* Make it impossible to de-reference a userspace address */ >>>> + if (BPF_CLASS(insn->code) == BPF_LDX && >>>> + (BPF_MODE(insn->code) == BPF_PROBE_MEM || >>>> + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { >>>> + struct bpf_insn *patch = &insn_buf[0]; >>>> + u64 uaddress_limit = bpf_arch_uaddress_limit(); >>>> + >>>> + if (!uaddress_limit) >>>> + goto next_insn; >>>> + >>>> + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); >>>> + if (insn->off) >>>> + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); >>>> + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); >>>> + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); >>>> + *patch++ = *insn; >>>> + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); >>>> + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); >>> >>> But how does this address other cases where we could fault e.g. non-canonical, >>> vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() >>> to really address all the cases aside from the overflow (good catch btw!) where kernel >>> turns into user address. >> >> So, we are trying to ~simulate a call to >> copy_from_kernel_nofault_allowed() here. If the address under >> consideration is below TASK_SIZE (TASK_SIZE + 4GB to be precise) then we >> skip that load because that address could be mapped by the user. >> >> If the address is above TASK_SIZE + 4GB, we allow the load and it could >> cause a fault if the address is invalid, non-canonical etc. Taking the >> fault is fine because JIT will add an exception table entry for >> for that load with BPF_PBOBE_MEM. > > Are you sure? I don't think the kernel handles non-canonical fixup. Atleast for ARM64 for I don't see a differentiation between the handling of canonical and non-canonical addresses. do_translation_fault() checks if addr < TASK_SIZE and calls do_page_fault() or if the address is greater than TASK_SIZE (it is a kernel address), do_bad_area() is called. Both of these call __do_kernel_fault() if fault is from kernel mode and it does fixup_exception(). > >> The vsyscall page is special, this approach skips all loads from this >> page. I am not sure if that is acceptable. > > The bpf_probe_read_kernel() does handle it fine via copy_from_kernel_nofault(). bpf_probe_read_kernel() is skipping reading from the vsyscall page, that is what this patch does as well. ARM64, RISCV, and some other archs don't implement copy_from_kernel_nofault_allowed() so I think the we should fix the common case where the BPF program should not be allowed to access memory below TASK_SIZE. This would be true for all architectures. > > So there is tail risk that BPF_PROBE_* could trigger a crash. Other archs might Can you explain this a bit more, how will BPF_PROBE_* trigger a crash? > have other quirks, e.g. in case of loongarch it says highest bit set means kernel > space. Thanks, Puranjay
On Fri, Mar 22, 2024 at 9:28 AM Daniel Borkmann <daniel@iogearbox.net> wrote: > > On 3/22/24 4:05 PM, Puranjay Mohan wrote: > [...] > >>> + /* Make it impossible to de-reference a userspace address */ > >>> + if (BPF_CLASS(insn->code) == BPF_LDX && > >>> + (BPF_MODE(insn->code) == BPF_PROBE_MEM || > >>> + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { > >>> + struct bpf_insn *patch = &insn_buf[0]; > >>> + u64 uaddress_limit = bpf_arch_uaddress_limit(); > >>> + > >>> + if (!uaddress_limit) > >>> + goto next_insn; > >>> + > >>> + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); > >>> + if (insn->off) > >>> + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); > >>> + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); > >>> + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); > >>> + *patch++ = *insn; > >>> + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); > >>> + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); > >> > >> But how does this address other cases where we could fault e.g. non-canonical, > >> vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() > >> to really address all the cases aside from the overflow (good catch btw!) where kernel > >> turns into user address. > > > > So, we are trying to ~simulate a call to > > copy_from_kernel_nofault_allowed() here. If the address under > > consideration is below TASK_SIZE (TASK_SIZE + 4GB to be precise) then we > > skip that load because that address could be mapped by the user. > > > > If the address is above TASK_SIZE + 4GB, we allow the load and it could > > cause a fault if the address is invalid, non-canonical etc. Taking the > > fault is fine because JIT will add an exception table entry for > > for that load with BPF_PBOBE_MEM. > > Are you sure? I don't think the kernel handles non-canonical fixup. I believe it handles it fine otherwise our selftest bpf_testmod_return_ptr: case 4: return (void *)(1ull << 60); /* non-canonical and invalid */ would have been crashing for the last 3 years, since we've been running it. > > The vsyscall page is special, this approach skips all loads from this > > page. I am not sure if that is acceptable. > > The bpf_probe_read_kernel() does handle it fine via copy_from_kernel_nofault(). > > So there is tail risk that BPF_PROBE_* could trigger a crash. For this patch let's do return max(TASK_SIZE_MAX + PAGE_SIZE, VSYSCALL_ADDR) to cover both with one check? > Other archs might > have other quirks, e.g. in case of loongarch it says highest bit set means kernel > space. let's tackle loongarch with whatever quirks it has separately.
Alexei Starovoitov <alexei.starovoitov@gmail.com> writes: > On Fri, Mar 22, 2024 at 9:28 AM Daniel Borkmann <daniel@iogearbox.net> wrote: >> >> On 3/22/24 4:05 PM, Puranjay Mohan wrote: >> [...] >> >>> + /* Make it impossible to de-reference a userspace address */ >> >>> + if (BPF_CLASS(insn->code) == BPF_LDX && >> >>> + (BPF_MODE(insn->code) == BPF_PROBE_MEM || >> >>> + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { >> >>> + struct bpf_insn *patch = &insn_buf[0]; >> >>> + u64 uaddress_limit = bpf_arch_uaddress_limit(); >> >>> + >> >>> + if (!uaddress_limit) >> >>> + goto next_insn; >> >>> + >> >>> + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); >> >>> + if (insn->off) >> >>> + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); >> >>> + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); >> >>> + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); >> >>> + *patch++ = *insn; >> >>> + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); >> >>> + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); >> >> >> >> But how does this address other cases where we could fault e.g. non-canonical, >> >> vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() >> >> to really address all the cases aside from the overflow (good catch btw!) where kernel >> >> turns into user address. >> > >> > So, we are trying to ~simulate a call to >> > copy_from_kernel_nofault_allowed() here. If the address under >> > consideration is below TASK_SIZE (TASK_SIZE + 4GB to be precise) then we >> > skip that load because that address could be mapped by the user. >> > >> > If the address is above TASK_SIZE + 4GB, we allow the load and it could >> > cause a fault if the address is invalid, non-canonical etc. Taking the >> > fault is fine because JIT will add an exception table entry for >> > for that load with BPF_PBOBE_MEM. >> >> Are you sure? I don't think the kernel handles non-canonical fixup. > > I believe it handles it fine otherwise our selftest bpf_testmod_return_ptr: > case 4: return (void *)(1ull << 60); /* non-canonical and invalid */ > would have been crashing for the last 3 years, > since we've been running it. > >> > The vsyscall page is special, this approach skips all loads from this >> > page. I am not sure if that is acceptable. >> >> The bpf_probe_read_kernel() does handle it fine via copy_from_kernel_nofault(). >> >> So there is tail risk that BPF_PROBE_* could trigger a crash. > > For this patch let's do > return max(TASK_SIZE_MAX + PAGE_SIZE, VSYSCALL_ADDR) > to cover both with one check? I agree, will add this in the next version. >> Other archs might >> have other quirks, e.g. in case of loongarch it says highest bit set means kernel >> space. > > let's tackle loongarch with whatever quirks it has separately. Yes, having the current patch will not break loongarch, it will help it skip some userspace addresses. We can later implement bpf_arch_uaddress_limit() in loongarch JIT to handle its specific quirks.
On Sun, Mar 24, 2024 at 3:44 AM Puranjay Mohan <puranjay12@gmail.com> wrote: > > Alexei Starovoitov <alexei.starovoitov@gmail.com> writes: > > > On Fri, Mar 22, 2024 at 9:28 AM Daniel Borkmann <daniel@iogearbox.net> wrote: > >> > >> On 3/22/24 4:05 PM, Puranjay Mohan wrote: > >> [...] > >> >>> + /* Make it impossible to de-reference a userspace address */ > >> >>> + if (BPF_CLASS(insn->code) == BPF_LDX && > >> >>> + (BPF_MODE(insn->code) == BPF_PROBE_MEM || > >> >>> + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { > >> >>> + struct bpf_insn *patch = &insn_buf[0]; > >> >>> + u64 uaddress_limit = bpf_arch_uaddress_limit(); > >> >>> + > >> >>> + if (!uaddress_limit) > >> >>> + goto next_insn; > >> >>> + > >> >>> + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); > >> >>> + if (insn->off) > >> >>> + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); > >> >>> + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); > >> >>> + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); > >> >>> + *patch++ = *insn; > >> >>> + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); > >> >>> + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); > >> >> > >> >> But how does this address other cases where we could fault e.g. non-canonical, > >> >> vsyscall page, etc? Technically, we would have to call to copy_from_kernel_nofault_allowed() > >> >> to really address all the cases aside from the overflow (good catch btw!) where kernel > >> >> turns into user address. > >> > > >> > So, we are trying to ~simulate a call to > >> > copy_from_kernel_nofault_allowed() here. If the address under > >> > consideration is below TASK_SIZE (TASK_SIZE + 4GB to be precise) then we > >> > skip that load because that address could be mapped by the user. > >> > > >> > If the address is above TASK_SIZE + 4GB, we allow the load and it could > >> > cause a fault if the address is invalid, non-canonical etc. Taking the > >> > fault is fine because JIT will add an exception table entry for > >> > for that load with BPF_PBOBE_MEM. > >> > >> Are you sure? I don't think the kernel handles non-canonical fixup. > > > > I believe it handles it fine otherwise our selftest bpf_testmod_return_ptr: > > case 4: return (void *)(1ull << 60); /* non-canonical and invalid */ > > would have been crashing for the last 3 years, > > since we've been running it. > > > >> > The vsyscall page is special, this approach skips all loads from this > >> > page. I am not sure if that is acceptable. > >> > >> The bpf_probe_read_kernel() does handle it fine via copy_from_kernel_nofault(). > >> > >> So there is tail risk that BPF_PROBE_* could trigger a crash. > > > > For this patch let's do > > return max(TASK_SIZE_MAX + PAGE_SIZE, VSYSCALL_ADDR) > > to cover both with one check? > > I agree, will add this in the next version. Sorry. I didn't look at actual value when I suggested this. Let's think how to check for them with one conditional branch. Maybe we can REG_AX >>= 24 instead of 32 and do some clever math, since we need to: addr < 0x7ffffful || addr == 0xfffffffffful ? If we have to do two branches that's fine for now, but we probably need to leave it to JITs, since they can emit two faster conditional moves and use single conditional jump or introduce new pseudo bpf insns equivalent to x86 set[ae|ne|..]
diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c index 4900b1ee019f..9b3136187938 100644 --- a/arch/x86/net/bpf_jit_comp.c +++ b/arch/x86/net/bpf_jit_comp.c @@ -1327,7 +1327,6 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image u8 b2 = 0, b3 = 0; u8 *start_of_ldx; s64 jmp_offset; - s16 insn_off; u8 jmp_cond; u8 *func; int nops; @@ -1802,78 +1801,18 @@ st: if (is_imm8(insn->off)) case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: - insn_off = insn->off; - - if (BPF_MODE(insn->code) == BPF_PROBE_MEM || - BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { - /* Conservatively check that src_reg + insn->off is a kernel address: - * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE - * src_reg is used as scratch for src_reg += insn->off and restored - * after emit_ldx if necessary - */ - - u64 limit = TASK_SIZE_MAX + PAGE_SIZE; - u8 *end_of_jmp; - - /* At end of these emitted checks, insn->off will have been added - * to src_reg, so no need to do relative load with insn->off offset - */ - insn_off = 0; - - /* movabsq r11, limit */ - EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG)); - EMIT((u32)limit, 4); - EMIT(limit >> 32, 4); - - if (insn->off) { - /* add src_reg, insn->off */ - maybe_emit_1mod(&prog, src_reg, true); - EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off); - } - - /* cmp src_reg, r11 */ - maybe_emit_mod(&prog, src_reg, AUX_REG, true); - EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG)); - - /* if unsigned '>=', goto load */ - EMIT2(X86_JAE, 0); - end_of_jmp = prog; - - /* xor dst_reg, dst_reg */ - emit_mov_imm32(&prog, false, dst_reg, 0); - /* jmp byte_after_ldx */ - EMIT2(0xEB, 0); - - /* populate jmp_offset for JAE above to jump to start_of_ldx */ - start_of_ldx = prog; - end_of_jmp[-1] = start_of_ldx - end_of_jmp; - } + start_of_ldx = prog; if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || BPF_MODE(insn->code) == BPF_MEMSX) - emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); + emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); else - emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); + emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); if (BPF_MODE(insn->code) == BPF_PROBE_MEM || BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { struct exception_table_entry *ex; u8 *_insn = image + proglen + (start_of_ldx - temp); s64 delta; - /* populate jmp_offset for JMP above */ - start_of_ldx[-1] = prog - start_of_ldx; - - if (insn->off && src_reg != dst_reg) { - /* sub src_reg, insn->off - * Restore src_reg after "add src_reg, insn->off" in prev - * if statement. But if src_reg == dst_reg, emit_ldx - * above already clobbered src_reg, so no need to restore. - * If add src_reg, insn->off was unnecessary, no need to - * restore either. - */ - maybe_emit_1mod(&prog, src_reg, true); - EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off); - } - if (!bpf_prog->aux->extable) break; @@ -3473,3 +3412,8 @@ bool bpf_jit_supports_ptr_xchg(void) { return true; } + +u64 bpf_arch_uaddress_limit(void) +{ + return TASK_SIZE_MAX + PAGE_SIZE; +} diff --git a/include/linux/filter.h b/include/linux/filter.h index c0d51bff8f96..cf12bfa2a78c 100644 --- a/include/linux/filter.h +++ b/include/linux/filter.h @@ -965,6 +965,7 @@ bool bpf_jit_supports_far_kfunc_call(void); bool bpf_jit_supports_exceptions(void); bool bpf_jit_supports_ptr_xchg(void); bool bpf_jit_supports_arena(void); +u64 bpf_arch_uaddress_limit(void); void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); bool bpf_helper_changes_pkt_data(void *func); diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index 5aacb1d3c4cc..a04695ca82b9 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -2958,6 +2958,15 @@ bool __weak bpf_jit_supports_arena(void) return false; } +u64 __weak bpf_arch_uaddress_limit(void) +{ +#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE) + return TASK_SIZE; +#else + return 0; +#endif +} + /* Return TRUE if the JIT backend satisfies the following two conditions: * 1) JIT backend supports atomic_xchg() on pointer-sized words. * 2) Under the specific arch, the implementation of xchg() is the same diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index de7813947981..7ce56da6cfa4 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -19657,6 +19657,36 @@ static int do_misc_fixups(struct bpf_verifier_env *env) goto next_insn; } + /* Make it impossible to de-reference a userspace address */ + if (BPF_CLASS(insn->code) == BPF_LDX && + (BPF_MODE(insn->code) == BPF_PROBE_MEM || + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { + struct bpf_insn *patch = &insn_buf[0]; + u64 uaddress_limit = bpf_arch_uaddress_limit(); + + if (!uaddress_limit) + goto next_insn; + + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); + if (insn->off) + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); + *patch++ = *insn; + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); + + cnt = patch - insn_buf; + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ if (BPF_CLASS(insn->code) == BPF_LD && (BPF_MODE(insn->code) == BPF_ABS ||
With BPF_PROBE_MEM, BPF allows de-referencing an untrusted pointer. To thwart invalid memory accesses, the JITs add an exception table entry for all such accesses. But in case the src_reg + offset overflows and turns into a userspace address, the BPF program might read that memory if the user has mapped it. There are architectural features that prevent the kernel from accessing userspace memory, like Privileged Access Never (PAN) on ARM64, Supervisor Mode Access Prevention (SMAP) on x86-64, Supervisor User Memory access (SUM) on RISC-V, etc. But BPF should not rely on the existence of these features. Make the verifier add guard instructions around such memory accesses and skip the load if the address falls into the userspace region. The JITs need to implement bpf_arch_uaddress_limit() to define where the userspace addresses end for that architecture or TASK_SIZE is taken as default. The implementation is as follows: REG_AX = SRC_REG if(offset) REG_AX += offset; REG_AX >>= 32; if (REG_AX <= (uaddress_limit >> 32)) DST_REG = 0; else DST_REG = *(size *)(SRC_REG + offset); Comparing just the upper 32 bits of the load address with the upper 32 bits of uaddress_limit implies that the values are being aligned down to a 4GB boundary before comparison. The above means that all loads with address <= uaddress_limit + 4GB are skipped. This is acceptable because there is a large hole (much larger than 4GB) between userspace and kernel space memory, therefore a correctly functioning BPF program should not access this 4GB memory above the userspace. Let's analyze what this patch does to the following fentry program dereferencing an untrusted pointer: SEC("fentry/tcp_v4_connect") int BPF_PROG(fentry_tcp_v4_connect, struct sock *sk) { *(volatile long *)sk; return 0; } BPF Program before | BPF Program after ------------------ | ----------------- 0: (79) r1 = *(u64 *)(r1 +0) 0: (79) r1 = *(u64 *)(r1 +0) ----------------------------------------------------------------------- 1: (79) r1 = *(u64 *)(r1 +0) --\ 1: (bf) r11 = r1 ----------------------------\ \ 2: (77) r11 >>= 32 2: (b7) r0 = 0 \ \ 3: (b5) if r11 <= 0x8000 goto pc+2 3: (95) exit \ \-> 4: (79) r1 = *(u64 *)(r1 +0) \ 5: (05) goto pc+1 \ 6: (b7) r1 = 0 \-------------------------------------- 7: (b7) r0 = 0 8: (95) exit As you can see from above, in the best case (off=0), 5 extra instructions are emitted. Now, we analyse the same program after it has gone through the JITs of X86-64, ARM64, and RISC-V architectures. We follow the single load instruction that has the untrusted pointer and see what instrumentation has been added around it. x86-64 JIT ========== JIT's Instrumentation Verifier's Instrumentation (upstream) (This patch) --------------------- -------------------------- 0: nopl 0x0(%rax,%rax,1) 0: nopl 0x0(%rax,%rax,1) 5: xchg %ax,%ax 5: xchg %ax,%ax 7: push %rbp 7: push %rbp 8: mov %rsp,%rbp 8: mov %rsp,%rbp b: mov 0x0(%rdi),%rdi b: mov 0x0(%rdi),%rdi ------------------------------------------------------------------------ f: movabs $0x800000000000,%r11 f: mov %rdi,%r10 19: cmp %r11,%rdi 12: shr $0x20,%r10 1c: jb 0x000000000000002a 16: cmp $0x8000,%r10 1e: mov %rdi,%r11 1d: jbe 0x0000000000000025 21: add $0x0,%r11 /--> 1f: mov 0x0(%rdi),%rdi 28: jae 0x000000000000002e / 23: jmp 0x0000000000000027 2a: xor %edi,%edi / 25: xor %edi,%edi 2c: jmp 0x0000000000000032 / /------------------------------------ 2e: mov 0x0(%rdi),%rdi ---/ / 27: xor %eax,%eax ---------------------------------/ 29: leave 32: xor %eax,%eax 2a: ret 34: leave 35: ret The x86-64 JIT already emits some instructions to protect against user memory access. The implementation in this patch leads to a smaller number of instructions being emitted. In the worst case the JIT will emit 9 extra instructions and this patch decreases it to 7. ARM64 JIT ========= No Intrumentation Verifier's Instrumentation (upstream) (This patch) ----------------- -------------------------- 0: add x9, x30, #0x0 0: add x9, x30, #0x0 4: nop 4: nop 8: paciasp 8: paciasp c: stp x29, x30, [sp, #-16]! c: stp x29, x30, [sp, #-16]! 10: mov x29, sp 10: mov x29, sp 14: stp x19, x20, [sp, #-16]! 14: stp x19, x20, [sp, #-16]! 18: stp x21, x22, [sp, #-16]! 18: stp x21, x22, [sp, #-16]! 1c: stp x25, x26, [sp, #-16]! 1c: stp x25, x26, [sp, #-16]! 20: stp x27, x28, [sp, #-16]! 20: stp x27, x28, [sp, #-16]! 24: mov x25, sp 24: mov x25, sp 28: mov x26, #0x0 28: mov x26, #0x0 2c: sub x27, x25, #0x0 2c: sub x27, x25, #0x0 30: sub sp, sp, #0x0 30: sub sp, sp, #0x0 34: ldr x0, [x0] 34: ldr x0, [x0] -------------------------------------------------------------------------------- 38: ldr x0, [x0] ----------\ 38: add x9, x0, #0x0 -----------------------------------\\ 3c: lsr x9, x9, #32 3c: mov x7, #0x0 \\ 40: cmp x9, #0x10, lsl #12 40: mov sp, sp \\ 44: b.ls 0x0000000000000050 44: ldp x27, x28, [sp], #16 \\--> 48: ldr x0, [x0] 48: ldp x25, x26, [sp], #16 \ 4c: b 0x0000000000000054 4c: ldp x21, x22, [sp], #16 \ 50: mov x0, #0x0 50: ldp x19, x20, [sp], #16 \--------------------------------------- 54: ldp x29, x30, [sp], #16 54: mov x7, #0x0 58: add x0, x7, #0x0 58: mov sp, sp 5c: autiasp 5c: ldp x27, x28, [sp], #16 60: ret 60: ldp x25, x26, [sp], #16 64: nop 64: ldp x21, x22, [sp], #16 68: ldr x10, 0x0000000000000070 68: ldp x19, x20, [sp], #16 6c: br x10 6c: ldp x29, x30, [sp], #16 70: add x0, x7, #0x0 74: autiasp 78: ret 7c: nop 80: ldr x10, 0x0000000000000088 84: br x10 There are 6 extra instructions added in ARM64 in the best case. This will become 7 in the worst case (off != 0). RISC-V JIT (RISCV_ISA_C Disabled) ========== No Intrumentation Verifier's Instrumentation (upstream) (This patch) ----------------- -------------------------- 0: nop 0: nop 4: nop 4: nop 8: li a6, 33 8: li a6, 33 c: addi sp, sp, -16 c: addi sp, sp, -16 10: sd s0, 8(sp) 10: sd s0, 8(sp) 14: addi s0, sp, 16 14: addi s0, sp, 16 18: ld a0, 0(a0) 18: ld a0, 0(a0) --------------------------------------------------------------- 1c: ld a0, 0(a0) --\ 1c: mv t0, a0 --------------------------\ \ 20: srli t0, t0, 32 20: li a5, 0 \ \ 24: lui t1, 4096 24: ld s0, 8(sp) \ \ 28: sext.w t1, t1 28: addi sp, sp, 16 \ \ 2c: bgeu t1, t0, 12 2c: sext.w a0, a5 \ \--> 30: ld a0, 0(a0) 30: ret \ 34: j 8 \ 38: li a0, 0 \------------------------------ 3c: li a5, 0 40: ld s0, 8(sp) 44: addi sp, sp, 16 48: sext.w a0, a5 4c: ret There are 7 extra instructions added in RISC-V. Fixes: 800834285361 ("bpf, arm64: Add BPF exception tables") Reported-by: Breno Leitao <leitao@debian.org> Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Puranjay Mohan <puranjay12@gmail.com> --- V3: https://lore.kernel.org/bpf/20240321120842.78983-1-puranjay12@gmail.com/ Changes in V4: - Disable this feature on architectures that don't define CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE. - By doing the above, we don't need anything explicitly for s390x. V2: https://lore.kernel.org/bpf/20240321101058.68530-1-puranjay12@gmail.com/ Changes in V3: - Return 0 from bpf_arch_uaddress_limit() in disabled case because it returns u64. - Modify the check in verifier to no do instrumentation when uaddress_limit is 0. V1: https://lore.kernel.org/bpf/20240320105436.4781-1-puranjay12@gmail.com/ Changes in V2: - Disable this feature on s390x. --- arch/x86/net/bpf_jit_comp.c | 72 +++++-------------------------------- include/linux/filter.h | 1 + kernel/bpf/core.c | 9 +++++ kernel/bpf/verifier.c | 30 ++++++++++++++++ 4 files changed, 48 insertions(+), 64 deletions(-)