new file mode 100644
@@ -0,0 +1,17 @@
+What: /sys/kernel/mm/transparent_hugepage/
+Date: April 2024
+Contact: Linux memory management mailing list <linux-mm@kvack.org>
+Description:
+ /sys/kernel/mm/transparent_hugepage/ contains a number of files and
+ subdirectories,
+ - defrag
+ - enabled
+ - hpage_pmd_size
+ - khugepaged
+ - shmem_enabled
+ - use_zero_page
+ - subdirectories of the form hugepages-<size>kB, where <size>
+ is the page size of the hugepages supported by the kernel/CPU
+ combination.
+
+ See Documentation/admin-guide/mm/transhuge.rst for details.
@@ -447,6 +447,34 @@ thp_swpout_fallback
Usually because failed to allocate some continuous swap space
for the huge page.
+In /sys/kernel/mm/transparent_hugepage/hugepages-<size>kB/stats, There are
+also individual counters for each huge page size, which can be utilized to
+monitor the system's effectiveness in providing huge pages for usage. Each
+counter has its own corresponding file.
+
+anon_fault_alloc
+ is incremented every time a huge page is successfully
+ allocated and charged to handle a page fault.
+
+anon_fault_fallback
+ is incremented if a page fault fails to allocate or charge
+ a huge page and instead falls back to using huge pages with
+ lower orders or small pages.
+
+anon_fault_fallback_charge
+ is incremented if a page fault fails to charge a huge page and
+ instead falls back to using huge pages with lower orders or
+ small pages even though the allocation was successful.
+
+anon_swpout
+ is incremented every time a huge page is swapped out in one
+ piece without splitting.
+
+anon_swpout_fallback
+ is incremented if a huge page has to be split before swapout.
+ Usually because failed to allocate some continuous swap space
+ for the huge page.
+
As the system ages, allocating huge pages may be expensive as the
system uses memory compaction to copy data around memory to free a
huge page for use. There are some counters in ``/proc/vmstat`` to help