Message ID | 20240515093633.54814-3-dev.jain@arm.com (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | Fixes for compaction_test | expand |
On Wed, 15 May 2024 15:06:33 +0530 Dev Jain <dev.jain@arm.com> wrote: > Reset nr_hugepages to zero before the start of the test. > > If a non-zero number of hugepages is already set before the start of the > test, the following problems arise: > > - The probability of the test getting OOM-killed increases. > Proof: The test wants to run on 80% of available memory to prevent > OOM-killing (see original code comments). Let the value of mem_free at the > start of the test, when nr_hugepages = 0, be x. In the other case, when > nr_hugepages > 0, let the memory consumed by hugepages be y. In the former > case, the test operates on 0.8 * x of memory. In the latter, the test > operates on 0.8 * (x - y) of memory, with y already filled, hence, memory > consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 * x. Q.E.D > > - The probability of a bogus test success increases. > Proof: Let the memory consumed by hugepages be greater than 25% of x, > with x and y defined as above. The definition of compaction_index is > c_index = (x - y)/z where z is the memory consumed by hugepages after > trying to increase them again. In check_compaction(), we set the number > of hugepages to zero, and then increase them back; the probability that > they will be set back to consume at least y amount of memory again is > very high (since there is not much delay between the two attempts of > changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption). > Therefore, > c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3 > hence, c_index can always be forced to be less than 3, thereby the test > succeeding always. Q.E.D > > NOTE: This patch depends on the previous one. > > -int check_compaction(unsigned long mem_free, unsigned int hugepage_size) > +int check_compaction(unsigned long mem_free, unsigned int hugepage_size, > + int initial_nr_hugepages) > { > int fd, ret = -1; > int compaction_index = 0; > - char initial_nr_hugepages[10] = {0}; > char nr_hugepages[10] = {0}; > + char init_nr_hugepages[10] = {0}; > + > + sprintf(init_nr_hugepages, "%d", initial_nr_hugepages); Well, [10] isn't really large enough. "-1111111111" requires 12 chars, with the trailing \0. And I'd suggest an unsigned type and a %u - negative initial_nr_hugepages doesn't make a lot of sense. > > +int set_zero_hugepages(int *initial_nr_hugepages) > +{ > + int fd, ret = -1; > + char nr_hugepages[10] = {0}; Ditto? > + fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK); > + if (fd < 0) { > + ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n", > + strerror(errno)); > + goto out; > + } > + > + if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) { > + ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n", > + strerror(errno)); > + goto close_fd; > + } > + > + lseek(fd, 0, SEEK_SET); > + > + /* Start with the initial condition of 0 huge pages */ > + if (write(fd, "0", sizeof(char)) != sizeof(char)) { > + ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n", > + strerror(errno)); > + goto close_fd; > + } > + > + *initial_nr_hugepages = atoi(nr_hugepages); > + ret = 0; > + > + close_fd: > + close(fd); > + > + out: > + return ret; > +}
On 5/20/24 05:33, Andrew Morton wrote: > On Wed, 15 May 2024 15:06:33 +0530 Dev Jain <dev.jain@arm.com> wrote: > >> Reset nr_hugepages to zero before the start of the test. >> >> If a non-zero number of hugepages is already set before the start of the >> test, the following problems arise: >> >> - The probability of the test getting OOM-killed increases. >> Proof: The test wants to run on 80% of available memory to prevent >> OOM-killing (see original code comments). Let the value of mem_free at the >> start of the test, when nr_hugepages = 0, be x. In the other case, when >> nr_hugepages > 0, let the memory consumed by hugepages be y. In the former >> case, the test operates on 0.8 * x of memory. In the latter, the test >> operates on 0.8 * (x - y) of memory, with y already filled, hence, memory >> consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 * x. Q.E.D >> >> - The probability of a bogus test success increases. >> Proof: Let the memory consumed by hugepages be greater than 25% of x, >> with x and y defined as above. The definition of compaction_index is >> c_index = (x - y)/z where z is the memory consumed by hugepages after >> trying to increase them again. In check_compaction(), we set the number >> of hugepages to zero, and then increase them back; the probability that >> they will be set back to consume at least y amount of memory again is >> very high (since there is not much delay between the two attempts of >> changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption). >> Therefore, >> c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3 >> hence, c_index can always be forced to be less than 3, thereby the test >> succeeding always. Q.E.D >> >> NOTE: This patch depends on the previous one. >> >> -int check_compaction(unsigned long mem_free, unsigned int hugepage_size) >> +int check_compaction(unsigned long mem_free, unsigned int hugepage_size, >> + int initial_nr_hugepages) >> { >> int fd, ret = -1; >> int compaction_index = 0; >> - char initial_nr_hugepages[10] = {0}; >> char nr_hugepages[10] = {0}; >> + char init_nr_hugepages[10] = {0}; >> + >> + sprintf(init_nr_hugepages, "%d", initial_nr_hugepages); > Well, [10] isn't really large enough. "-1111111111" requires 12 chars, > with the trailing \0. And I'd suggest an unsigned type and a %u - > negative initial_nr_hugepages doesn't make a lot of sense. > >> >> +int set_zero_hugepages(int *initial_nr_hugepages) >> +{ >> + int fd, ret = -1; >> + char nr_hugepages[10] = {0}; > Ditto? Sure, makes sense. I'll just change that to 20 and make it unsigned. > >> + fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK); >> + if (fd < 0) { >> + ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n", >> + strerror(errno)); >> + goto out; >> + } >> + >> + if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) { >> + ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n", >> + strerror(errno)); >> + goto close_fd; >> + } >> + >> + lseek(fd, 0, SEEK_SET); >> + >> + /* Start with the initial condition of 0 huge pages */ >> + if (write(fd, "0", sizeof(char)) != sizeof(char)) { >> + ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n", >> + strerror(errno)); >> + goto close_fd; >> + } >> + >> + *initial_nr_hugepages = atoi(nr_hugepages); >> + ret = 0; >> + >> + close_fd: >> + close(fd); >> + >> + out: >> + return ret; >> +}
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c index c5be395f8363..2ae059989771 100644 --- a/tools/testing/selftests/mm/compaction_test.c +++ b/tools/testing/selftests/mm/compaction_test.c @@ -82,12 +82,15 @@ int prereq(void) return -1; } -int check_compaction(unsigned long mem_free, unsigned int hugepage_size) +int check_compaction(unsigned long mem_free, unsigned int hugepage_size, + int initial_nr_hugepages) { int fd, ret = -1; int compaction_index = 0; - char initial_nr_hugepages[10] = {0}; char nr_hugepages[10] = {0}; + char init_nr_hugepages[10] = {0}; + + sprintf(init_nr_hugepages, "%d", initial_nr_hugepages); /* We want to test with 80% of available memory. Else, OOM killer comes in to play */ @@ -101,23 +104,6 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size) goto out; } - if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) { - ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n", - strerror(errno)); - goto close_fd; - } - - lseek(fd, 0, SEEK_SET); - - /* Start with the initial condition of 0 huge pages*/ - if (write(fd, "0", sizeof(char)) != sizeof(char)) { - ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n", - strerror(errno)); - goto close_fd; - } - - lseek(fd, 0, SEEK_SET); - /* Request a large number of huge pages. The Kernel will allocate as much as it can */ if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) { @@ -140,8 +126,8 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size) lseek(fd, 0, SEEK_SET); - if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages)) - != strlen(initial_nr_hugepages)) { + if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages)) + != strlen(init_nr_hugepages)) { ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); goto close_fd; @@ -165,6 +151,42 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size) return ret; } +int set_zero_hugepages(int *initial_nr_hugepages) +{ + int fd, ret = -1; + char nr_hugepages[10] = {0}; + + fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK); + if (fd < 0) { + ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n", + strerror(errno)); + goto out; + } + + if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) { + ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n", + strerror(errno)); + goto close_fd; + } + + lseek(fd, 0, SEEK_SET); + + /* Start with the initial condition of 0 huge pages */ + if (write(fd, "0", sizeof(char)) != sizeof(char)) { + ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n", + strerror(errno)); + goto close_fd; + } + + *initial_nr_hugepages = atoi(nr_hugepages); + ret = 0; + + close_fd: + close(fd); + + out: + return ret; +} int main(int argc, char **argv) { @@ -175,6 +197,7 @@ int main(int argc, char **argv) unsigned long mem_free = 0; unsigned long hugepage_size = 0; long mem_fragmentable_MB = 0; + int initial_nr_hugepages; ksft_print_header(); @@ -183,6 +206,10 @@ int main(int argc, char **argv) ksft_set_plan(1); + /* start the test without hugepages reducing mem_free */ + if (set_zero_hugepages(&initial_nr_hugepages)) + return ksft_exit_fail(); + lim.rlim_cur = RLIM_INFINITY; lim.rlim_max = RLIM_INFINITY; if (setrlimit(RLIMIT_MEMLOCK, &lim)) @@ -226,7 +253,8 @@ int main(int argc, char **argv) entry = entry->next; } - if (check_compaction(mem_free, hugepage_size) == 0) + if (check_compaction(mem_free, hugepage_size, + initial_nr_hugepages) == 0) return ksft_exit_pass(); return ksft_exit_fail();
Reset nr_hugepages to zero before the start of the test. If a non-zero number of hugepages is already set before the start of the test, the following problems arise: - The probability of the test getting OOM-killed increases. Proof: The test wants to run on 80% of available memory to prevent OOM-killing (see original code comments). Let the value of mem_free at the start of the test, when nr_hugepages = 0, be x. In the other case, when nr_hugepages > 0, let the memory consumed by hugepages be y. In the former case, the test operates on 0.8 * x of memory. In the latter, the test operates on 0.8 * (x - y) of memory, with y already filled, hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 * x. Q.E.D - The probability of a bogus test success increases. Proof: Let the memory consumed by hugepages be greater than 25% of x, with x and y defined as above. The definition of compaction_index is c_index = (x - y)/z where z is the memory consumed by hugepages after trying to increase them again. In check_compaction(), we set the number of hugepages to zero, and then increase them back; the probability that they will be set back to consume at least y amount of memory again is very high (since there is not much delay between the two attempts of changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption). Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3 hence, c_index can always be forced to be less than 3, thereby the test succeeding always. Q.E.D NOTE: This patch depends on the previous one. Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory") Cc: stable@vger.kernel.org Signed-off-by: Dev Jain <dev.jain@arm.com> --- tools/testing/selftests/mm/compaction_test.c | 72 ++++++++++++++------ 1 file changed, 50 insertions(+), 22 deletions(-)