Message ID | 20240521105532.1537845-7-quic_mdalam@quicinc.com (mailing list archive) |
---|---|
State | Superseded |
Headers | show |
Series | Add QPIC SPI NAND driver | expand |
Hi, > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index e59106e0a3af..12ee33c4ac4e 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -5,6 +5,10 @@ obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o > obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o > ifeq ($(CONFIG_MTD_NAND_QCOM),y) > obj-y += qpic_common.o > +else > +ifeq ($(CONFIG_SPI_QPIC_SNAND),y) > +obj-y += qpic_common.o > +endif Same issue. > endif > obj-y += onenand/ > obj-y += raw/ > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig > index a2c99ff33e0a..bb7579246f2f 100644 > --- a/drivers/spi/Kconfig > +++ b/drivers/spi/Kconfig > @@ -892,6 +892,14 @@ config SPI_QCOM_QSPI > help > QSPI(Quad SPI) driver for Qualcomm QSPI controller. > ... > +static struct qcom_nand_controller *nand_to_qcom_snand(struct nand_device *nand) > +{ > + struct qpic_spi_nand *qspi; > + struct nand_ecc_engine *eng = nand->ecc.engine; > + > + qspi = container_of(eng, struct qpic_spi_nand, ecc_eng); Please encode this into a macro and use it on the second line of this function: struct qpic_spi_nand *qspi = ecceng_to_qspi(eng); > + return qspi->snandc; > +} > + > +static int qcom_spi_init(struct qcom_nand_controller *snandc) > +{ > + u32 snand_cfg_val = 0x0; > + int ret; > + > + snand_cfg_val |= (LOAD_CLK_CNTR_INIT_EN | (CLK_CNTR_INIT_VAL_VEC << 16) | > + (FEA_STATUS_DEV_ADDR << 8) | SPI_CFG); FIELD_PREP ? > + > + snandc->regs->spi_cfg = snand_cfg_val; > + snandc->regs->num_addr_cycle = SPI_NUM_ADDR; > + snandc->regs->busy_wait_cnt = SPI_WAIT_CNT; > + > + qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); > + > + snand_cfg_val &= ~LOAD_CLK_CNTR_INIT_EN; > + snandc->regs->spi_cfg = snand_cfg_val; > + > + qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); > + > + qcom_write_reg_dma(snandc, &snandc->regs->num_addr_cycle, NAND_NUM_ADDR_CYCLES, 1, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->busy_wait_cnt, NAND_BUSY_CHECK_WAIT_CNT, 1, > + NAND_BAM_NEXT_SGL); > + > + ret = qcom_submit_descs(snandc); > + if (ret) { > + dev_err(snandc->dev, "failure in submitting spi init descriptor\n"); > + return ret; > + } > + > + return ret; > +} > + > +static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_device *nand = mtd_to_nanddev(mtd); > + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > + struct qpic_ecc *qecc = snandc->qspi->ecc; > + > + if (section > 1) > + return -ERANGE; > + > + if (!section) { > + oobregion->length = (qecc->bytes * (qecc->steps - 1)) + qecc->bbm_size; > + oobregion->offset = 0; No, offset 0 is for the BBM. This is wrong. The whole oob layout looks really really wrong. ECC bytes are where the ECC engine puts its bytes in the OOB area. Free bytes start after the BBM and fill the gaps until the end of the area, except where there are ECC bytes. > + } else { > + oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes; > + oobregion->offset = mtd->oobsize - oobregion->length; > + } > + > + return 0; > +} > + > +static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_device *nand = mtd_to_nanddev(mtd); > + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > + struct qpic_ecc *qecc = snandc->qspi->ecc; > + > + if (section) > + return -ERANGE; > + > + oobregion->length = qecc->steps * 4; > + oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size; > + > + return 0; > +} > + ... > +static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand, > + struct nand_page_io_req *req) > +{ > + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > + struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); > + struct mtd_info *mtd = nanddev_to_mtd(nand); > + > + snandc->qspi->ecc = ecc_cfg; > + snandc->qspi->pagesize = mtd->writesize; > + snandc->qspi->raw_rw = false; > + snandc->qspi->oob_rw = false; > + snandc->qspi->page_rw = false; > + > + if (req->datalen) > + snandc->qspi->page_rw = true; > + > + if (req->ooblen) { > + snandc->qspi->oob_rw = true; > + if (req->ooblen == BAD_BLOCK_MARKER_SIZE) > + snandc->qspi->read_last_cw = true; ??? > + } > + > + if (req->mode == MTD_OPS_RAW) > + snandc->qspi->raw_rw = true; > + > + return 0; > +} > + > +static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand, > + struct nand_page_io_req *req) > +{ > + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > + struct mtd_info *mtd = nanddev_to_mtd(nand); > + > + if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ) > + return 0; > + > + if (snandc->qspi->ecc_stats.failed) > + mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed; > + mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected; Seems strange > + > + if (snandc->qspi->ecc_stats.failed) > + return -EBADMSG; > + else > + return snandc->qspi->ecc_stats.bitflips; > +} > + > +static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = { > + .init_ctx = qcom_spi_ecc_init_ctx_pipelined, > + .cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined, > + .prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined, > + .finish_io_req = qcom_spi_ecc_finish_io_req_pipelined, > +}; > + ... > +static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc, > + const struct spi_mem_op *op) > +{ > + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; > + u8 *data_buf = NULL, *oob_buf = NULL; > + int ret, cw; > + u32 num_cw = snandc->qspi->num_cw; > + > + if (snandc->qspi->page_rw) I don't like this indirection very much. Can't you simplify this and just follow the spi-mem op instead of constantly trying to add additional stuff? The hardware is already quite complex, but it feels like your adding yet another pile of unnecessary complexity. > + data_buf = op->data.buf.in; > + > + if (snandc->qspi->oob_rw) > + oob_buf = op->data.buf.in; Same buffer pointed by the two pointers? hum > + > + if (!oob_buf) { > + oob_buf = snandc->qspi->oob_buf; > + memset(oob_buf, 0xff, OOB_BUF_SIZE); > + } > + > + for (cw = 0; cw < num_cw; cw++) { > + ret = qcom_spi_read_cw_raw(snandc, data_buf, oob_buf, cw); > + if (ret) > + return ret; > + > + if (data_buf) > + data_buf += ecc_cfg->cw_data; > + if (oob_buf) > + oob_buf += ecc_cfg->bytes; > + } > + > + return 0; > +} > + > +static int qcom_spi_read_page_cache(struct qcom_nand_controller *snandc, > + const struct spi_mem_op *op) > +{ > + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; > + u8 *data_buf = NULL, *data_buf_start, *oob_buf = NULL, *oob_buf_start; > + int ret, i; > + u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; > + > + if (snandc->qspi->page_rw) { > + data_buf = op->data.buf.in; > + data_buf_start = data_buf; > + } > + > + if (snandc->qspi->oob_rw || snandc->qspi->raw_rw) { > + oob_buf = op->data.buf.in; > + oob_buf_start = oob_buf; > + } > + > + if (snandc->qspi->page_rw && snandc->qspi->raw_rw) > + return qcom_spi_read_page_raw(snandc, op); > + > + if (snandc->qspi->oob_rw && snandc->qspi->raw_rw && snandc->qspi->read_last_cw) > + return qcom_spi_read_last_cw(snandc, op); > + > + snandc->buf_count = 0; > + snandc->buf_start = 0; > + qcom_clear_read_regs(snandc); > + > + cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | > + (num_cw - 1) << CW_PER_PAGE; > + cfg1 = ecc_cfg->cfg1; > + ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; > + > + snandc->regs->addr0 = snandc->qspi->addr1; > + snandc->regs->addr1 = snandc->qspi->addr2; > + snandc->regs->cmd = snandc->qspi->cmd; > + snandc->regs->cfg0 = cfg0; > + snandc->regs->cfg1 = cfg1; > + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; > + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; > + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; > + snandc->regs->exec = 1; > + > + qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1); > + > + qcom_clear_bam_transaction(snandc); > + > + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, > + NAND_ERASED_CW_DETECT_CFG, 1, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, > + NAND_ERASED_CW_DETECT_CFG, 1, > + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); > + > + for (i = 0; i < num_cw; i++) { > + int data_size, oob_size; > + > + if (i == (num_cw - 1)) { > + data_size = 512 - ((num_cw - 1) << 2); > + oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + > + ecc_cfg->spare_bytes; > + } else { > + data_size = ecc_cfg->cw_data; > + oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; > + } > + > + if (data_buf && oob_buf) { > + qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 0); > + qcom_spi_set_read_loc(snandc, i, 1, data_size, oob_size, 1); > + } else if (data_buf) { > + qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 1); > + } else { > + qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1); > + } > + > + qcom_spi_config_cw_read(snandc, true, i); > + > + if (data_buf) > + qcom_read_data_dma(snandc, FLASH_BUF_ACC, data_buf, > + data_size, 0); > + if (oob_buf) { > + int j; > + > + for (j = 0; j < ecc_cfg->bbm_size; j++) > + *oob_buf++ = 0xff; > + > + qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size, > + oob_buf, oob_size, 0); > + } > + > + if (data_buf) > + data_buf += data_size; > + if (oob_buf) > + oob_buf += oob_size; > + } > + > + ret = qcom_submit_descs(snandc); > + if (ret) { > + dev_err(snandc->dev, "failure to read page\n"); > + return ret; > + } > + > + return qcom_spi_check_error(snandc, data_buf_start, oob_buf_start); > +} > + > +static void qcom_spi_config_page_write(struct qcom_nand_controller *snandc) > +{ > + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, > + 1, NAND_BAM_NEXT_SGL); > +} > + > +static void qcom_spi_config_cw_write(struct qcom_nand_controller *snandc) > +{ > + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); > + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); > + qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); > + > + qcom_write_reg_dma(snandc, &snandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0); > + qcom_write_reg_dma(snandc, &snandc->regs->clrreadstatus, NAND_READ_STATUS, 1, > + NAND_BAM_NEXT_SGL); > +} > + > +static int qcom_spi_program_raw(struct qcom_nand_controller *snandc, > + const struct spi_mem_op *op) > +{ > + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; > + u8 *data_buf = NULL, *oob_buf = NULL; > + int i, ret; > + int num_cw = snandc->qspi->num_cw; > + u32 cfg0, cfg1, ecc_bch_cfg; > + > + cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | > + (num_cw - 1) << CW_PER_PAGE; > + cfg1 = ecc_cfg->cfg1_raw; > + ecc_bch_cfg = ECC_CFG_ECC_DISABLE; > + > + data_buf = snandc->qspi->data_buf; > + > + oob_buf = snandc->qspi->oob_buf; > + memset(oob_buf, 0xff, OOB_BUF_SIZE); > + > + snandc->buf_count = 0; > + snandc->buf_start = 0; > + qcom_clear_read_regs(snandc); > + qcom_clear_bam_transaction(snandc); > + > + snandc->regs->addr0 = snandc->qspi->addr1; > + snandc->regs->addr1 = snandc->qspi->addr2; > + snandc->regs->cmd = snandc->qspi->cmd; > + snandc->regs->cfg0 = cfg0; > + snandc->regs->cfg1 = cfg1; > + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; > + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; > + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; > + snandc->regs->exec = 1; > + > + qcom_spi_config_page_write(snandc); > + > + for (i = 0; i < num_cw; i++) { > + int data_size1, data_size2, oob_size1, oob_size2; > + int reg_off = FLASH_BUF_ACC; > + > + data_size1 = snandc->qspi->pagesize - ecc_cfg->cw_size * (num_cw - 1); > + oob_size1 = ecc_cfg->bbm_size; > + > + if ((i == (num_cw - 1))) { > + data_size2 = NANDC_STEP_SIZE - data_size1 - > + ((num_cw - 1) << 2); > + oob_size2 = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + > + ecc_cfg->spare_bytes; > + } else { > + data_size2 = ecc_cfg->cw_data - data_size1; > + oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; > + } > + > + qcom_write_data_dma(snandc, reg_off, data_buf, data_size1, > + NAND_BAM_NO_EOT); > + reg_off += data_size1; > + data_buf += data_size1; > + > + qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size1, > + NAND_BAM_NO_EOT); > + oob_buf += oob_size1; > + reg_off += oob_size1; > + > + qcom_write_data_dma(snandc, reg_off, data_buf, data_size2, > + NAND_BAM_NO_EOT); > + reg_off += data_size2; > + data_buf += data_size2; > + > + qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size2, 0); > + oob_buf += oob_size2; > + > + qcom_spi_config_cw_write(snandc); > + } > + > + ret = qcom_submit_descs(snandc); > + if (ret) { > + dev_err(snandc->dev, "failure to write raw page\n"); > + return ret; > + } > + > + return 0; > +} > + > +static int qcom_spi_program_execute(struct qcom_nand_controller *snandc, > + const struct spi_mem_op *op) > +{ > + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; > + u8 *data_buf = NULL, *oob_buf = NULL; > + int i, ret; > + int num_cw = snandc->qspi->num_cw; > + u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg; > + > + cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | > + (num_cw - 1) << CW_PER_PAGE; > + cfg1 = ecc_cfg->cfg1; > + ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; > + ecc_buf_cfg = ecc_cfg->ecc_buf_cfg; > + > + if (snandc->qspi->page_rw && snandc->qspi->raw_rw) > + return qcom_spi_program_raw(snandc, op); > + > + if (snandc->qspi->data_buf) > + data_buf = snandc->qspi->data_buf; > + > + if (snandc->qspi->oob_buf) > + oob_buf = snandc->qspi->oob_buf; > + > + snandc->buf_count = 0; > + snandc->buf_start = 0; > + qcom_clear_read_regs(snandc); > + qcom_clear_bam_transaction(snandc); > + > + snandc->regs->addr0 = snandc->qspi->addr1; > + snandc->regs->addr1 = snandc->qspi->addr2; > + snandc->regs->cmd = snandc->qspi->cmd; > + snandc->regs->cfg0 = cfg0; > + snandc->regs->cfg1 = cfg1; > + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; > + snandc->regs->ecc_buf_cfg = ecc_buf_cfg; > + snandc->regs->exec = 1; > + > + qcom_spi_config_page_write(snandc); > + > + for (i = 0; i < num_cw; i++) { > + int data_size, oob_size; > + > + if (i == (num_cw - 1)) { > + data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2); > + oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + > + ecc_cfg->spare_bytes; > + } else { > + data_size = ecc_cfg->cw_data; > + oob_size = ecc_cfg->bytes; > + } > + > + if (data_buf) > + qcom_write_data_dma(snandc, FLASH_BUF_ACC, data_buf, data_size, > + i == (num_cw - 1) ? NAND_BAM_NO_EOT : 0); > + > + if (i == (num_cw - 1)) { > + if (oob_buf) { > + oob_buf += ecc_cfg->bbm_size; > + qcom_write_data_dma(snandc, FLASH_BUF_ACC + data_size, > + oob_buf, oob_size, 0); > + } > + } > + > + qcom_spi_config_cw_write(snandc); > + > + if (data_buf) > + data_buf += data_size; > + if (oob_buf) > + oob_buf += oob_size; > + } > + > + ret = qcom_submit_descs(snandc); > + if (ret) { > + dev_err(snandc->dev, "failure to write page\n"); > + return ret; > + } > + > + return 0; > +} > + > +static u32 qcom_spi_cmd_mapping(struct qcom_nand_controller *snandc, u32 opcode) > +{ > + u32 cmd = 0x0; > + > + switch (opcode) { > + case SPINAND_RESET: > + cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_RESET_DEVICE); > + break; > + case SPINAND_READID: > + cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_FETCH_ID); > + break; > + case SPINAND_GET_FEATURE: > + cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE); > + break; > + case SPINAND_SET_FEATURE: > + cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE | > + QPIC_SET_FEATURE); > + break; > + case SPINAND_READ: > + if (snandc->qspi->raw_rw) { > + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | > + SPI_WP | SPI_HOLD | OP_PAGE_READ); > + } else { > + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | > + SPI_WP | SPI_HOLD | OP_PAGE_READ_WITH_ECC); > + } > + > + break; > + case SPINAND_ERASE: > + cmd = OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE | SPI_WP | > + SPI_HOLD | SPI_TRANSFER_MODE_x1; > + break; > + case SPINAND_WRITE_EN: > + cmd = SPINAND_WRITE_EN; > + break; > + case SPINAND_PROGRAM_EXECUTE: > + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | > + SPI_WP | SPI_HOLD | OP_PROGRAM_PAGE); > + break; > + case SPINAND_PROGRAM_LOAD: > + cmd = SPINAND_PROGRAM_LOAD; > + break; > + default: > + dev_err(snandc->dev, "Opcode not supported: %u\n", opcode); > + return -EOPNOTSUPP; > + } > + > + return cmd; > +} > + > +static int qcom_spi_write_page_cache(struct qcom_nand_controller *snandc, > + const struct spi_mem_op *op) > +{ > + struct qpic_snand_op s_op = {}; > + u32 cmd; > + > + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); I've asked for switch cases to return an error in case they could not handle the request. If you don't check the returned values, it does not make any sense. > + s_op.cmd_reg = cmd; > + > + if (op->cmd.opcode == SPINAND_PROGRAM_LOAD) { > + if (snandc->qspi->page_rw) > + snandc->qspi->data_buf = (u8 *)op->data.buf.out; What you do here does not write anything in a page cache. I also don't understand why you would have to check against the SPINAND_PROGRAM_LOAD opcode. > + } > + > + return 0; > +} > + > +static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc, > + const struct spi_mem_op *op) > +{ > + struct qpic_snand_op s_op = {}; > + u32 cmd; > + int ret, opcode; > + > + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); > + > + s_op.cmd_reg = cmd; > + s_op.addr1_reg = op->addr.val; > + s_op.addr2_reg = 0; > + > + opcode = op->cmd.opcode; > + > + switch (opcode) { > + case SPINAND_WRITE_EN: > + return 0; > + case SPINAND_PROGRAM_EXECUTE: > + s_op.addr1_reg = op->addr.val << 16; > + s_op.addr2_reg = op->addr.val >> 16 & 0xff; > + snandc->qspi->addr1 = s_op.addr1_reg; > + snandc->qspi->addr2 = s_op.addr2_reg; > + snandc->qspi->cmd = cmd; > + return qcom_spi_program_execute(snandc, op); > + case SPINAND_READ: > + s_op.addr1_reg = (op->addr.val << 16); > + s_op.addr2_reg = op->addr.val >> 16 & 0xff; > + snandc->qspi->addr1 = s_op.addr1_reg; > + snandc->qspi->addr2 = s_op.addr2_reg; > + snandc->qspi->cmd = cmd; > + return 0; > + case SPINAND_ERASE: > + s_op.addr2_reg = (op->addr.val >> 16) & 0xffff; > + s_op.addr1_reg = op->addr.val; > + snandc->qspi->addr1 = (s_op.addr1_reg << 16); > + snandc->qspi->addr2 = s_op.addr2_reg; > + snandc->qspi->cmd = cmd; > + qcom_spi_block_erase(snandc); > + return 0; > + default: > + break; > + } > + > + snandc->buf_count = 0; > + snandc->buf_start = 0; > + qcom_clear_read_regs(snandc); > + qcom_clear_bam_transaction(snandc); > + > + snandc->regs->cmd = s_op.cmd_reg; > + snandc->regs->exec = 1; > + snandc->regs->addr0 = s_op.addr1_reg; > + snandc->regs->addr1 = s_op.addr2_reg; > + > + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); > + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); > + > + ret = qcom_submit_descs(snandc); > + if (ret) > + dev_err(snandc->dev, "failure in sbumitting cmd descriptor\n"); typo > + > + return ret; > +} > + > +static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) > +{ > + int ret, val, opcode; > + bool copy = false, copy_ftr = false; > + > + ret = qcom_spi_send_cmdaddr(snandc, op); > + if (ret) > + return ret; > + > + snandc->buf_count = 0; > + snandc->buf_start = 0; > + qcom_clear_read_regs(snandc); > + qcom_clear_bam_transaction(snandc); > + opcode = op->cmd.opcode; > + > + switch (opcode) { > + case SPINAND_READID: > + snandc->buf_count = 4; > + qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); > + copy = true; > + break; > + case SPINAND_GET_FEATURE: > + snandc->buf_count = 4; > + qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); > + copy_ftr = true; > + break; > + case SPINAND_SET_FEATURE: > + snandc->regs->flash_feature = *(u32 *)op->data.buf.out; > + qcom_write_reg_dma(snandc, &snandc->regs->flash_feature, > + NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); > + break; > + case SPINAND_RESET: > + return 0; > + case SPINAND_PROGRAM_EXECUTE: > + return 0; > + case SPINAND_WRITE_EN: > + return 0; > + case SPINAND_ERASE: > + return 0; > + case SPINAND_READ: > + return 0; You can stack the cases > + default: > + return -EOPNOTSUPP; > + } > + > + ret = qcom_submit_descs(snandc); > + if (ret) > + dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode); > + > + if (copy) { > + qcom_nandc_dev_to_mem(snandc, true); > + memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count); > + } > + > + if (copy_ftr) { > + qcom_nandc_dev_to_mem(snandc, true); > + val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf); > + val >>= 8; > + memcpy(op->data.buf.in, &val, snandc->buf_count); > + } > + > + return ret; > +} > + > +static bool qcom_spi_is_page_op(const struct spi_mem_op *op) > +{ > + if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && op->addr.buswidth != 4) > + return false; > + > + if (op->data.dir == SPI_MEM_DATA_IN) { > + if (op->addr.buswidth == 4 && op->data.buswidth == 4) > + return true; > + > + if (op->addr.nbytes == 2 && op->addr.buswidth == 1) > + return true; > + > + } else if (op->data.dir == SPI_MEM_DATA_OUT) { > + if (op->data.buswidth == 4) > + return true; > + if (op->addr.nbytes == 2 && op->addr.buswidth == 1) > + return true; > + } > + > + return false; > +} > + > +static bool qcom_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) > +{ > + if (!spi_mem_default_supports_op(mem, op)) > + return false; > + > + if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) > + return false; > + > + if (qcom_spi_is_page_op(op)) > + return true; > + > + return ((!op->addr.nbytes || op->addr.buswidth == 1) && > + (!op->dummy.nbytes || op->dummy.buswidth == 1) && > + (!op->data.nbytes || op->data.buswidth == 1)); > +} > + > +static int qcom_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) > +{ > + struct qcom_nand_controller *snandc = spi_controller_get_devdata(mem->spi->controller); > + > + dev_dbg(snandc->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, > + op->addr.val, op->addr.buswidth, op->addr.nbytes, > + op->data.buswidth, op->data.nbytes); > + > + if (qcom_spi_is_page_op(op)) { > + if (op->data.dir == SPI_MEM_DATA_IN) > + return qcom_spi_read_page_cache(snandc, op); > + if (op->data.dir == SPI_MEM_DATA_OUT) > + return qcom_spi_write_page_cache(snandc, op); > + } else { > + return qcom_spi_io_op(snandc, op); > + } > + > + return 0; > +} > + > +static const struct spi_controller_mem_ops qcom_spi_mem_ops = { > + .supports_op = qcom_spi_supports_op, > + .exec_op = qcom_spi_exec_op, > +}; > + > +static const struct spi_controller_mem_caps qcom_spi_mem_caps = { > + .ecc = true, > +}; > + > +static int qcom_spi_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct spi_controller *ctlr; > + struct qcom_nand_controller *snandc; > + struct qpic_spi_nand *qspi; > + struct qpic_ecc *ecc; > + struct resource *res; > + const void *dev_data; > + int ret; > + > + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); > + if (!ecc) > + return -ENOMEM; > + > + qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL); > + if (!qspi) > + return -ENOMEM; > + > + ctlr = __devm_spi_alloc_controller(dev, sizeof(*snandc), false); > + if (!ctlr) > + return -ENOMEM; > + > + platform_set_drvdata(pdev, ctlr); > + > + snandc = spi_controller_get_devdata(ctlr); > + qspi->snandc = snandc; > + > + snandc->dev = dev; > + snandc->qspi = qspi; > + snandc->qspi->ctlr = ctlr; > + snandc->qspi->ecc = ecc; > + > + snandc->qspi->oob_buf = devm_kzalloc(dev, OOB_BUF_SIZE, GFP_KERNEL); > + if (!snandc->qspi->oob_buf) > + return -ENOMEM; > + > + dev_data = of_device_get_match_data(dev); > + if (!dev_data) { > + dev_err(&pdev->dev, "failed to get device data\n"); > + return -ENODEV; > + } > + > + snandc->props = dev_data; > + snandc->dev = &pdev->dev; > + > + snandc->core_clk = devm_clk_get(dev, "core"); > + if (IS_ERR(snandc->core_clk)) > + return PTR_ERR(snandc->core_clk); > + > + snandc->aon_clk = devm_clk_get(dev, "aon"); > + if (IS_ERR(snandc->aon_clk)) > + return PTR_ERR(snandc->aon_clk); > + > + snandc->qspi->iomacro_clk = devm_clk_get(dev, "iom"); > + if (IS_ERR(snandc->qspi->iomacro_clk)) > + return PTR_ERR(snandc->qspi->iomacro_clk); > + > + snandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); > + if (IS_ERR(snandc->base)) > + return PTR_ERR(snandc->base); > + > + snandc->base_phys = res->start; > + snandc->base_dma = dma_map_resource(dev, res->start, resource_size(res), > + DMA_BIDIRECTIONAL, 0); > + if (dma_mapping_error(dev, snandc->base_dma)) > + return -ENXIO; > + > + ret = clk_prepare_enable(snandc->core_clk); > + if (ret) > + goto err_core_clk; Again, the label is better named when it describes what it point at, rather than where it comes from. > + > + ret = clk_prepare_enable(snandc->aon_clk); > + if (ret) > + goto err_aon_clk; > + > + ret = clk_prepare_enable(snandc->qspi->iomacro_clk); > + if (ret) > + goto err_dis_iom_clk; > + > + ret = qcom_nandc_alloc(snandc); > + if (ret) > + goto err_snand_alloc; > + > + ret = qcom_spi_init(snandc); > + if (ret) > + goto err_init; > + > + /* setup ECC engine */ > + snandc->qspi->ecc_eng.dev = &pdev->dev; > + snandc->qspi->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; > + snandc->qspi->ecc_eng.ops = &qcom_spi_ecc_engine_ops_pipelined; > + snandc->qspi->ecc_eng.priv = snandc; > + > + ret = nand_ecc_register_on_host_hw_engine(&snandc->qspi->ecc_eng); > + if (ret) { > + dev_err(&pdev->dev, "failed to register ecc engine:%d\n", ret); > + goto err_init; > + } > + > + ctlr->num_chipselect = QPIC_QSPI_NUM_CS; > + ctlr->mem_ops = &qcom_spi_mem_ops; > + ctlr->mem_caps = &qcom_spi_mem_caps; > + ctlr->dev.of_node = pdev->dev.of_node; > + ctlr->mode_bits = SPI_TX_DUAL | SPI_RX_DUAL | > + SPI_TX_QUAD | SPI_RX_QUAD; > + > + ret = spi_register_controller(ctlr); > + if (ret) { > + dev_err(&pdev->dev, "spi_register_controller failed.\n"); > + goto err_init; > + } > + > + return 0; > + > +err_init: > + qcom_nandc_unalloc(snandc); Same: s/unalloc/free|cleanup/ > +err_snand_alloc: > + clk_disable_unprepare(snandc->qspi->iomacro_clk); > +err_dis_iom_clk: > + clk_disable_unprepare(snandc->aon_clk); > +err_aon_clk: > + clk_disable_unprepare(snandc->core_clk); > +err_core_clk: > + dma_unmap_resource(dev, res->start, resource_size(res), > + DMA_BIDIRECTIONAL, 0); > + return ret; > +} Thanks, Miquèl
On 5/21/2024 6:54 PM, Miquel Raynal wrote: > Hi, > >> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile >> index e59106e0a3af..12ee33c4ac4e 100644 >> --- a/drivers/mtd/nand/Makefile >> +++ b/drivers/mtd/nand/Makefile >> @@ -5,6 +5,10 @@ obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o >> obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o >> ifeq ($(CONFIG_MTD_NAND_QCOM),y) >> obj-y += qpic_common.o >> +else >> +ifeq ($(CONFIG_SPI_QPIC_SNAND),y) >> +obj-y += qpic_common.o >> +endif > > Same issue. ok, will fix in next patch. > >> endif >> obj-y += onenand/ >> obj-y += raw/ >> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig >> index a2c99ff33e0a..bb7579246f2f 100644 >> --- a/drivers/spi/Kconfig >> +++ b/drivers/spi/Kconfig >> @@ -892,6 +892,14 @@ config SPI_QCOM_QSPI >> help >> QSPI(Quad SPI) driver for Qualcomm QSPI controller. >> > > ... > >> +static struct qcom_nand_controller *nand_to_qcom_snand(struct nand_device *nand) >> +{ >> + struct qpic_spi_nand *qspi; >> + struct nand_ecc_engine *eng = nand->ecc.engine; >> + >> + qspi = container_of(eng, struct qpic_spi_nand, ecc_eng); > > Please encode this into a macro and use it on the second line of this > function: Ok > > struct qpic_spi_nand *qspi = ecceng_to_qspi(eng); > >> + return qspi->snandc; >> +} >> + >> +static int qcom_spi_init(struct qcom_nand_controller *snandc) >> +{ >> + u32 snand_cfg_val = 0x0; >> + int ret; >> + >> + snand_cfg_val |= (LOAD_CLK_CNTR_INIT_EN | (CLK_CNTR_INIT_VAL_VEC << 16) | >> + (FEA_STATUS_DEV_ADDR << 8) | SPI_CFG); > > FIELD_PREP ? Ok > >> + >> + snandc->regs->spi_cfg = snand_cfg_val; >> + snandc->regs->num_addr_cycle = SPI_NUM_ADDR; >> + snandc->regs->busy_wait_cnt = SPI_WAIT_CNT; >> + >> + qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); >> + >> + snand_cfg_val &= ~LOAD_CLK_CNTR_INIT_EN; >> + snandc->regs->spi_cfg = snand_cfg_val; >> + >> + qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); >> + >> + qcom_write_reg_dma(snandc, &snandc->regs->num_addr_cycle, NAND_NUM_ADDR_CYCLES, 1, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->busy_wait_cnt, NAND_BUSY_CHECK_WAIT_CNT, 1, >> + NAND_BAM_NEXT_SGL); >> + >> + ret = qcom_submit_descs(snandc); >> + if (ret) { >> + dev_err(snandc->dev, "failure in submitting spi init descriptor\n"); >> + return ret; >> + } >> + >> + return ret; >> +} >> + >> +static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oobregion) >> +{ >> + struct nand_device *nand = mtd_to_nanddev(mtd); >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >> + struct qpic_ecc *qecc = snandc->qspi->ecc; >> + >> + if (section > 1) >> + return -ERANGE; >> + >> + if (!section) { >> + oobregion->length = (qecc->bytes * (qecc->steps - 1)) + qecc->bbm_size; >> + oobregion->offset = 0; > > No, offset 0 is for the BBM. This is wrong. > The whole oob layout looks really really wrong. > > ECC bytes are where the ECC engine puts its bytes in the OOB area. > Free bytes start after the BBM and fill the gaps until the end of the > area, except where there are ECC bytes. QPIC NAND controller having its own page layout with ecc and without ecc. The same layout we are using in raw nand driver as well, so i used the same here. The below info is already there in qcom raw nand driver file in page layout info. QPIC NAND controller layout as below: Layout with ECC enabled: |----------------------| |---------------------------------| | xx.......yy| | *********xx.......yy| | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| | xx.......yy| | *********xx.......yy| |----------------------| |---------------------------------| codeword 1,2..n-1 codeword n <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> n = Number of codewords in the page . = ECC bytes * = Spare/free bytes x = Unused byte(s) y = Reserved byte(s) 2K page: n = 4, spare = 16 bytes 4K page: n = 8, spare = 32 bytes 8K page: n = 16, spare = 64 bytes the qcom nand controller operates at a sub page/codeword level. each codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. the number of ECC bytes vary based on the ECC strength and the bus width. the first n - 1 codewords contains 516 bytes of user data, the remaining 12/16 bytes consist of ECC and reserved data. The nth codeword contains both user data and spare(oobavail) bytes that sum up to 516 bytes. When we access a page with ECC enabled, the reserved bytes(s) are not accessible at all. When reading, we fill up these unreadable positions with 0xffs. When writing, the controller skips writing the inaccessible bytes. Layout with ECC disabled: |------------------------------| |---------------------------------------| | yy xx.......| | bb *********xx.......| | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| | yy xx.......| | bb *********xx.......| |------------------------------| |---------------------------------------| codeword 1,2..n-1 codeword n <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> n = Number of codewords in the page . = ECC bytes * = Spare/free bytes x = Unused byte(s) y = Dummy Bad Bock byte(s) b = Real Bad Block byte(s) size1/size2 = function of codeword size and 'n' when the ECC block is disabled, one reserved byte (or two for 16 bit bus width) is now accessible. For the first n - 1 codewords, these are dummy Bad Block Markers. In the last codeword, this position contains the real BBM In order to have a consistent layout between RAW and ECC modes, we assume the following OOB layout arrangement: |-----------| |--------------------| |yyxx.......| |bb*********xx.......| |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| |yyxx.......| |bb*********xx.......| |yyxx.......| |bb*********xx.......| |-----------| |--------------------| first n - 1 nth OOB region OOB regions n = Number of codewords in the page . = ECC bytes * = FREE OOB bytes y = Dummy bad block byte(s) (inaccessible when ECC enabled) x = Unused byte(s) b = Real bad block byte(s) (inaccessible when ECC enabled) This layout is read as is when ECC is disabled. When ECC is enabled, the inaccessible Bad Block byte(s) are ignored when we write to a page/oob, and assumed as 0xffs when we read a page/oob. The ECC, unused and dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is the sum of the three). > >> + } else { >> + oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes; >> + oobregion->offset = mtd->oobsize - oobregion->length; >> + } >> + >> + return 0; >> +} >> + >> +static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section, >> + struct mtd_oob_region *oobregion) >> +{ >> + struct nand_device *nand = mtd_to_nanddev(mtd); >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >> + struct qpic_ecc *qecc = snandc->qspi->ecc; >> + >> + if (section) >> + return -ERANGE; >> + >> + oobregion->length = qecc->steps * 4; >> + oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size; >> + >> + return 0; >> +} >> + > > ... > >> +static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand, >> + struct nand_page_io_req *req) >> +{ >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >> + struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); >> + struct mtd_info *mtd = nanddev_to_mtd(nand); >> + >> + snandc->qspi->ecc = ecc_cfg; >> + snandc->qspi->pagesize = mtd->writesize; >> + snandc->qspi->raw_rw = false; >> + snandc->qspi->oob_rw = false; >> + snandc->qspi->page_rw = false; >> + >> + if (req->datalen) >> + snandc->qspi->page_rw = true; >> + >> + if (req->ooblen) { >> + snandc->qspi->oob_rw = true; >> + if (req->ooblen == BAD_BLOCK_MARKER_SIZE) >> + snandc->qspi->read_last_cw = true; > > ??? As per QPIC controller layout , the actual babd block marker will be present in last code word. Thats why i have added this check. to read only last codeword for bad block check. > >> + } >> + >> + if (req->mode == MTD_OPS_RAW) >> + snandc->qspi->raw_rw = true; >> + >> + return 0; >> +} >> + >> +static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand, >> + struct nand_page_io_req *req) >> +{ >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >> + struct mtd_info *mtd = nanddev_to_mtd(nand); >> + >> + if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ) >> + return 0; >> + >> + if (snandc->qspi->ecc_stats.failed) >> + mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed; >> + mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected; > > Seems strange In flash error check for each code word i am updating the error value. So on finishing on io i am assigning that error to mtd variables so that upper layer check for error. > >> + >> + if (snandc->qspi->ecc_stats.failed) >> + return -EBADMSG; >> + else >> + return snandc->qspi->ecc_stats.bitflips; >> +} >> + >> +static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = { >> + .init_ctx = qcom_spi_ecc_init_ctx_pipelined, >> + .cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined, >> + .prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined, >> + .finish_io_req = qcom_spi_ecc_finish_io_req_pipelined, >> +}; >> + > > ... > >> +static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc, >> + const struct spi_mem_op *op) >> +{ >> + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; >> + u8 *data_buf = NULL, *oob_buf = NULL; >> + int ret, cw; >> + u32 num_cw = snandc->qspi->num_cw; >> + >> + if (snandc->qspi->page_rw) > > I don't like this indirection very much. Can't you simplify this and > just follow the spi-mem op instead of constantly trying to add > additional stuff? This indirection needed due to QPIC controller will not take all the instruction one-by-one , once we will set CMD_EXEC = 1, then it will execute all the instruction at once. > > The hardware is already quite complex, but it feels like your adding > yet another pile of unnecessary complexity. Yes hardware is complex. let me check if i can further optimize as per spi-mem op as you suggested. > >> + data_buf = op->data.buf.in; >> + >> + if (snandc->qspi->oob_rw) >> + oob_buf = op->data.buf.in; > > Same buffer pointed by the two pointers? hum Ok , will fix in next patch. > >> + >> + if (!oob_buf) { >> + oob_buf = snandc->qspi->oob_buf; >> + memset(oob_buf, 0xff, OOB_BUF_SIZE); >> + } >> + >> + for (cw = 0; cw < num_cw; cw++) { >> + ret = qcom_spi_read_cw_raw(snandc, data_buf, oob_buf, cw); >> + if (ret) >> + return ret; >> + >> + if (data_buf) >> + data_buf += ecc_cfg->cw_data; >> + if (oob_buf) >> + oob_buf += ecc_cfg->bytes; >> + } >> + >> + return 0; >> +} >> + >> +static int qcom_spi_read_page_cache(struct qcom_nand_controller *snandc, >> + const struct spi_mem_op *op) >> +{ >> + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; >> + u8 *data_buf = NULL, *data_buf_start, *oob_buf = NULL, *oob_buf_start; >> + int ret, i; >> + u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; >> + >> + if (snandc->qspi->page_rw) { >> + data_buf = op->data.buf.in; >> + data_buf_start = data_buf; >> + } >> + >> + if (snandc->qspi->oob_rw || snandc->qspi->raw_rw) { >> + oob_buf = op->data.buf.in; >> + oob_buf_start = oob_buf; >> + } >> + >> + if (snandc->qspi->page_rw && snandc->qspi->raw_rw) >> + return qcom_spi_read_page_raw(snandc, op); >> + >> + if (snandc->qspi->oob_rw && snandc->qspi->raw_rw && snandc->qspi->read_last_cw) >> + return qcom_spi_read_last_cw(snandc, op); >> + >> + snandc->buf_count = 0; >> + snandc->buf_start = 0; >> + qcom_clear_read_regs(snandc); >> + >> + cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | >> + (num_cw - 1) << CW_PER_PAGE; >> + cfg1 = ecc_cfg->cfg1; >> + ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; >> + >> + snandc->regs->addr0 = snandc->qspi->addr1; >> + snandc->regs->addr1 = snandc->qspi->addr2; >> + snandc->regs->cmd = snandc->qspi->cmd; >> + snandc->regs->cfg0 = cfg0; >> + snandc->regs->cfg1 = cfg1; >> + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; >> + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; >> + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; >> + snandc->regs->exec = 1; >> + >> + qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1); >> + >> + qcom_clear_bam_transaction(snandc); >> + >> + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, >> + NAND_ERASED_CW_DETECT_CFG, 1, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, >> + NAND_ERASED_CW_DETECT_CFG, 1, >> + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); >> + >> + for (i = 0; i < num_cw; i++) { >> + int data_size, oob_size; >> + >> + if (i == (num_cw - 1)) { >> + data_size = 512 - ((num_cw - 1) << 2); >> + oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + >> + ecc_cfg->spare_bytes; >> + } else { >> + data_size = ecc_cfg->cw_data; >> + oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; >> + } >> + >> + if (data_buf && oob_buf) { >> + qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 0); >> + qcom_spi_set_read_loc(snandc, i, 1, data_size, oob_size, 1); >> + } else if (data_buf) { >> + qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 1); >> + } else { >> + qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1); >> + } >> + >> + qcom_spi_config_cw_read(snandc, true, i); >> + >> + if (data_buf) >> + qcom_read_data_dma(snandc, FLASH_BUF_ACC, data_buf, >> + data_size, 0); >> + if (oob_buf) { >> + int j; >> + >> + for (j = 0; j < ecc_cfg->bbm_size; j++) >> + *oob_buf++ = 0xff; >> + >> + qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size, >> + oob_buf, oob_size, 0); >> + } >> + >> + if (data_buf) >> + data_buf += data_size; >> + if (oob_buf) >> + oob_buf += oob_size; >> + } >> + >> + ret = qcom_submit_descs(snandc); >> + if (ret) { >> + dev_err(snandc->dev, "failure to read page\n"); >> + return ret; >> + } >> + >> + return qcom_spi_check_error(snandc, data_buf_start, oob_buf_start); >> +} >> + >> +static void qcom_spi_config_page_write(struct qcom_nand_controller *snandc) >> +{ >> + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, >> + 1, NAND_BAM_NEXT_SGL); >> +} >> + >> +static void qcom_spi_config_cw_write(struct qcom_nand_controller *snandc) >> +{ >> + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); >> + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); >> + qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); >> + >> + qcom_write_reg_dma(snandc, &snandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0); >> + qcom_write_reg_dma(snandc, &snandc->regs->clrreadstatus, NAND_READ_STATUS, 1, >> + NAND_BAM_NEXT_SGL); >> +} >> + >> +static int qcom_spi_program_raw(struct qcom_nand_controller *snandc, >> + const struct spi_mem_op *op) >> +{ >> + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; >> + u8 *data_buf = NULL, *oob_buf = NULL; >> + int i, ret; >> + int num_cw = snandc->qspi->num_cw; >> + u32 cfg0, cfg1, ecc_bch_cfg; >> + >> + cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | >> + (num_cw - 1) << CW_PER_PAGE; >> + cfg1 = ecc_cfg->cfg1_raw; >> + ecc_bch_cfg = ECC_CFG_ECC_DISABLE; >> + >> + data_buf = snandc->qspi->data_buf; >> + >> + oob_buf = snandc->qspi->oob_buf; >> + memset(oob_buf, 0xff, OOB_BUF_SIZE); >> + >> + snandc->buf_count = 0; >> + snandc->buf_start = 0; >> + qcom_clear_read_regs(snandc); >> + qcom_clear_bam_transaction(snandc); >> + >> + snandc->regs->addr0 = snandc->qspi->addr1; >> + snandc->regs->addr1 = snandc->qspi->addr2; >> + snandc->regs->cmd = snandc->qspi->cmd; >> + snandc->regs->cfg0 = cfg0; >> + snandc->regs->cfg1 = cfg1; >> + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; >> + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; >> + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; >> + snandc->regs->exec = 1; >> + >> + qcom_spi_config_page_write(snandc); >> + >> + for (i = 0; i < num_cw; i++) { >> + int data_size1, data_size2, oob_size1, oob_size2; >> + int reg_off = FLASH_BUF_ACC; >> + >> + data_size1 = snandc->qspi->pagesize - ecc_cfg->cw_size * (num_cw - 1); >> + oob_size1 = ecc_cfg->bbm_size; >> + >> + if ((i == (num_cw - 1))) { >> + data_size2 = NANDC_STEP_SIZE - data_size1 - >> + ((num_cw - 1) << 2); >> + oob_size2 = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + >> + ecc_cfg->spare_bytes; >> + } else { >> + data_size2 = ecc_cfg->cw_data - data_size1; >> + oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; >> + } >> + >> + qcom_write_data_dma(snandc, reg_off, data_buf, data_size1, >> + NAND_BAM_NO_EOT); >> + reg_off += data_size1; >> + data_buf += data_size1; >> + >> + qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size1, >> + NAND_BAM_NO_EOT); >> + oob_buf += oob_size1; >> + reg_off += oob_size1; >> + >> + qcom_write_data_dma(snandc, reg_off, data_buf, data_size2, >> + NAND_BAM_NO_EOT); >> + reg_off += data_size2; >> + data_buf += data_size2; >> + >> + qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size2, 0); >> + oob_buf += oob_size2; >> + >> + qcom_spi_config_cw_write(snandc); >> + } >> + >> + ret = qcom_submit_descs(snandc); >> + if (ret) { >> + dev_err(snandc->dev, "failure to write raw page\n"); >> + return ret; >> + } >> + >> + return 0; >> +} >> + >> +static int qcom_spi_program_execute(struct qcom_nand_controller *snandc, >> + const struct spi_mem_op *op) >> +{ >> + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; >> + u8 *data_buf = NULL, *oob_buf = NULL; >> + int i, ret; >> + int num_cw = snandc->qspi->num_cw; >> + u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg; >> + >> + cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | >> + (num_cw - 1) << CW_PER_PAGE; >> + cfg1 = ecc_cfg->cfg1; >> + ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; >> + ecc_buf_cfg = ecc_cfg->ecc_buf_cfg; >> + >> + if (snandc->qspi->page_rw && snandc->qspi->raw_rw) >> + return qcom_spi_program_raw(snandc, op); >> + >> + if (snandc->qspi->data_buf) >> + data_buf = snandc->qspi->data_buf; >> + >> + if (snandc->qspi->oob_buf) >> + oob_buf = snandc->qspi->oob_buf; >> + >> + snandc->buf_count = 0; >> + snandc->buf_start = 0; >> + qcom_clear_read_regs(snandc); >> + qcom_clear_bam_transaction(snandc); >> + >> + snandc->regs->addr0 = snandc->qspi->addr1; >> + snandc->regs->addr1 = snandc->qspi->addr2; >> + snandc->regs->cmd = snandc->qspi->cmd; >> + snandc->regs->cfg0 = cfg0; >> + snandc->regs->cfg1 = cfg1; >> + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; >> + snandc->regs->ecc_buf_cfg = ecc_buf_cfg; >> + snandc->regs->exec = 1; >> + >> + qcom_spi_config_page_write(snandc); >> + >> + for (i = 0; i < num_cw; i++) { >> + int data_size, oob_size; >> + >> + if (i == (num_cw - 1)) { >> + data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2); >> + oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + >> + ecc_cfg->spare_bytes; >> + } else { >> + data_size = ecc_cfg->cw_data; >> + oob_size = ecc_cfg->bytes; >> + } >> + >> + if (data_buf) >> + qcom_write_data_dma(snandc, FLASH_BUF_ACC, data_buf, data_size, >> + i == (num_cw - 1) ? NAND_BAM_NO_EOT : 0); >> + >> + if (i == (num_cw - 1)) { >> + if (oob_buf) { >> + oob_buf += ecc_cfg->bbm_size; >> + qcom_write_data_dma(snandc, FLASH_BUF_ACC + data_size, >> + oob_buf, oob_size, 0); >> + } >> + } >> + >> + qcom_spi_config_cw_write(snandc); >> + >> + if (data_buf) >> + data_buf += data_size; >> + if (oob_buf) >> + oob_buf += oob_size; >> + } >> + >> + ret = qcom_submit_descs(snandc); >> + if (ret) { >> + dev_err(snandc->dev, "failure to write page\n"); >> + return ret; >> + } >> + >> + return 0; >> +} >> + >> +static u32 qcom_spi_cmd_mapping(struct qcom_nand_controller *snandc, u32 opcode) >> +{ >> + u32 cmd = 0x0; >> + >> + switch (opcode) { >> + case SPINAND_RESET: >> + cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_RESET_DEVICE); >> + break; >> + case SPINAND_READID: >> + cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_FETCH_ID); >> + break; >> + case SPINAND_GET_FEATURE: >> + cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE); >> + break; >> + case SPINAND_SET_FEATURE: >> + cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE | >> + QPIC_SET_FEATURE); >> + break; >> + case SPINAND_READ: >> + if (snandc->qspi->raw_rw) { >> + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | >> + SPI_WP | SPI_HOLD | OP_PAGE_READ); >> + } else { >> + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | >> + SPI_WP | SPI_HOLD | OP_PAGE_READ_WITH_ECC); >> + } >> + >> + break; >> + case SPINAND_ERASE: >> + cmd = OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE | SPI_WP | >> + SPI_HOLD | SPI_TRANSFER_MODE_x1; >> + break; >> + case SPINAND_WRITE_EN: >> + cmd = SPINAND_WRITE_EN; >> + break; >> + case SPINAND_PROGRAM_EXECUTE: >> + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | >> + SPI_WP | SPI_HOLD | OP_PROGRAM_PAGE); >> + break; >> + case SPINAND_PROGRAM_LOAD: >> + cmd = SPINAND_PROGRAM_LOAD; >> + break; >> + default: >> + dev_err(snandc->dev, "Opcode not supported: %u\n", opcode); >> + return -EOPNOTSUPP; >> + } >> + >> + return cmd; >> +} >> + >> +static int qcom_spi_write_page_cache(struct qcom_nand_controller *snandc, >> + const struct spi_mem_op *op) >> +{ >> + struct qpic_snand_op s_op = {}; >> + u32 cmd; >> + >> + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); > > I've asked for switch cases to return an error in case they could not > handle the request. If you don't check the returned values, it > does not make any sense. Ok, will fix in next patch. > >> + s_op.cmd_reg = cmd; >> + >> + if (op->cmd.opcode == SPINAND_PROGRAM_LOAD) { >> + if (snandc->qspi->page_rw) >> + snandc->qspi->data_buf = (u8 *)op->data.buf.out; > > What you do here does not write anything in a page cache. No here just updating the buffer , actual write will happen in program_execute. This is due to QPIC controller will not take all the instruction one-by-one. once we will set CMD_EXEC = 1, then it will execute all the instruction at once. So accumulating all the instruction and then executing at once in program_execute. > > I also don't understand why you would have to check against the > SPINAND_PROGRAM_LOAD opcode. Because the actual write will happen in program_execute. and here PROGRAM_EXECUTE command will also land, so that added the check. > >> + } >> + >> + return 0; >> +} >> + >> +static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc, >> + const struct spi_mem_op *op) >> +{ >> + struct qpic_snand_op s_op = {}; >> + u32 cmd; >> + int ret, opcode; >> + >> + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); >> + >> + s_op.cmd_reg = cmd; >> + s_op.addr1_reg = op->addr.val; >> + s_op.addr2_reg = 0; >> + >> + opcode = op->cmd.opcode; >> + >> + switch (opcode) { >> + case SPINAND_WRITE_EN: >> + return 0; >> + case SPINAND_PROGRAM_EXECUTE: >> + s_op.addr1_reg = op->addr.val << 16; >> + s_op.addr2_reg = op->addr.val >> 16 & 0xff; >> + snandc->qspi->addr1 = s_op.addr1_reg; >> + snandc->qspi->addr2 = s_op.addr2_reg; >> + snandc->qspi->cmd = cmd; >> + return qcom_spi_program_execute(snandc, op); >> + case SPINAND_READ: >> + s_op.addr1_reg = (op->addr.val << 16); >> + s_op.addr2_reg = op->addr.val >> 16 & 0xff; >> + snandc->qspi->addr1 = s_op.addr1_reg; >> + snandc->qspi->addr2 = s_op.addr2_reg; >> + snandc->qspi->cmd = cmd; >> + return 0; >> + case SPINAND_ERASE: >> + s_op.addr2_reg = (op->addr.val >> 16) & 0xffff; >> + s_op.addr1_reg = op->addr.val; >> + snandc->qspi->addr1 = (s_op.addr1_reg << 16); >> + snandc->qspi->addr2 = s_op.addr2_reg; >> + snandc->qspi->cmd = cmd; >> + qcom_spi_block_erase(snandc); >> + return 0; >> + default: >> + break; >> + } >> + >> + snandc->buf_count = 0; >> + snandc->buf_start = 0; >> + qcom_clear_read_regs(snandc); >> + qcom_clear_bam_transaction(snandc); >> + >> + snandc->regs->cmd = s_op.cmd_reg; >> + snandc->regs->exec = 1; >> + snandc->regs->addr0 = s_op.addr1_reg; >> + snandc->regs->addr1 = s_op.addr2_reg; >> + >> + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); >> + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); >> + >> + ret = qcom_submit_descs(snandc); >> + if (ret) >> + dev_err(snandc->dev, "failure in sbumitting cmd descriptor\n"); > > typo Ok , will fix in next patch. > >> + >> + return ret; >> +} >> + >> +static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) >> +{ >> + int ret, val, opcode; >> + bool copy = false, copy_ftr = false; >> + >> + ret = qcom_spi_send_cmdaddr(snandc, op); >> + if (ret) >> + return ret; >> + >> + snandc->buf_count = 0; >> + snandc->buf_start = 0; >> + qcom_clear_read_regs(snandc); >> + qcom_clear_bam_transaction(snandc); >> + opcode = op->cmd.opcode; >> + >> + switch (opcode) { >> + case SPINAND_READID: >> + snandc->buf_count = 4; >> + qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); >> + copy = true; >> + break; >> + case SPINAND_GET_FEATURE: >> + snandc->buf_count = 4; >> + qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); >> + copy_ftr = true; >> + break; >> + case SPINAND_SET_FEATURE: >> + snandc->regs->flash_feature = *(u32 *)op->data.buf.out; >> + qcom_write_reg_dma(snandc, &snandc->regs->flash_feature, >> + NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); >> + break; >> + case SPINAND_RESET: >> + return 0; >> + case SPINAND_PROGRAM_EXECUTE: >> + return 0; >> + case SPINAND_WRITE_EN: >> + return 0; >> + case SPINAND_ERASE: >> + return 0; >> + case SPINAND_READ: >> + return 0; > > You can stack the cases Ok > >> + default: >> + return -EOPNOTSUPP; >> + } >> + >> + ret = qcom_submit_descs(snandc); >> + if (ret) >> + dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode); >> + >> + if (copy) { >> + qcom_nandc_dev_to_mem(snandc, true); >> + memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count); >> + } >> + >> + if (copy_ftr) { >> + qcom_nandc_dev_to_mem(snandc, true); >> + val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf); >> + val >>= 8; >> + memcpy(op->data.buf.in, &val, snandc->buf_count); >> + } >> + >> + return ret; >> +} >> + >> +static bool qcom_spi_is_page_op(const struct spi_mem_op *op) >> +{ >> + if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && op->addr.buswidth != 4) >> + return false; >> + >> + if (op->data.dir == SPI_MEM_DATA_IN) { >> + if (op->addr.buswidth == 4 && op->data.buswidth == 4) >> + return true; >> + >> + if (op->addr.nbytes == 2 && op->addr.buswidth == 1) >> + return true; >> + >> + } else if (op->data.dir == SPI_MEM_DATA_OUT) { >> + if (op->data.buswidth == 4) >> + return true; >> + if (op->addr.nbytes == 2 && op->addr.buswidth == 1) >> + return true; >> + } >> + >> + return false; >> +} >> + >> +static bool qcom_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) >> +{ >> + if (!spi_mem_default_supports_op(mem, op)) >> + return false; >> + >> + if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) >> + return false; >> + >> + if (qcom_spi_is_page_op(op)) >> + return true; >> + >> + return ((!op->addr.nbytes || op->addr.buswidth == 1) && >> + (!op->dummy.nbytes || op->dummy.buswidth == 1) && >> + (!op->data.nbytes || op->data.buswidth == 1)); >> +} >> + >> +static int qcom_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) >> +{ >> + struct qcom_nand_controller *snandc = spi_controller_get_devdata(mem->spi->controller); >> + >> + dev_dbg(snandc->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, >> + op->addr.val, op->addr.buswidth, op->addr.nbytes, >> + op->data.buswidth, op->data.nbytes); >> + >> + if (qcom_spi_is_page_op(op)) { >> + if (op->data.dir == SPI_MEM_DATA_IN) >> + return qcom_spi_read_page_cache(snandc, op); >> + if (op->data.dir == SPI_MEM_DATA_OUT) >> + return qcom_spi_write_page_cache(snandc, op); >> + } else { >> + return qcom_spi_io_op(snandc, op); >> + } >> + >> + return 0; >> +} >> + >> +static const struct spi_controller_mem_ops qcom_spi_mem_ops = { >> + .supports_op = qcom_spi_supports_op, >> + .exec_op = qcom_spi_exec_op, >> +}; >> + >> +static const struct spi_controller_mem_caps qcom_spi_mem_caps = { >> + .ecc = true, >> +}; >> + >> +static int qcom_spi_probe(struct platform_device *pdev) >> +{ >> + struct device *dev = &pdev->dev; >> + struct spi_controller *ctlr; >> + struct qcom_nand_controller *snandc; >> + struct qpic_spi_nand *qspi; >> + struct qpic_ecc *ecc; >> + struct resource *res; >> + const void *dev_data; >> + int ret; >> + >> + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); >> + if (!ecc) >> + return -ENOMEM; >> + >> + qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL); >> + if (!qspi) >> + return -ENOMEM; >> + >> + ctlr = __devm_spi_alloc_controller(dev, sizeof(*snandc), false); >> + if (!ctlr) >> + return -ENOMEM; >> + >> + platform_set_drvdata(pdev, ctlr); >> + >> + snandc = spi_controller_get_devdata(ctlr); >> + qspi->snandc = snandc; >> + >> + snandc->dev = dev; >> + snandc->qspi = qspi; >> + snandc->qspi->ctlr = ctlr; >> + snandc->qspi->ecc = ecc; >> + >> + snandc->qspi->oob_buf = devm_kzalloc(dev, OOB_BUF_SIZE, GFP_KERNEL); >> + if (!snandc->qspi->oob_buf) >> + return -ENOMEM; >> + >> + dev_data = of_device_get_match_data(dev); >> + if (!dev_data) { >> + dev_err(&pdev->dev, "failed to get device data\n"); >> + return -ENODEV; >> + } >> + >> + snandc->props = dev_data; >> + snandc->dev = &pdev->dev; >> + >> + snandc->core_clk = devm_clk_get(dev, "core"); >> + if (IS_ERR(snandc->core_clk)) >> + return PTR_ERR(snandc->core_clk); >> + >> + snandc->aon_clk = devm_clk_get(dev, "aon"); >> + if (IS_ERR(snandc->aon_clk)) >> + return PTR_ERR(snandc->aon_clk); >> + >> + snandc->qspi->iomacro_clk = devm_clk_get(dev, "iom"); >> + if (IS_ERR(snandc->qspi->iomacro_clk)) >> + return PTR_ERR(snandc->qspi->iomacro_clk); >> + >> + snandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); >> + if (IS_ERR(snandc->base)) >> + return PTR_ERR(snandc->base); >> + >> + snandc->base_phys = res->start; >> + snandc->base_dma = dma_map_resource(dev, res->start, resource_size(res), >> + DMA_BIDIRECTIONAL, 0); >> + if (dma_mapping_error(dev, snandc->base_dma)) >> + return -ENXIO; >> + >> + ret = clk_prepare_enable(snandc->core_clk); >> + if (ret) >> + goto err_core_clk; > > Again, the label is better named when it describes what it point at, > rather than where it comes from. Ok > >> + >> + ret = clk_prepare_enable(snandc->aon_clk); >> + if (ret) >> + goto err_aon_clk; >> + >> + ret = clk_prepare_enable(snandc->qspi->iomacro_clk); >> + if (ret) >> + goto err_dis_iom_clk; >> + >> + ret = qcom_nandc_alloc(snandc); >> + if (ret) >> + goto err_snand_alloc; >> + >> + ret = qcom_spi_init(snandc); >> + if (ret) >> + goto err_init; >> + >> + /* setup ECC engine */ >> + snandc->qspi->ecc_eng.dev = &pdev->dev; >> + snandc->qspi->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; >> + snandc->qspi->ecc_eng.ops = &qcom_spi_ecc_engine_ops_pipelined; >> + snandc->qspi->ecc_eng.priv = snandc; >> + >> + ret = nand_ecc_register_on_host_hw_engine(&snandc->qspi->ecc_eng); >> + if (ret) { >> + dev_err(&pdev->dev, "failed to register ecc engine:%d\n", ret); >> + goto err_init; >> + } >> + >> + ctlr->num_chipselect = QPIC_QSPI_NUM_CS; >> + ctlr->mem_ops = &qcom_spi_mem_ops; >> + ctlr->mem_caps = &qcom_spi_mem_caps; >> + ctlr->dev.of_node = pdev->dev.of_node; >> + ctlr->mode_bits = SPI_TX_DUAL | SPI_RX_DUAL | >> + SPI_TX_QUAD | SPI_RX_QUAD; >> + >> + ret = spi_register_controller(ctlr); >> + if (ret) { >> + dev_err(&pdev->dev, "spi_register_controller failed.\n"); >> + goto err_init; >> + } >> + >> + return 0; >> + >> +err_init: >> + qcom_nandc_unalloc(snandc); > > Same: s/unalloc/free|cleanup/ Ok > >> +err_snand_alloc: >> + clk_disable_unprepare(snandc->qspi->iomacro_clk); >> +err_dis_iom_clk: >> + clk_disable_unprepare(snandc->aon_clk); >> +err_aon_clk: >> + clk_disable_unprepare(snandc->core_clk); >> +err_core_clk: >> + dma_unmap_resource(dev, res->start, resource_size(res), >> + DMA_BIDIRECTIONAL, 0); >> + return ret; >> +} > > Thanks, > Miquèl
Hi, > >> +static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section, > >> + struct mtd_oob_region *oobregion) > >> +{ > >> + struct nand_device *nand = mtd_to_nanddev(mtd); > >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > >> + struct qpic_ecc *qecc = snandc->qspi->ecc; > >> + > >> + if (section > 1) > >> + return -ERANGE; > >> + > >> + if (!section) { > >> + oobregion->length = (qecc->bytes * (qecc->steps - 1)) + qecc->bbm_size; > >> + oobregion->offset = 0; > > > > No, offset 0 is for the BBM. This is wrong. > > The whole oob layout looks really really wrong. > > > > ECC bytes are where the ECC engine puts its bytes in the OOB area. > > Free bytes start after the BBM and fill the gaps until the end of the > > area, except where there are ECC bytes. > QPIC NAND controller having its own page layout with ecc and without ecc. > The same layout we are using in raw nand driver as well, so i used the > same here. The below info is already there in qcom raw nand driver file > in page layout info. > > QPIC NAND controller layout as below: > > Layout with ECC enabled: > > |----------------------| |---------------------------------| > | xx.......yy| | *********xx.......yy| > | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| > | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| > | xx.......yy| | *********xx.......yy| > |----------------------| |---------------------------------| > codeword 1,2..n-1 codeword n > <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> > > n = Number of codewords in the page > . = ECC bytes > * = Spare/free bytes > x = Unused byte(s) > y = Reserved byte(s) > > 2K page: n = 4, spare = 16 bytes > 4K page: n = 8, spare = 32 bytes > 8K page: n = 16, spare = 64 bytes > > the qcom nand controller operates at a sub page/codeword level. each > codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. > the number of ECC bytes vary based on the ECC strength and the bus width. > > the first n - 1 codewords contains 516 bytes of user data, the remaining > 12/16 bytes consist of ECC and reserved data. The nth codeword contains > both user data and spare(oobavail) bytes that sum up to 516 bytes. > > When we access a page with ECC enabled, the reserved bytes(s) are not > accessible at all. When reading, we fill up these unreadable positions > with 0xffs. When writing, the controller skips writing the inaccessible > bytes. > > Layout with ECC disabled: > > |------------------------------| |---------------------------------------| > | yy xx.......| | bb *********xx.......| > | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| > | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| > | yy xx.......| | bb *********xx.......| > |------------------------------| |---------------------------------------| > codeword 1,2..n-1 codeword n > <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> > > n = Number of codewords in the page > . = ECC bytes > * = Spare/free bytes > x = Unused byte(s) > y = Dummy Bad Bock byte(s) > b = Real Bad Block byte(s) > size1/size2 = function of codeword size and 'n' > > when the ECC block is disabled, one reserved byte (or two for 16 bit bus > width) is now accessible. For the first n - 1 codewords, these are dummy Bad > Block Markers. In the last codeword, this position contains the real BBM > > In order to have a consistent layout between RAW and ECC modes, we assume > the following OOB layout arrangement: > > |-----------| |--------------------| > |yyxx.......| |bb*********xx.......| > |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| > |yyxx.......| |bb*********xx.......| > |yyxx.......| |bb*********xx.......| > |-----------| |--------------------| > first n - 1 nth OOB region > OOB regions > > n = Number of codewords in the page > . = ECC bytes > * = FREE OOB bytes > y = Dummy bad block byte(s) (inaccessible when ECC enabled) > x = Unused byte(s) > b = Real bad block byte(s) (inaccessible when ECC enabled) > > This layout is read as is when ECC is disabled. When ECC is enabled, the > inaccessible Bad Block byte(s) are ignored when we write to a page/oob, > and assumed as 0xffs when we read a page/oob. The ECC, unused and > dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is > the sum of the three). Thanks for the detailed explanation (which would benefit from being added somewhere in a comment, maybe at the top of the file). Unfortunately, these ooblayout callbacks do work on a flat <data><oob> layout, not on the hardware ECC engine layout. So whatever the real physical position of the bad block marker within the NAND array, these markers will always be at offset 0 and 1 in the OOB final buffer. Same applies to the spare and ECC bytes. These layouts are totally wrong and must be fixed. If the layouts are the same in both raw/spi cases, maybe they should be part of the common file? > >> + } else { > >> + oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes; > >> + oobregion->offset = mtd->oobsize - oobregion->length; > >> + } > >> + > >> + return 0; > >> +} > >> + > >> +static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section, > >> + struct mtd_oob_region *oobregion) > >> +{ > >> + struct nand_device *nand = mtd_to_nanddev(mtd); > >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > >> + struct qpic_ecc *qecc = snandc->qspi->ecc; > >> + > >> + if (section) > >> + return -ERANGE; > >> + > >> + oobregion->length = qecc->steps * 4; > >> + oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size; > >> + > >> + return 0; > >> +} > >> + > > > > ... > > > >> +static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand, > >> + struct nand_page_io_req *req) > >> +{ > >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > >> + struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); > >> + struct mtd_info *mtd = nanddev_to_mtd(nand); > >> + > >> + snandc->qspi->ecc = ecc_cfg; > >> + snandc->qspi->pagesize = mtd->writesize; > >> + snandc->qspi->raw_rw = false; > >> + snandc->qspi->oob_rw = false; > >> + snandc->qspi->page_rw = false; > >> + > >> + if (req->datalen) > >> + snandc->qspi->page_rw = true; > >> + > >> + if (req->ooblen) { > >> + snandc->qspi->oob_rw = true; > >> + if (req->ooblen == BAD_BLOCK_MARKER_SIZE) > >> + snandc->qspi->read_last_cw = true; > > > > ??? > As per QPIC controller layout , the actual babd block marker will > be present in last code word. Thats why i have added this check. > to read only last codeword for bad block check. You need to comply with the request. If ooblen is != 0, you need to read the codeword(s) where the oob is. Please don't try to be smarter than that. Checking the _value_ of ooblen is an optimization I don't think is worth. > > > >> + } > >> + > >> + if (req->mode == MTD_OPS_RAW) > >> + snandc->qspi->raw_rw = true; > >> + > >> + return 0; > >> +} > >> + > >> +static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand, > >> + struct nand_page_io_req *req) > >> +{ > >> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); > >> + struct mtd_info *mtd = nanddev_to_mtd(nand); > >> + > >> + if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ) > >> + return 0; > >> + > >> + if (snandc->qspi->ecc_stats.failed) > >> + mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed; > >> + mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected; > > > > Seems strange > In flash error check for each code word i am updating the error value. > So on finishing on io i am assigning that error to mtd variables so that > upper layer check for error. You don't clear the qspi ecc_stats so this cannot work properly. Plus, I would welcome an else statement for incrementing the corrected field. > > > >> + > >> + if (snandc->qspi->ecc_stats.failed) > >> + return -EBADMSG; > >> + else > >> + return snandc->qspi->ecc_stats.bitflips; > >> +} > >> + > >> +static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = { > >> + .init_ctx = qcom_spi_ecc_init_ctx_pipelined, > >> + .cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined, > >> + .prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined, > >> + .finish_io_req = qcom_spi_ecc_finish_io_req_pipelined, > >> +}; > >> + > > > > ... > > > >> +static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc, > >> + const struct spi_mem_op *op) > >> +{ > >> + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; > >> + u8 *data_buf = NULL, *oob_buf = NULL; > >> + int ret, cw; > >> + u32 num_cw = snandc->qspi->num_cw; > >> + > >> + if (snandc->qspi->page_rw) > > > > I don't like this indirection very much. Can't you simplify this and > > just follow the spi-mem op instead of constantly trying to add > > additional stuff? > This indirection needed due to QPIC controller will not take all the instruction > one-by-one , once we will set CMD_EXEC = 1, then it will execute all the instruction > at once. The spi_mem_op structure already describes the whole operation. Why do you split the operation in sub routines if you can't actually do that? > > > > The hardware is already quite complex, but it feels like your adding > > yet another pile of unnecessary complexity. > Yes hardware is complex. let me check if i can further optimize as per spi-mem op > as you suggested. > > > >> + data_buf = op->data.buf.in; > >> + > >> + if (snandc->qspi->oob_rw) > >> + oob_buf = op->data.buf.in; ... > >> +static int qcom_spi_write_page_cache(struct qcom_nand_controller *snandc, > >> + const struct spi_mem_op *op) > >> +{ > >> + struct qpic_snand_op s_op = {}; > >> + u32 cmd; > >> + > >> + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); > > > > I've asked for switch cases to return an error in case they could not > > handle the request. If you don't check the returned values, it > > does not make any sense. > Ok, will fix in next patch. > > > >> + s_op.cmd_reg = cmd; > >> + > >> + if (op->cmd.opcode == SPINAND_PROGRAM_LOAD) { > >> + if (snandc->qspi->page_rw) > >> + snandc->qspi->data_buf = (u8 *)op->data.buf.out; > > > > What you do here does not write anything in a page cache. > No here just updating the buffer , actual write will happen in program_execute. > This is due to QPIC controller will not take all the instruction one-by-one. > once we will set CMD_EXEC = 1, then it will execute all the instruction > at once. So accumulating all the instruction and then executing at once in > program_execute. > > > > I also don't understand why you would have to check against the > > SPINAND_PROGRAM_LOAD opcode. > Because the actual write will happen in program_execute. and here > PROGRAM_EXECUTE command will also land, so that added the check. > > > >> + } > >> + > >> + return 0; > >> +} > >> + > >> +static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc, > >> + const struct spi_mem_op *op) > >> +{ > >> + struct qpic_snand_op s_op = {}; > >> + u32 cmd; > >> + int ret, opcode; > >> + > >> + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); > >> + > >> + s_op.cmd_reg = cmd; > >> + s_op.addr1_reg = op->addr.val; > >> + s_op.addr2_reg = 0; > >> + > >> + opcode = op->cmd.opcode; > >> + > >> + switch (opcode) { > >> + case SPINAND_WRITE_EN: > >> + return 0; > >> + case SPINAND_PROGRAM_EXECUTE: > >> + s_op.addr1_reg = op->addr.val << 16; > >> + s_op.addr2_reg = op->addr.val >> 16 & 0xff; > >> + snandc->qspi->addr1 = s_op.addr1_reg; > >> + snandc->qspi->addr2 = s_op.addr2_reg; > >> + snandc->qspi->cmd = cmd; > >> + return qcom_spi_program_execute(snandc, op); > >> + case SPINAND_READ: > >> + s_op.addr1_reg = (op->addr.val << 16); > >> + s_op.addr2_reg = op->addr.val >> 16 & 0xff; > >> + snandc->qspi->addr1 = s_op.addr1_reg; > >> + snandc->qspi->addr2 = s_op.addr2_reg; > >> + snandc->qspi->cmd = cmd; > >> + return 0; > >> + case SPINAND_ERASE: > >> + s_op.addr2_reg = (op->addr.val >> 16) & 0xffff; > >> + s_op.addr1_reg = op->addr.val; > >> + snandc->qspi->addr1 = (s_op.addr1_reg << 16); > >> + snandc->qspi->addr2 = s_op.addr2_reg; > >> + snandc->qspi->cmd = cmd; > >> + qcom_spi_block_erase(snandc); > >> + return 0; > >> + default: > >> + break; > >> + } > >> + > >> + snandc->buf_count = 0; > >> + snandc->buf_start = 0; > >> + qcom_clear_read_regs(snandc); > >> + qcom_clear_bam_transaction(snandc); > >> + > >> + snandc->regs->cmd = s_op.cmd_reg; > >> + snandc->regs->exec = 1; > >> + snandc->regs->addr0 = s_op.addr1_reg; > >> + snandc->regs->addr1 = s_op.addr2_reg; > >> + > >> + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); > >> + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); > >> + > >> + ret = qcom_submit_descs(snandc); And you really don't want to check the validity of the opcode with what you support before submitting the descriptors? > >> + if (ret) > >> + dev_err(snandc->dev, "failure in sbumitting cmd descriptor\n"); > > > > typo > Ok , will fix in next patch. > > > >> + > >> + return ret; > >> +} > >> + > >> +static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) > >> +{ > >> + int ret, val, opcode; > >> + bool copy = false, copy_ftr = false; > >> + > >> + ret = qcom_spi_send_cmdaddr(snandc, op); > >> + if (ret) > >> + return ret; > >> + > >> + snandc->buf_count = 0; > >> + snandc->buf_start = 0; > >> + qcom_clear_read_regs(snandc); > >> + qcom_clear_bam_transaction(snandc); > >> + opcode = op->cmd.opcode; > >> + > >> + switch (opcode) { > >> + case SPINAND_READID: > >> + snandc->buf_count = 4; > >> + qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); > >> + copy = true; > >> + break; > >> + case SPINAND_GET_FEATURE: > >> + snandc->buf_count = 4; > >> + qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); > >> + copy_ftr = true; > >> + break; > >> + case SPINAND_SET_FEATURE: > >> + snandc->regs->flash_feature = *(u32 *)op->data.buf.out; > >> + qcom_write_reg_dma(snandc, &snandc->regs->flash_feature, > >> + NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); > >> + break; > >> + case SPINAND_RESET: > >> + return 0; > >> + case SPINAND_PROGRAM_EXECUTE: > >> + return 0; > >> + case SPINAND_WRITE_EN: > >> + return 0; > >> + case SPINAND_ERASE: > >> + return 0; > >> + case SPINAND_READ: > >> + return 0; > > > > You can stack the cases > Ok > > > >> + default: > >> + return -EOPNOTSUPP; > >> + } > >> + > >> + ret = qcom_submit_descs(snandc); > >> + if (ret) > >> + dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode); > >> + > >> + if (copy) { > >> + qcom_nandc_dev_to_mem(snandc, true); > >> + memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count); > >> + } > >> + > >> + if (copy_ftr) { > >> + qcom_nandc_dev_to_mem(snandc, true); > >> + val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf); > >> + val >>= 8; > >> + memcpy(op->data.buf.in, &val, snandc->buf_count); > >> + } > >> + > >> + return ret; > >> +} Thanks, Miquèl
On 5/22/2024 6:03 PM, Miquel Raynal wrote: > Hi, > >>>> +static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section, >>>> + struct mtd_oob_region *oobregion) >>>> +{ >>>> + struct nand_device *nand = mtd_to_nanddev(mtd); >>>> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >>>> + struct qpic_ecc *qecc = snandc->qspi->ecc; >>>> + >>>> + if (section > 1) >>>> + return -ERANGE; >>>> + >>>> + if (!section) { >>>> + oobregion->length = (qecc->bytes * (qecc->steps - 1)) + qecc->bbm_size; >>>> + oobregion->offset = 0; >>> >>> No, offset 0 is for the BBM. This is wrong. >>> The whole oob layout looks really really wrong. >>> >>> ECC bytes are where the ECC engine puts its bytes in the OOB area. >>> Free bytes start after the BBM and fill the gaps until the end of the >>> area, except where there are ECC bytes. >> QPIC NAND controller having its own page layout with ecc and without ecc. >> The same layout we are using in raw nand driver as well, so i used the >> same here. The below info is already there in qcom raw nand driver file >> in page layout info. >> >> QPIC NAND controller layout as below: >> >> Layout with ECC enabled: >> >> |----------------------| |---------------------------------| >> | xx.......yy| | *********xx.......yy| >> | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| >> | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| >> | xx.......yy| | *********xx.......yy| >> |----------------------| |---------------------------------| >> codeword 1,2..n-1 codeword n >> <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> >> >> n = Number of codewords in the page >> . = ECC bytes >> * = Spare/free bytes >> x = Unused byte(s) >> y = Reserved byte(s) >> >> 2K page: n = 4, spare = 16 bytes >> 4K page: n = 8, spare = 32 bytes >> 8K page: n = 16, spare = 64 bytes >> >> the qcom nand controller operates at a sub page/codeword level. each >> codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. >> the number of ECC bytes vary based on the ECC strength and the bus width. >> >> the first n - 1 codewords contains 516 bytes of user data, the remaining >> 12/16 bytes consist of ECC and reserved data. The nth codeword contains >> both user data and spare(oobavail) bytes that sum up to 516 bytes. >> >> When we access a page with ECC enabled, the reserved bytes(s) are not >> accessible at all. When reading, we fill up these unreadable positions >> with 0xffs. When writing, the controller skips writing the inaccessible >> bytes. >> >> Layout with ECC disabled: >> >> |------------------------------| |---------------------------------------| >> | yy xx.......| | bb *********xx.......| >> | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| >> | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| >> | yy xx.......| | bb *********xx.......| >> |------------------------------| |---------------------------------------| >> codeword 1,2..n-1 codeword n >> <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> >> >> n = Number of codewords in the page >> . = ECC bytes >> * = Spare/free bytes >> x = Unused byte(s) >> y = Dummy Bad Bock byte(s) >> b = Real Bad Block byte(s) >> size1/size2 = function of codeword size and 'n' >> >> when the ECC block is disabled, one reserved byte (or two for 16 bit bus >> width) is now accessible. For the first n - 1 codewords, these are dummy Bad >> Block Markers. In the last codeword, this position contains the real BBM >> >> In order to have a consistent layout between RAW and ECC modes, we assume >> the following OOB layout arrangement: >> >> |-----------| |--------------------| >> |yyxx.......| |bb*********xx.......| >> |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| >> |yyxx.......| |bb*********xx.......| >> |yyxx.......| |bb*********xx.......| >> |-----------| |--------------------| >> first n - 1 nth OOB region >> OOB regions >> >> n = Number of codewords in the page >> . = ECC bytes >> * = FREE OOB bytes >> y = Dummy bad block byte(s) (inaccessible when ECC enabled) >> x = Unused byte(s) >> b = Real bad block byte(s) (inaccessible when ECC enabled) >> >> This layout is read as is when ECC is disabled. When ECC is enabled, the >> inaccessible Bad Block byte(s) are ignored when we write to a page/oob, >> and assumed as 0xffs when we read a page/oob. The ECC, unused and >> dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is >> the sum of the three). > > Thanks for the detailed explanation (which would benefit from being > added somewhere in a comment, maybe at the top of the file). Ok > > Unfortunately, these ooblayout callbacks do work on a flat <data><oob> > layout, not on the hardware ECC engine layout. So whatever the real > physical position of the bad block marker within the NAND array, these > markers will always be at offset 0 and 1 in the OOB final buffer. Ok , will fix in next patch. > > Same applies to the spare and ECC bytes. These layouts are totally > wrong and must be fixed. If the layouts are the same in both raw/spi > cases, maybe they should be part of the common file? Ok , will fix in next patch. > >>>> + } else { >>>> + oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes; >>>> + oobregion->offset = mtd->oobsize - oobregion->length; >>>> + } >>>> + >>>> + return 0; >>>> +} >>>> + >>>> +static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section, >>>> + struct mtd_oob_region *oobregion) >>>> +{ >>>> + struct nand_device *nand = mtd_to_nanddev(mtd); >>>> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >>>> + struct qpic_ecc *qecc = snandc->qspi->ecc; >>>> + >>>> + if (section) >>>> + return -ERANGE; >>>> + >>>> + oobregion->length = qecc->steps * 4; >>>> + oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size; >>>> + >>>> + return 0; >>>> +} >>>> + >>> >>> ... >>> >>>> +static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand, >>>> + struct nand_page_io_req *req) >>>> +{ >>>> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >>>> + struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); >>>> + struct mtd_info *mtd = nanddev_to_mtd(nand); >>>> + >>>> + snandc->qspi->ecc = ecc_cfg; >>>> + snandc->qspi->pagesize = mtd->writesize; >>>> + snandc->qspi->raw_rw = false; >>>> + snandc->qspi->oob_rw = false; >>>> + snandc->qspi->page_rw = false; >>>> + >>>> + if (req->datalen) >>>> + snandc->qspi->page_rw = true; >>>> + >>>> + if (req->ooblen) { >>>> + snandc->qspi->oob_rw = true; >>>> + if (req->ooblen == BAD_BLOCK_MARKER_SIZE) >>>> + snandc->qspi->read_last_cw = true; >>> >>> ??? >> As per QPIC controller layout , the actual babd block marker will >> be present in last code word. Thats why i have added this check. >> to read only last codeword for bad block check. > > You need to comply with the request. If ooblen is != 0, you need to > read the codeword(s) where the oob is. Please don't try to be smarter > than that. Checking the _value_ of ooblen is an optimization I don't > think is worth. Ok, will try to cleanup all the indirection in next patch. > >>> >>>> + } >>>> + >>>> + if (req->mode == MTD_OPS_RAW) >>>> + snandc->qspi->raw_rw = true; >>>> + >>>> + return 0; >>>> +} >>>> + >>>> +static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand, >>>> + struct nand_page_io_req *req) >>>> +{ >>>> + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); >>>> + struct mtd_info *mtd = nanddev_to_mtd(nand); >>>> + >>>> + if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ) >>>> + return 0; >>>> + >>>> + if (snandc->qspi->ecc_stats.failed) >>>> + mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed; >>>> + mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected; >>> >>> Seems strange >> In flash error check for each code word i am updating the error value. >> So on finishing on io i am assigning that error to mtd variables so that >> upper layer check for error. > > You don't clear the qspi ecc_stats so this cannot work properly. I am clearing in the qcom_spi_check_error() api, before reading status for the next page. snandc->qspi->ecc_stats.failed = 0; snandc->qspi->ecc_stats.corrected = 0; > > Plus, I would welcome an else statement for incrementing the corrected > field. Ok > >>> >>>> + >>>> + if (snandc->qspi->ecc_stats.failed) >>>> + return -EBADMSG; >>>> + else >>>> + return snandc->qspi->ecc_stats.bitflips; >>>> +} >>>> + >>>> +static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = { >>>> + .init_ctx = qcom_spi_ecc_init_ctx_pipelined, >>>> + .cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined, >>>> + .prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined, >>>> + .finish_io_req = qcom_spi_ecc_finish_io_req_pipelined, >>>> +}; >>>> + >>> >>> ... >>> >>>> +static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc, >>>> + const struct spi_mem_op *op) >>>> +{ >>>> + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; >>>> + u8 *data_buf = NULL, *oob_buf = NULL; >>>> + int ret, cw; >>>> + u32 num_cw = snandc->qspi->num_cw; >>>> + >>>> + if (snandc->qspi->page_rw) >>> >>> I don't like this indirection very much. Can't you simplify this and >>> just follow the spi-mem op instead of constantly trying to add >>> additional stuff? >> This indirection needed due to QPIC controller will not take all the instruction >> one-by-one , once we will set CMD_EXEC = 1, then it will execute all the instruction >> at once. > > The spi_mem_op structure already describes the whole operation. Why do > you split the operation in sub routines if you can't actually do that? Ok , will try to cleanup in next patch. > >>> >>> The hardware is already quite complex, but it feels like your adding >>> yet another pile of unnecessary complexity. >> Yes hardware is complex. let me check if i can further optimize as per spi-mem op >> as you suggested. >>> >>>> + data_buf = op->data.buf.in; >>>> + >>>> + if (snandc->qspi->oob_rw) >>>> + oob_buf = op->data.buf.in; > > ... > >>>> +static int qcom_spi_write_page_cache(struct qcom_nand_controller *snandc, >>>> + const struct spi_mem_op *op) >>>> +{ >>>> + struct qpic_snand_op s_op = {}; >>>> + u32 cmd; >>>> + >>>> + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); >>> >>> I've asked for switch cases to return an error in case they could not >>> handle the request. If you don't check the returned values, it >>> does not make any sense. >> Ok, will fix in next patch. >>> >>>> + s_op.cmd_reg = cmd; >>>> + >>>> + if (op->cmd.opcode == SPINAND_PROGRAM_LOAD) { >>>> + if (snandc->qspi->page_rw) >>>> + snandc->qspi->data_buf = (u8 *)op->data.buf.out; >>> >>> What you do here does not write anything in a page cache. >> No here just updating the buffer , actual write will happen in program_execute. >> This is due to QPIC controller will not take all the instruction one-by-one. >> once we will set CMD_EXEC = 1, then it will execute all the instruction >> at once. So accumulating all the instruction and then executing at once in >> program_execute. >>> >>> I also don't understand why you would have to check against the >>> SPINAND_PROGRAM_LOAD opcode. >> Because the actual write will happen in program_execute. and here >> PROGRAM_EXECUTE command will also land, so that added the check. >>> >>>> + } >>>> + >>>> + return 0; >>>> +} >>>> + >>>> +static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc, >>>> + const struct spi_mem_op *op) >>>> +{ >>>> + struct qpic_snand_op s_op = {}; >>>> + u32 cmd; >>>> + int ret, opcode; >>>> + >>>> + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); >>>> + >>>> + s_op.cmd_reg = cmd; >>>> + s_op.addr1_reg = op->addr.val; >>>> + s_op.addr2_reg = 0; >>>> + >>>> + opcode = op->cmd.opcode; >>>> + >>>> + switch (opcode) { >>>> + case SPINAND_WRITE_EN: >>>> + return 0; >>>> + case SPINAND_PROGRAM_EXECUTE: >>>> + s_op.addr1_reg = op->addr.val << 16; >>>> + s_op.addr2_reg = op->addr.val >> 16 & 0xff; >>>> + snandc->qspi->addr1 = s_op.addr1_reg; >>>> + snandc->qspi->addr2 = s_op.addr2_reg; >>>> + snandc->qspi->cmd = cmd; >>>> + return qcom_spi_program_execute(snandc, op); >>>> + case SPINAND_READ: >>>> + s_op.addr1_reg = (op->addr.val << 16); >>>> + s_op.addr2_reg = op->addr.val >> 16 & 0xff; >>>> + snandc->qspi->addr1 = s_op.addr1_reg; >>>> + snandc->qspi->addr2 = s_op.addr2_reg; >>>> + snandc->qspi->cmd = cmd; >>>> + return 0; >>>> + case SPINAND_ERASE: >>>> + s_op.addr2_reg = (op->addr.val >> 16) & 0xffff; >>>> + s_op.addr1_reg = op->addr.val; >>>> + snandc->qspi->addr1 = (s_op.addr1_reg << 16); >>>> + snandc->qspi->addr2 = s_op.addr2_reg; >>>> + snandc->qspi->cmd = cmd; >>>> + qcom_spi_block_erase(snandc); >>>> + return 0; >>>> + default: >>>> + break; >>>> + } >>>> + >>>> + snandc->buf_count = 0; >>>> + snandc->buf_start = 0; >>>> + qcom_clear_read_regs(snandc); >>>> + qcom_clear_bam_transaction(snandc); >>>> + >>>> + snandc->regs->cmd = s_op.cmd_reg; >>>> + snandc->regs->exec = 1; >>>> + snandc->regs->addr0 = s_op.addr1_reg; >>>> + snandc->regs->addr1 = s_op.addr2_reg; >>>> + >>>> + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); >>>> + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); >>>> + >>>> + ret = qcom_submit_descs(snandc); > > And you really don't want to check the validity of the opcode with what > you support before submitting the descriptors? Ok , will do in next patch. > >>>> + if (ret) >>>> + dev_err(snandc->dev, "failure in sbumitting cmd descriptor\n"); >>> >>> typo >> Ok , will fix in next patch. >>> >>>> + >>>> + return ret; >>>> +} >>>> + >>>> +static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) >>>> +{ >>>> + int ret, val, opcode; >>>> + bool copy = false, copy_ftr = false; >>>> + >>>> + ret = qcom_spi_send_cmdaddr(snandc, op); >>>> + if (ret) >>>> + return ret; >>>> + >>>> + snandc->buf_count = 0; >>>> + snandc->buf_start = 0; >>>> + qcom_clear_read_regs(snandc); >>>> + qcom_clear_bam_transaction(snandc); >>>> + opcode = op->cmd.opcode; >>>> + >>>> + switch (opcode) { >>>> + case SPINAND_READID: >>>> + snandc->buf_count = 4; >>>> + qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); >>>> + copy = true; >>>> + break; >>>> + case SPINAND_GET_FEATURE: >>>> + snandc->buf_count = 4; >>>> + qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); >>>> + copy_ftr = true; >>>> + break; >>>> + case SPINAND_SET_FEATURE: >>>> + snandc->regs->flash_feature = *(u32 *)op->data.buf.out; >>>> + qcom_write_reg_dma(snandc, &snandc->regs->flash_feature, >>>> + NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); >>>> + break; >>>> + case SPINAND_RESET: >>>> + return 0; >>>> + case SPINAND_PROGRAM_EXECUTE: >>>> + return 0; >>>> + case SPINAND_WRITE_EN: >>>> + return 0; >>>> + case SPINAND_ERASE: >>>> + return 0; >>>> + case SPINAND_READ: >>>> + return 0; >>> >>> You can stack the cases >> Ok >>> >>>> + default: >>>> + return -EOPNOTSUPP; >>>> + } >>>> + >>>> + ret = qcom_submit_descs(snandc); >>>> + if (ret) >>>> + dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode); >>>> + >>>> + if (copy) { >>>> + qcom_nandc_dev_to_mem(snandc, true); >>>> + memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count); >>>> + } >>>> + >>>> + if (copy_ftr) { >>>> + qcom_nandc_dev_to_mem(snandc, true); >>>> + val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf); >>>> + val >>= 8; >>>> + memcpy(op->data.buf.in, &val, snandc->buf_count); >>>> + } >>>> + >>>> + return ret; >>>> +} > > Thanks, > Miquèl
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index e59106e0a3af..12ee33c4ac4e 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -5,6 +5,10 @@ obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o ifeq ($(CONFIG_MTD_NAND_QCOM),y) obj-y += qpic_common.o +else +ifeq ($(CONFIG_SPI_QPIC_SNAND),y) +obj-y += qpic_common.o +endif endif obj-y += onenand/ obj-y += raw/ diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index a2c99ff33e0a..bb7579246f2f 100644 --- a/drivers/spi/Kconfig +++ b/drivers/spi/Kconfig @@ -892,6 +892,14 @@ config SPI_QCOM_QSPI help QSPI(Quad SPI) driver for Qualcomm QSPI controller. +config SPI_QPIC_SNAND + tristate "QPIC SNAND controller" + depends on ARCH_QCOM || COMPILE_TEST + help + QPIC_SNAND (QPIC SPI NAND) driver for Qualcomm QPIC controller. + QPIC controller supports both parallel nand and serial nand. + This config will enable serial nand driver for QPIC controller. + config SPI_QUP tristate "Qualcomm SPI controller with QUP interface" depends on ARCH_QCOM || COMPILE_TEST diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index e694254dec04..536292292bc5 100644 --- a/drivers/spi/Makefile +++ b/drivers/spi/Makefile @@ -112,6 +112,7 @@ obj-$(CONFIG_SPI_PXA2XX) += spi-pxa2xx-platform.o obj-$(CONFIG_SPI_PXA2XX_PCI) += spi-pxa2xx-pci.o obj-$(CONFIG_SPI_QCOM_GENI) += spi-geni-qcom.o obj-$(CONFIG_SPI_QCOM_QSPI) += spi-qcom-qspi.o +obj-$(CONFIG_SPI_QPIC_SNAND) += spi-qpic-snand.o obj-$(CONFIG_SPI_QUP) += spi-qup.o obj-$(CONFIG_SPI_ROCKCHIP) += spi-rockchip.o obj-$(CONFIG_SPI_ROCKCHIP_SFC) += spi-rockchip-sfc.o diff --git a/drivers/spi/spi-qpic-snand.c b/drivers/spi/spi-qpic-snand.c new file mode 100644 index 000000000000..9fef57ad44c9 --- /dev/null +++ b/drivers/spi/spi-qpic-snand.c @@ -0,0 +1,1499 @@ +/* + * SPDX-License-Identifier: GPL-2.0 + * + * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved. + * + * Authors: + * Md Sadre Alam <quic_mdalam@quicinc.com> + * Sricharan R <quic_srichara@quicinc.com> + * Varadarajan Narayanan <quic_varada@quicinc.com> + */ +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/dma/qcom_adm.h> +#include <linux/dma/qcom_bam_dma.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/mtd/nand-qpic-common.h> +#include <linux/mtd/spinand.h> + +#define NAND_FLASH_SPI_CFG 0xc0 +#define NAND_NUM_ADDR_CYCLES 0xc4 +#define NAND_BUSY_CHECK_WAIT_CNT 0xc8 +#define NAND_FLASH_FEATURES 0xf64 + +/* QSPI NAND config reg bits */ +#define LOAD_CLK_CNTR_INIT_EN BIT(28) +#define CLK_CNTR_INIT_VAL_VEC 0x924 +#define FEA_STATUS_DEV_ADDR 0xc0 +#define SPI_CFG BIT(0) +#define SPI_NUM_ADDR 0xDA4DB +#define SPI_WAIT_CNT 0x10 +#define QPIC_QSPI_NUM_CS 1 +#define SPI_TRANSFER_MODE_x1 BIT(29) +#define SPI_TRANSFER_MODE_x4 (3 << 29) +#define SPI_WP BIT(28) +#define SPI_HOLD BIT(27) +#define QPIC_SET_FEATURE BIT(31) + +#define SPINAND_RESET 0xff +#define SPINAND_READID 0x9f +#define SPINAND_GET_FEATURE 0x0f +#define SPINAND_SET_FEATURE 0x1f +#define SPINAND_READ 0x13 +#define SPINAND_ERASE 0xd8 +#define SPINAND_WRITE_EN 0x06 +#define SPINAND_PROGRAM_EXECUTE 0x10 +#define SPINAND_PROGRAM_LOAD 0x84 + +#define ACC_FEATURE 0xe +#define BAD_BLOCK_MARKER_SIZE 0x2 +#define OOB_BUF_SIZE 128 + +struct qpic_snand_op { + u32 cmd_reg; + u32 addr1_reg; + u32 addr2_reg; +}; + +struct snandc_read_status { + __le32 snandc_flash; + __le32 snandc_buffer; + __le32 snandc_erased_cw; +}; + +/* + * ECC state struct + * @corrected: ECC corrected + * @bitflips: Max bit flip + * @failed: ECC failed + */ +struct qcom_ecc_stats { + u32 corrected; + u32 bitflips; + u32 failed; +}; + +struct qpic_ecc { + struct device *dev; + const struct qpic_ecc_caps *caps; + struct completion done; + u32 sectors; + u8 *eccdata; + bool use_ecc; + u32 ecc_modes; + int ecc_bytes_hw; + int spare_bytes; + int bbm_size; + int ecc_mode; + int bytes; + int steps; + int step_size; + int strength; + int cw_size; + int cw_data; + u32 cfg0, cfg1; + u32 cfg0_raw, cfg1_raw; + u32 ecc_buf_cfg; + u32 ecc_bch_cfg; + u32 clrflashstatus; + u32 clrreadstatus; + bool bch_enabled; +}; + +struct qpic_spi_nand { + struct qcom_nand_controller *snandc; + struct spi_controller *ctlr; + struct clk *iomacro_clk; + struct qpic_ecc *ecc; + struct qcom_ecc_stats ecc_stats; + struct nand_ecc_engine ecc_eng; + u8 *data_buf; + u8 *oob_buf; + u32 wlen; + u32 addr1; + u32 addr2; + u32 cmd; + u32 num_cw; + u32 pagesize; + bool oob_rw; + bool page_rw; + bool raw_rw; + bool read_last_cw; +}; + +static void qcom_spi_set_read_loc_first(struct qcom_nand_controller *snandc, + int reg, int cw_offset, int read_size, + int is_last_read_loc) +{ + int val = (((cw_offset) << READ_LOCATION_OFFSET) | + ((read_size) << READ_LOCATION_SIZE) | ((is_last_read_loc) + << READ_LOCATION_LAST)); + + if (reg == NAND_READ_LOCATION_0) + snandc->regs->read_location0 = val; + else if (reg == NAND_READ_LOCATION_1) + snandc->regs->read_location1 = val; + else if (reg == NAND_READ_LOCATION_2) + snandc->regs->read_location1 = val; + else if (reg == NAND_READ_LOCATION_3) + snandc->regs->read_location3 = val; +} + +static void qcom_spi_set_read_loc_last(struct qcom_nand_controller *snandc, + int reg, int cw_offset, int read_size, + int is_last_read_loc) +{ + int val = (((cw_offset) << READ_LOCATION_OFFSET) | + ((read_size) << READ_LOCATION_SIZE) | ((is_last_read_loc) + << READ_LOCATION_LAST)); + + if (reg == NAND_READ_LOCATION_LAST_CW_0) + snandc->regs->read_location_last0 = val; + else if (reg == NAND_READ_LOCATION_LAST_CW_1) + snandc->regs->read_location_last1 = val; + else if (reg == NAND_READ_LOCATION_LAST_CW_2) + snandc->regs->read_location_last2 = val; + else if (reg == NAND_READ_LOCATION_LAST_CW_3) + snandc->regs->read_location_last3 = val; +} + +static struct qcom_nand_controller *nand_to_qcom_snand(struct nand_device *nand) +{ + struct qpic_spi_nand *qspi; + struct nand_ecc_engine *eng = nand->ecc.engine; + + qspi = container_of(eng, struct qpic_spi_nand, ecc_eng); + return qspi->snandc; +} + +static int qcom_spi_init(struct qcom_nand_controller *snandc) +{ + u32 snand_cfg_val = 0x0; + int ret; + + snand_cfg_val |= (LOAD_CLK_CNTR_INIT_EN | (CLK_CNTR_INIT_VAL_VEC << 16) | + (FEA_STATUS_DEV_ADDR << 8) | SPI_CFG); + + snandc->regs->spi_cfg = snand_cfg_val; + snandc->regs->num_addr_cycle = SPI_NUM_ADDR; + snandc->regs->busy_wait_cnt = SPI_WAIT_CNT; + + qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); + + snand_cfg_val &= ~LOAD_CLK_CNTR_INIT_EN; + snandc->regs->spi_cfg = snand_cfg_val; + + qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); + + qcom_write_reg_dma(snandc, &snandc->regs->num_addr_cycle, NAND_NUM_ADDR_CYCLES, 1, 0); + qcom_write_reg_dma(snandc, &snandc->regs->busy_wait_cnt, NAND_BUSY_CHECK_WAIT_CNT, 1, + NAND_BAM_NEXT_SGL); + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failure in submitting spi init descriptor\n"); + return ret; + } + + return ret; +} + +static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); + struct qpic_ecc *qecc = snandc->qspi->ecc; + + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->length = (qecc->bytes * (qecc->steps - 1)) + qecc->bbm_size; + oobregion->offset = 0; + } else { + oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + } + + return 0; +} + +static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); + struct qpic_ecc *qecc = snandc->qspi->ecc; + + if (section) + return -ERANGE; + + oobregion->length = qecc->steps * 4; + oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size; + + return 0; +} + +static const struct mtd_ooblayout_ops qcom_spi_ooblayout = { + .ecc = qcom_spi_ooblayout_ecc, + .free = qcom_spi_ooblayout_free, +}; + +static int qcom_spi_ecc_init_ctx_pipelined(struct nand_device *nand) +{ + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); + struct nand_ecc_props *conf = &nand->ecc.ctx.conf; + struct nand_ecc_props *reqs = &nand->ecc.requirements; + struct nand_ecc_props *user = &nand->ecc.user_conf; + struct mtd_info *mtd = nanddev_to_mtd(nand); + int step_size = 0, strength = 0, steps; + int cwperpage, bad_block_byte; + struct qpic_ecc *ecc_cfg; + + cwperpage = mtd->writesize / NANDC_STEP_SIZE; + snandc->qspi->num_cw = cwperpage; + + ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); + if (!ecc_cfg) + return -ENOMEM; + + nand->ecc.ctx.priv = ecc_cfg; + + if (user->step_size && user->strength) { + step_size = user->step_size; + strength = user->strength; + } else if (reqs->step_size && reqs->strength) { + step_size = reqs->step_size; + strength = reqs->strength; + } + + if (step_size && strength) + steps = mtd->writesize / step_size; + + ecc_cfg->ecc_bytes_hw = 7; + ecc_cfg->spare_bytes = 4; + ecc_cfg->bbm_size = 1; + ecc_cfg->bch_enabled = true; + ecc_cfg->bytes = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes + ecc_cfg->bbm_size; + + ecc_cfg->steps = 4; + ecc_cfg->strength = 4; + ecc_cfg->step_size = 512; + + mtd_set_ooblayout(mtd, &qcom_spi_ooblayout); + + ecc_cfg->cw_data = 516; + ecc_cfg->cw_size = ecc_cfg->cw_data + ecc_cfg->bytes; + bad_block_byte = mtd->writesize - ecc_cfg->cw_size * (cwperpage - 1) + 1; + + ecc_cfg->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | + FIELD_PREP(UD_SIZE_BYTES_MASK, ecc_cfg->cw_data) | + FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 1) | + FIELD_PREP(NUM_ADDR_CYCLES_MASK, 3) | + FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, ecc_cfg->ecc_bytes_hw) | + FIELD_PREP(STATUS_BFR_READ, 0) | + FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) | + FIELD_PREP(SPARE_SIZE_BYTES_MASK, ecc_cfg->spare_bytes); + + ecc_cfg->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 0) | + FIELD_PREP(CS_ACTIVE_BSY, 0) | + FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) | + FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) | + FIELD_PREP(WR_RD_BSY_GAP_MASK, 20) | + FIELD_PREP(WIDE_FLASH, 0) | + FIELD_PREP(ENABLE_BCH_ECC, ecc_cfg->bch_enabled); + + ecc_cfg->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | + FIELD_PREP(NUM_ADDR_CYCLES_MASK, 3) | + FIELD_PREP(UD_SIZE_BYTES_MASK, ecc_cfg->cw_size) | + FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0); + + ecc_cfg->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 0) | + FIELD_PREP(CS_ACTIVE_BSY, 0) | + FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | + FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | + FIELD_PREP(WR_RD_BSY_GAP_MASK, 20) | + FIELD_PREP(WIDE_FLASH, 0) | + FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1); + + ecc_cfg->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !ecc_cfg->bch_enabled) | + FIELD_PREP(ECC_SW_RESET, 0) | + FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, ecc_cfg->cw_data) | + FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) | + FIELD_PREP(ECC_MODE_MASK, 0) | + FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, ecc_cfg->ecc_bytes_hw); + + ecc_cfg->ecc_buf_cfg = 0x203 << NUM_STEPS; + ecc_cfg->clrflashstatus = FS_READY_BSY_N; + ecc_cfg->clrreadstatus = 0xc0; + + conf->step_size = ecc_cfg->step_size; + conf->strength = ecc_cfg->strength; + + snandc->regs->erased_cw_detect_cfg_clr = cpu_to_le32(CLR_ERASED_PAGE_DET); + snandc->regs->erased_cw_detect_cfg_set = cpu_to_le32(SET_ERASED_PAGE_DET); + + dev_dbg(snandc->dev, "ECC strength: %u bits per %u bytes\n", + ecc_cfg->strength, ecc_cfg->step_size); + + return 0; +} + +static void qcom_spi_ecc_cleanup_ctx_pipelined(struct nand_device *nand) +{ + struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); + + kfree(ecc_cfg); +} + +static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); + struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + + snandc->qspi->ecc = ecc_cfg; + snandc->qspi->pagesize = mtd->writesize; + snandc->qspi->raw_rw = false; + snandc->qspi->oob_rw = false; + snandc->qspi->page_rw = false; + + if (req->datalen) + snandc->qspi->page_rw = true; + + if (req->ooblen) { + snandc->qspi->oob_rw = true; + if (req->ooblen == BAD_BLOCK_MARKER_SIZE) + snandc->qspi->read_last_cw = true; + } + + if (req->mode == MTD_OPS_RAW) + snandc->qspi->raw_rw = true; + + return 0; +} + +static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand, + struct nand_page_io_req *req) +{ + struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); + struct mtd_info *mtd = nanddev_to_mtd(nand); + + if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ) + return 0; + + if (snandc->qspi->ecc_stats.failed) + mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed; + mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected; + + if (snandc->qspi->ecc_stats.failed) + return -EBADMSG; + else + return snandc->qspi->ecc_stats.bitflips; +} + +static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = { + .init_ctx = qcom_spi_ecc_init_ctx_pipelined, + .cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined, + .prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined, + .finish_io_req = qcom_spi_ecc_finish_io_req_pipelined, +}; + +/* helper to configure location register values */ +static void qcom_spi_set_read_loc(struct qcom_nand_controller *snandc, int cw, int reg, + int cw_offset, int read_size, int is_last_read_loc) +{ + int reg_base = NAND_READ_LOCATION_0; + int num_cw = snandc->qspi->num_cw; + + if (cw == (num_cw - 1)) + reg_base = NAND_READ_LOCATION_LAST_CW_0; + + reg_base += reg * 4; + + if (cw == (num_cw - 1)) + return qcom_spi_set_read_loc_last(snandc, reg_base, cw_offset, + read_size, is_last_read_loc); + else + return qcom_spi_set_read_loc_first(snandc, reg_base, cw_offset, + read_size, is_last_read_loc); +} + +static void +qcom_spi_config_cw_read(struct qcom_nand_controller *snandc, bool use_ecc, int cw) +{ + __le32 *reg = &snandc->regs->read_location0; + int num_cw = snandc->qspi->num_cw; + + qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL); + if (cw == (num_cw - 1)) { + reg = &snandc->regs->read_location_last0; + qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_LAST_CW_0, 4, + NAND_BAM_NEXT_SGL); + } + + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 2, 0); + qcom_read_reg_dma(snandc, NAND_ERASED_CW_DETECT_STATUS, 1, + NAND_BAM_NEXT_SGL); +} + +static int qcom_spi_block_erase(struct qcom_nand_controller *snandc) +{ + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + int ret; + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + qcom_clear_bam_transaction(snandc); + + snandc->regs->cmd = snandc->qspi->cmd; + snandc->regs->addr0 = snandc->qspi->addr1; + snandc->regs->addr1 = snandc->qspi->addr2; + snandc->regs->cfg0 = ecc_cfg->cfg0_raw & ~(7 << CW_PER_PAGE); + snandc->regs->cfg1 = ecc_cfg->cfg1_raw; + snandc->regs->exec = 1; + + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failure to erase block\n"); + return ret; + } + + return 0; +} + +static void qcom_spi_config_single_cw_page_read(struct qcom_nand_controller *snandc, + bool use_ecc, int cw) +{ + __le32 *reg = &snandc->regs->read_location0; + int num_cw = snandc->qspi->num_cw; + + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, + NAND_ERASED_CW_DETECT_CFG, 1, 0); + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, + NAND_ERASED_CW_DETECT_CFG, 1, + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); + + if (cw == (num_cw - 1)) { + reg = &snandc->regs->read_location_last0; + qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_LAST_CW_0, 4, NAND_BAM_NEXT_SGL); + } + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, 0); +} + +static int qcom_spi_read_last_cw(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + int size, ret = 0; + int col, bbpos; + u32 cfg0, cfg1, ecc_bch_cfg; + u32 num_cw = snandc->qspi->num_cw; + + qcom_clear_bam_transaction(snandc); + qcom_clear_read_regs(snandc); + + size = ecc_cfg->cw_size; + col = ecc_cfg->cw_size * (num_cw - 1); + + memset(snandc->data_buffer, 0xff, size); + snandc->regs->addr0 = (snandc->qspi->addr1 | col); + snandc->regs->addr1 = snandc->qspi->addr2; + + cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | + 0 << CW_PER_PAGE; + cfg1 = ecc_cfg->cfg1_raw; + ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; + + snandc->regs->cmd = snandc->qspi->cmd; + snandc->regs->cfg0 = cfg0; + snandc->regs->cfg1 = cfg1; + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; + snandc->regs->exec = 1; + + qcom_spi_set_read_loc(snandc, num_cw - 1, 0, 0, ecc_cfg->cw_size, 1); + + qcom_spi_config_single_cw_page_read(snandc, false, num_cw - 1); + + qcom_read_data_dma(snandc, FLASH_BUF_ACC, snandc->data_buffer, size, 0); + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failed to read last cw\n"); + return ret; + } + + qcom_nandc_dev_to_mem(snandc, true); + u32 flash = le32_to_cpu(snandc->reg_read_buf[0]); + + if (flash & (FS_OP_ERR | FS_MPU_ERR)) + return -EIO; + + bbpos = snandc->qspi->pagesize - ecc_cfg->cw_size * (num_cw - 1); + + if (snandc->data_buffer[bbpos] == 0xff) + snandc->data_buffer[bbpos + 1] = 0xff; + if (snandc->data_buffer[bbpos] != 0xff) + snandc->data_buffer[bbpos + 1] = snandc->data_buffer[bbpos]; + + memcpy(op->data.buf.in, snandc->data_buffer + bbpos, op->data.nbytes); + + return ret; +} + +static int qcom_spi_check_error(struct qcom_nand_controller *snandc, u8 *data_buf, u8 *oob_buf) +{ + struct snandc_read_status *buf; + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + int i, num_cw = snandc->qspi->num_cw; + bool flash_op_err = false, erased; + unsigned int max_bitflips = 0; + unsigned int uncorrectable_cws = 0; + + snandc->qspi->ecc_stats.failed = 0; + snandc->qspi->ecc_stats.corrected = 0; + + qcom_nandc_dev_to_mem(snandc, true); + buf = (struct snandc_read_status *)snandc->reg_read_buf; + + for (i = 0; i < num_cw; i++, buf++) { + u32 flash, buffer, erased_cw; + int data_len, oob_len; + + if (i == (num_cw - 1)) { + data_len = NANDC_STEP_SIZE - ((num_cw - 1) << 2); + oob_len = num_cw << 2; + } else { + data_len = ecc_cfg->cw_data; + oob_len = 0; + } + + flash = le32_to_cpu(buf->snandc_flash); + buffer = le32_to_cpu(buf->snandc_buffer); + erased_cw = le32_to_cpu(buf->snandc_erased_cw); + + if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { + if (ecc_cfg->bch_enabled) + erased = (erased_cw & ERASED_CW) == ERASED_CW; + else + erased = false; + + if (!erased) + uncorrectable_cws |= BIT(i); + + } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { + flash_op_err = true; + } else { + unsigned int stat; + + stat = buffer & BS_CORRECTABLE_ERR_MSK; + snandc->qspi->ecc_stats.corrected += stat; + max_bitflips = max(max_bitflips, stat); + } + + if (data_buf) + data_buf += data_len; + if (oob_buf) + oob_buf += oob_len + ecc_cfg->bytes; + } + + if (flash_op_err) + return -EIO; + + if (!uncorrectable_cws) + snandc->qspi->ecc_stats.bitflips = max_bitflips; + else + snandc->qspi->ecc_stats.failed++; + + return 0; +} + +static int qcom_spi_check_raw_flash_errors(struct qcom_nand_controller *snandc, int cw_cnt) +{ + int i; + + qcom_nandc_dev_to_mem(snandc, true); + + for (i = 0; i < cw_cnt; i++) { + u32 flash = le32_to_cpu(snandc->reg_read_buf[i]); + + if (flash & (FS_OP_ERR | FS_MPU_ERR)) + return -EIO; + } + + return 0; +} + +static int qcom_spi_read_cw_raw(struct qcom_nand_controller *snandc, u8 *data_buf, + u8 *oob_buf, int cw) +{ + int data_size1, data_size2, oob_size1, oob_size2; + int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; + int raw_cw = cw; + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; + int col; + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + qcom_clear_bam_transaction(snandc); + raw_cw = num_cw - 1; + + cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | + 0 << CW_PER_PAGE; + cfg1 = ecc_cfg->cfg1_raw; + ecc_bch_cfg = ECC_CFG_ECC_DISABLE; + + col = ecc_cfg->cw_size * cw; + + snandc->regs->addr0 = snandc->qspi->addr1 | col; + snandc->regs->addr1 = snandc->qspi->addr2; + snandc->regs->cmd = snandc->qspi->cmd; + snandc->regs->cfg0 = cfg0; + snandc->regs->cfg1 = cfg1; + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; + snandc->regs->exec = 1; + + qcom_spi_set_read_loc(snandc, raw_cw, 0, 0, ecc_cfg->cw_size, 1); + + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); + qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0); + + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, + NAND_ERASED_CW_DETECT_CFG, 1, 0); + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, + NAND_ERASED_CW_DETECT_CFG, 1, + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); + + data_size1 = snandc->qspi->pagesize - ecc_cfg->cw_size * (num_cw - 1); + oob_size1 = ecc_cfg->bbm_size; + + if (cw == (num_cw - 1)) { + data_size2 = NANDC_STEP_SIZE - data_size1 - + ((num_cw - 1) * 4); + oob_size2 = (num_cw * 4) + ecc_cfg->ecc_bytes_hw + + ecc_cfg->spare_bytes; + } else { + data_size2 = ecc_cfg->cw_data - data_size1; + oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; + } + + qcom_spi_set_read_loc(snandc, cw, 0, read_loc, data_size1, 0); + read_loc += data_size1; + + qcom_spi_set_read_loc(snandc, cw, 1, read_loc, oob_size1, 0); + read_loc += oob_size1; + + qcom_spi_set_read_loc(snandc, cw, 2, read_loc, data_size2, 0); + read_loc += data_size2; + + qcom_spi_set_read_loc(snandc, cw, 3, read_loc, oob_size2, 1); + + qcom_spi_config_cw_read(snandc, false, raw_cw); + + qcom_read_data_dma(snandc, reg_off, data_buf, data_size1, 0); + reg_off += data_size1; + + qcom_read_data_dma(snandc, reg_off, oob_buf, oob_size1, 0); + reg_off += oob_size1; + + qcom_read_data_dma(snandc, reg_off, data_buf + data_size1, data_size2, 0); + reg_off += data_size2; + + qcom_read_data_dma(snandc, reg_off, oob_buf + oob_size1, oob_size2, 0); + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failure to read raw cw %d\n", cw); + return ret; + } + + return qcom_spi_check_raw_flash_errors(snandc, 1); +} + +static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + u8 *data_buf = NULL, *oob_buf = NULL; + int ret, cw; + u32 num_cw = snandc->qspi->num_cw; + + if (snandc->qspi->page_rw) + data_buf = op->data.buf.in; + + if (snandc->qspi->oob_rw) + oob_buf = op->data.buf.in; + + if (!oob_buf) { + oob_buf = snandc->qspi->oob_buf; + memset(oob_buf, 0xff, OOB_BUF_SIZE); + } + + for (cw = 0; cw < num_cw; cw++) { + ret = qcom_spi_read_cw_raw(snandc, data_buf, oob_buf, cw); + if (ret) + return ret; + + if (data_buf) + data_buf += ecc_cfg->cw_data; + if (oob_buf) + oob_buf += ecc_cfg->bytes; + } + + return 0; +} + +static int qcom_spi_read_page_cache(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + u8 *data_buf = NULL, *data_buf_start, *oob_buf = NULL, *oob_buf_start; + int ret, i; + u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; + + if (snandc->qspi->page_rw) { + data_buf = op->data.buf.in; + data_buf_start = data_buf; + } + + if (snandc->qspi->oob_rw || snandc->qspi->raw_rw) { + oob_buf = op->data.buf.in; + oob_buf_start = oob_buf; + } + + if (snandc->qspi->page_rw && snandc->qspi->raw_rw) + return qcom_spi_read_page_raw(snandc, op); + + if (snandc->qspi->oob_rw && snandc->qspi->raw_rw && snandc->qspi->read_last_cw) + return qcom_spi_read_last_cw(snandc, op); + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + + cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + cfg1 = ecc_cfg->cfg1; + ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; + + snandc->regs->addr0 = snandc->qspi->addr1; + snandc->regs->addr1 = snandc->qspi->addr2; + snandc->regs->cmd = snandc->qspi->cmd; + snandc->regs->cfg0 = cfg0; + snandc->regs->cfg1 = cfg1; + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; + snandc->regs->exec = 1; + + qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1); + + qcom_clear_bam_transaction(snandc); + + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, + NAND_ERASED_CW_DETECT_CFG, 1, 0); + qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, + NAND_ERASED_CW_DETECT_CFG, 1, + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); + + for (i = 0; i < num_cw; i++) { + int data_size, oob_size; + + if (i == (num_cw - 1)) { + data_size = 512 - ((num_cw - 1) << 2); + oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + + ecc_cfg->spare_bytes; + } else { + data_size = ecc_cfg->cw_data; + oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; + } + + if (data_buf && oob_buf) { + qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 0); + qcom_spi_set_read_loc(snandc, i, 1, data_size, oob_size, 1); + } else if (data_buf) { + qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 1); + } else { + qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1); + } + + qcom_spi_config_cw_read(snandc, true, i); + + if (data_buf) + qcom_read_data_dma(snandc, FLASH_BUF_ACC, data_buf, + data_size, 0); + if (oob_buf) { + int j; + + for (j = 0; j < ecc_cfg->bbm_size; j++) + *oob_buf++ = 0xff; + + qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); + } + + if (data_buf) + data_buf += data_size; + if (oob_buf) + oob_buf += oob_size; + } + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failure to read page\n"); + return ret; + } + + return qcom_spi_check_error(snandc, data_buf_start, oob_buf_start); +} + +static void qcom_spi_config_page_write(struct qcom_nand_controller *snandc) +{ + qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); + qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); + qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, + 1, NAND_BAM_NEXT_SGL); +} + +static void qcom_spi_config_cw_write(struct qcom_nand_controller *snandc) +{ + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + qcom_write_reg_dma(snandc, &snandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0); + qcom_write_reg_dma(snandc, &snandc->regs->clrreadstatus, NAND_READ_STATUS, 1, + NAND_BAM_NEXT_SGL); +} + +static int qcom_spi_program_raw(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + u8 *data_buf = NULL, *oob_buf = NULL; + int i, ret; + int num_cw = snandc->qspi->num_cw; + u32 cfg0, cfg1, ecc_bch_cfg; + + cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + cfg1 = ecc_cfg->cfg1_raw; + ecc_bch_cfg = ECC_CFG_ECC_DISABLE; + + data_buf = snandc->qspi->data_buf; + + oob_buf = snandc->qspi->oob_buf; + memset(oob_buf, 0xff, OOB_BUF_SIZE); + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + qcom_clear_bam_transaction(snandc); + + snandc->regs->addr0 = snandc->qspi->addr1; + snandc->regs->addr1 = snandc->qspi->addr2; + snandc->regs->cmd = snandc->qspi->cmd; + snandc->regs->cfg0 = cfg0; + snandc->regs->cfg1 = cfg1; + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; + snandc->regs->clrflashstatus = ecc_cfg->clrflashstatus; + snandc->regs->clrreadstatus = ecc_cfg->clrreadstatus; + snandc->regs->exec = 1; + + qcom_spi_config_page_write(snandc); + + for (i = 0; i < num_cw; i++) { + int data_size1, data_size2, oob_size1, oob_size2; + int reg_off = FLASH_BUF_ACC; + + data_size1 = snandc->qspi->pagesize - ecc_cfg->cw_size * (num_cw - 1); + oob_size1 = ecc_cfg->bbm_size; + + if ((i == (num_cw - 1))) { + data_size2 = NANDC_STEP_SIZE - data_size1 - + ((num_cw - 1) << 2); + oob_size2 = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + + ecc_cfg->spare_bytes; + } else { + data_size2 = ecc_cfg->cw_data - data_size1; + oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; + } + + qcom_write_data_dma(snandc, reg_off, data_buf, data_size1, + NAND_BAM_NO_EOT); + reg_off += data_size1; + data_buf += data_size1; + + qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size1, + NAND_BAM_NO_EOT); + oob_buf += oob_size1; + reg_off += oob_size1; + + qcom_write_data_dma(snandc, reg_off, data_buf, data_size2, + NAND_BAM_NO_EOT); + reg_off += data_size2; + data_buf += data_size2; + + qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size2, 0); + oob_buf += oob_size2; + + qcom_spi_config_cw_write(snandc); + } + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failure to write raw page\n"); + return ret; + } + + return 0; +} + +static int qcom_spi_program_execute(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; + u8 *data_buf = NULL, *oob_buf = NULL; + int i, ret; + int num_cw = snandc->qspi->num_cw; + u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg; + + cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + cfg1 = ecc_cfg->cfg1; + ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; + ecc_buf_cfg = ecc_cfg->ecc_buf_cfg; + + if (snandc->qspi->page_rw && snandc->qspi->raw_rw) + return qcom_spi_program_raw(snandc, op); + + if (snandc->qspi->data_buf) + data_buf = snandc->qspi->data_buf; + + if (snandc->qspi->oob_buf) + oob_buf = snandc->qspi->oob_buf; + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + qcom_clear_bam_transaction(snandc); + + snandc->regs->addr0 = snandc->qspi->addr1; + snandc->regs->addr1 = snandc->qspi->addr2; + snandc->regs->cmd = snandc->qspi->cmd; + snandc->regs->cfg0 = cfg0; + snandc->regs->cfg1 = cfg1; + snandc->regs->ecc_bch_cfg = ecc_bch_cfg; + snandc->regs->ecc_buf_cfg = ecc_buf_cfg; + snandc->regs->exec = 1; + + qcom_spi_config_page_write(snandc); + + for (i = 0; i < num_cw; i++) { + int data_size, oob_size; + + if (i == (num_cw - 1)) { + data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2); + oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + + ecc_cfg->spare_bytes; + } else { + data_size = ecc_cfg->cw_data; + oob_size = ecc_cfg->bytes; + } + + if (data_buf) + qcom_write_data_dma(snandc, FLASH_BUF_ACC, data_buf, data_size, + i == (num_cw - 1) ? NAND_BAM_NO_EOT : 0); + + if (i == (num_cw - 1)) { + if (oob_buf) { + oob_buf += ecc_cfg->bbm_size; + qcom_write_data_dma(snandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); + } + } + + qcom_spi_config_cw_write(snandc); + + if (data_buf) + data_buf += data_size; + if (oob_buf) + oob_buf += oob_size; + } + + ret = qcom_submit_descs(snandc); + if (ret) { + dev_err(snandc->dev, "failure to write page\n"); + return ret; + } + + return 0; +} + +static u32 qcom_spi_cmd_mapping(struct qcom_nand_controller *snandc, u32 opcode) +{ + u32 cmd = 0x0; + + switch (opcode) { + case SPINAND_RESET: + cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_RESET_DEVICE); + break; + case SPINAND_READID: + cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_FETCH_ID); + break; + case SPINAND_GET_FEATURE: + cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE); + break; + case SPINAND_SET_FEATURE: + cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE | + QPIC_SET_FEATURE); + break; + case SPINAND_READ: + if (snandc->qspi->raw_rw) { + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | + SPI_WP | SPI_HOLD | OP_PAGE_READ); + } else { + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | + SPI_WP | SPI_HOLD | OP_PAGE_READ_WITH_ECC); + } + + break; + case SPINAND_ERASE: + cmd = OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE | SPI_WP | + SPI_HOLD | SPI_TRANSFER_MODE_x1; + break; + case SPINAND_WRITE_EN: + cmd = SPINAND_WRITE_EN; + break; + case SPINAND_PROGRAM_EXECUTE: + cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | + SPI_WP | SPI_HOLD | OP_PROGRAM_PAGE); + break; + case SPINAND_PROGRAM_LOAD: + cmd = SPINAND_PROGRAM_LOAD; + break; + default: + dev_err(snandc->dev, "Opcode not supported: %u\n", opcode); + return -EOPNOTSUPP; + } + + return cmd; +} + +static int qcom_spi_write_page_cache(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_snand_op s_op = {}; + u32 cmd; + + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); + s_op.cmd_reg = cmd; + + if (op->cmd.opcode == SPINAND_PROGRAM_LOAD) { + if (snandc->qspi->page_rw) + snandc->qspi->data_buf = (u8 *)op->data.buf.out; + } + + return 0; +} + +static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc, + const struct spi_mem_op *op) +{ + struct qpic_snand_op s_op = {}; + u32 cmd; + int ret, opcode; + + cmd = qcom_spi_cmd_mapping(snandc, op->cmd.opcode); + + s_op.cmd_reg = cmd; + s_op.addr1_reg = op->addr.val; + s_op.addr2_reg = 0; + + opcode = op->cmd.opcode; + + switch (opcode) { + case SPINAND_WRITE_EN: + return 0; + case SPINAND_PROGRAM_EXECUTE: + s_op.addr1_reg = op->addr.val << 16; + s_op.addr2_reg = op->addr.val >> 16 & 0xff; + snandc->qspi->addr1 = s_op.addr1_reg; + snandc->qspi->addr2 = s_op.addr2_reg; + snandc->qspi->cmd = cmd; + return qcom_spi_program_execute(snandc, op); + case SPINAND_READ: + s_op.addr1_reg = (op->addr.val << 16); + s_op.addr2_reg = op->addr.val >> 16 & 0xff; + snandc->qspi->addr1 = s_op.addr1_reg; + snandc->qspi->addr2 = s_op.addr2_reg; + snandc->qspi->cmd = cmd; + return 0; + case SPINAND_ERASE: + s_op.addr2_reg = (op->addr.val >> 16) & 0xffff; + s_op.addr1_reg = op->addr.val; + snandc->qspi->addr1 = (s_op.addr1_reg << 16); + snandc->qspi->addr2 = s_op.addr2_reg; + snandc->qspi->cmd = cmd; + qcom_spi_block_erase(snandc); + return 0; + default: + break; + } + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + qcom_clear_bam_transaction(snandc); + + snandc->regs->cmd = s_op.cmd_reg; + snandc->regs->exec = 1; + snandc->regs->addr0 = s_op.addr1_reg; + snandc->regs->addr1 = s_op.addr2_reg; + + qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + ret = qcom_submit_descs(snandc); + if (ret) + dev_err(snandc->dev, "failure in sbumitting cmd descriptor\n"); + + return ret; +} + +static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) +{ + int ret, val, opcode; + bool copy = false, copy_ftr = false; + + ret = qcom_spi_send_cmdaddr(snandc, op); + if (ret) + return ret; + + snandc->buf_count = 0; + snandc->buf_start = 0; + qcom_clear_read_regs(snandc); + qcom_clear_bam_transaction(snandc); + opcode = op->cmd.opcode; + + switch (opcode) { + case SPINAND_READID: + snandc->buf_count = 4; + qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); + copy = true; + break; + case SPINAND_GET_FEATURE: + snandc->buf_count = 4; + qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); + copy_ftr = true; + break; + case SPINAND_SET_FEATURE: + snandc->regs->flash_feature = *(u32 *)op->data.buf.out; + qcom_write_reg_dma(snandc, &snandc->regs->flash_feature, + NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); + break; + case SPINAND_RESET: + return 0; + case SPINAND_PROGRAM_EXECUTE: + return 0; + case SPINAND_WRITE_EN: + return 0; + case SPINAND_ERASE: + return 0; + case SPINAND_READ: + return 0; + default: + return -EOPNOTSUPP; + } + + ret = qcom_submit_descs(snandc); + if (ret) + dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode); + + if (copy) { + qcom_nandc_dev_to_mem(snandc, true); + memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count); + } + + if (copy_ftr) { + qcom_nandc_dev_to_mem(snandc, true); + val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf); + val >>= 8; + memcpy(op->data.buf.in, &val, snandc->buf_count); + } + + return ret; +} + +static bool qcom_spi_is_page_op(const struct spi_mem_op *op) +{ + if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && op->addr.buswidth != 4) + return false; + + if (op->data.dir == SPI_MEM_DATA_IN) { + if (op->addr.buswidth == 4 && op->data.buswidth == 4) + return true; + + if (op->addr.nbytes == 2 && op->addr.buswidth == 1) + return true; + + } else if (op->data.dir == SPI_MEM_DATA_OUT) { + if (op->data.buswidth == 4) + return true; + if (op->addr.nbytes == 2 && op->addr.buswidth == 1) + return true; + } + + return false; +} + +static bool qcom_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) +{ + if (!spi_mem_default_supports_op(mem, op)) + return false; + + if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) + return false; + + if (qcom_spi_is_page_op(op)) + return true; + + return ((!op->addr.nbytes || op->addr.buswidth == 1) && + (!op->dummy.nbytes || op->dummy.buswidth == 1) && + (!op->data.nbytes || op->data.buswidth == 1)); +} + +static int qcom_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) +{ + struct qcom_nand_controller *snandc = spi_controller_get_devdata(mem->spi->controller); + + dev_dbg(snandc->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, + op->addr.val, op->addr.buswidth, op->addr.nbytes, + op->data.buswidth, op->data.nbytes); + + if (qcom_spi_is_page_op(op)) { + if (op->data.dir == SPI_MEM_DATA_IN) + return qcom_spi_read_page_cache(snandc, op); + if (op->data.dir == SPI_MEM_DATA_OUT) + return qcom_spi_write_page_cache(snandc, op); + } else { + return qcom_spi_io_op(snandc, op); + } + + return 0; +} + +static const struct spi_controller_mem_ops qcom_spi_mem_ops = { + .supports_op = qcom_spi_supports_op, + .exec_op = qcom_spi_exec_op, +}; + +static const struct spi_controller_mem_caps qcom_spi_mem_caps = { + .ecc = true, +}; + +static int qcom_spi_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct spi_controller *ctlr; + struct qcom_nand_controller *snandc; + struct qpic_spi_nand *qspi; + struct qpic_ecc *ecc; + struct resource *res; + const void *dev_data; + int ret; + + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); + if (!ecc) + return -ENOMEM; + + qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL); + if (!qspi) + return -ENOMEM; + + ctlr = __devm_spi_alloc_controller(dev, sizeof(*snandc), false); + if (!ctlr) + return -ENOMEM; + + platform_set_drvdata(pdev, ctlr); + + snandc = spi_controller_get_devdata(ctlr); + qspi->snandc = snandc; + + snandc->dev = dev; + snandc->qspi = qspi; + snandc->qspi->ctlr = ctlr; + snandc->qspi->ecc = ecc; + + snandc->qspi->oob_buf = devm_kzalloc(dev, OOB_BUF_SIZE, GFP_KERNEL); + if (!snandc->qspi->oob_buf) + return -ENOMEM; + + dev_data = of_device_get_match_data(dev); + if (!dev_data) { + dev_err(&pdev->dev, "failed to get device data\n"); + return -ENODEV; + } + + snandc->props = dev_data; + snandc->dev = &pdev->dev; + + snandc->core_clk = devm_clk_get(dev, "core"); + if (IS_ERR(snandc->core_clk)) + return PTR_ERR(snandc->core_clk); + + snandc->aon_clk = devm_clk_get(dev, "aon"); + if (IS_ERR(snandc->aon_clk)) + return PTR_ERR(snandc->aon_clk); + + snandc->qspi->iomacro_clk = devm_clk_get(dev, "iom"); + if (IS_ERR(snandc->qspi->iomacro_clk)) + return PTR_ERR(snandc->qspi->iomacro_clk); + + snandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); + if (IS_ERR(snandc->base)) + return PTR_ERR(snandc->base); + + snandc->base_phys = res->start; + snandc->base_dma = dma_map_resource(dev, res->start, resource_size(res), + DMA_BIDIRECTIONAL, 0); + if (dma_mapping_error(dev, snandc->base_dma)) + return -ENXIO; + + ret = clk_prepare_enable(snandc->core_clk); + if (ret) + goto err_core_clk; + + ret = clk_prepare_enable(snandc->aon_clk); + if (ret) + goto err_aon_clk; + + ret = clk_prepare_enable(snandc->qspi->iomacro_clk); + if (ret) + goto err_dis_iom_clk; + + ret = qcom_nandc_alloc(snandc); + if (ret) + goto err_snand_alloc; + + ret = qcom_spi_init(snandc); + if (ret) + goto err_init; + + /* setup ECC engine */ + snandc->qspi->ecc_eng.dev = &pdev->dev; + snandc->qspi->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; + snandc->qspi->ecc_eng.ops = &qcom_spi_ecc_engine_ops_pipelined; + snandc->qspi->ecc_eng.priv = snandc; + + ret = nand_ecc_register_on_host_hw_engine(&snandc->qspi->ecc_eng); + if (ret) { + dev_err(&pdev->dev, "failed to register ecc engine:%d\n", ret); + goto err_init; + } + + ctlr->num_chipselect = QPIC_QSPI_NUM_CS; + ctlr->mem_ops = &qcom_spi_mem_ops; + ctlr->mem_caps = &qcom_spi_mem_caps; + ctlr->dev.of_node = pdev->dev.of_node; + ctlr->mode_bits = SPI_TX_DUAL | SPI_RX_DUAL | + SPI_TX_QUAD | SPI_RX_QUAD; + + ret = spi_register_controller(ctlr); + if (ret) { + dev_err(&pdev->dev, "spi_register_controller failed.\n"); + goto err_init; + } + + return 0; + +err_init: + qcom_nandc_unalloc(snandc); +err_snand_alloc: + clk_disable_unprepare(snandc->qspi->iomacro_clk); +err_dis_iom_clk: + clk_disable_unprepare(snandc->aon_clk); +err_aon_clk: + clk_disable_unprepare(snandc->core_clk); +err_core_clk: + dma_unmap_resource(dev, res->start, resource_size(res), + DMA_BIDIRECTIONAL, 0); + return ret; +} + +static int qcom_spi_remove(struct platform_device *pdev) +{ + struct spi_controller *ctlr = platform_get_drvdata(pdev); + struct qcom_nand_controller *snandc = spi_controller_get_devdata(ctlr); + struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + + spi_unregister_controller(ctlr); + + qcom_nandc_unalloc(snandc); + + clk_disable_unprepare(snandc->aon_clk); + clk_disable_unprepare(snandc->core_clk); + clk_disable_unprepare(snandc->qspi->iomacro_clk); + + dma_unmap_resource(&pdev->dev, snandc->base_dma, resource_size(res), + DMA_BIDIRECTIONAL, 0); + return 0; +} + +static const struct qcom_nandc_props ipq9574_snandc_props = { + .dev_cmd_reg_start = 0x7000, + .supports_bam = true, +}; + +static const struct of_device_id qcom_snandc_of_match[] = { + { + .compatible = "qcom,spi-qpic-snand", + .data = &ipq9574_snandc_props, + }, + {} +} +MODULE_DEVICE_TABLE(of, qcom_snandc_of_match); + +static struct platform_driver qcom_spi_driver = { + .driver = { + .name = "qcom_snand", + .of_match_table = qcom_snandc_of_match, + }, + .probe = qcom_spi_probe, + .remove = qcom_spi_remove, +}; +module_platform_driver(qcom_spi_driver); + +MODULE_DESCRIPTION("SPI driver for QPIC QSPI cores"); +MODULE_AUTHOR("Md Sadre Alam <quic_mdalam@quicinc.com>"); +MODULE_LICENSE("GPL"); diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h index efdd7800f428..804693a3a376 100644 --- a/include/linux/mtd/nand-qpic-common.h +++ b/include/linux/mtd/nand-qpic-common.h @@ -322,6 +322,10 @@ struct nandc_regs { __le32 read_location_last1; __le32 read_location_last2; __le32 read_location_last3; + __le32 spi_cfg; + __le32 num_addr_cycle; + __le32 busy_wait_cnt; + __le32 flash_feature; __le32 erased_cw_detect_cfg_clr; __le32 erased_cw_detect_cfg_set; @@ -336,6 +340,7 @@ struct nandc_regs { * * @core_clk: controller clock * @aon_clk: another controller clock + * @iomacro_clk: io macro clock * * @regs: a contiguous chunk of memory for DMA register * writes. contains the register values to be @@ -345,6 +350,7 @@ struct nandc_regs { * initialized via DT match data * * @controller: base controller structure + * @qspi: qpic spi structure * @host_list: list containing all the chips attached to the * controller * @@ -387,8 +393,8 @@ struct qcom_nand_controller { struct bam_transaction *bam_txn; const struct qcom_nandc_props *props; - struct nand_controller *controller; + struct qpic_spi_nand *qspi; struct list_head host_list; union {