Message ID | 20240430-loongson1-nand-v7-3-60787c314fa4@gmail.com (mailing list archive) |
---|---|
State | Handled Elsewhere |
Headers | show |
Series | Add support for Loongson-1 NAND | expand |
Hi, devnull+keguang.zhang.gmail.com@kernel.org wrote on Tue, 30 Apr 2024 19:11:12 +0800: > From: Keguang Zhang <keguang.zhang@gmail.com> > > This patch adds NAND Controller driver for Loongson-1 SoCs. > > Signed-off-by: Keguang Zhang <keguang.zhang@gmail.com> > --- > Changes in v7: > - Rename the dependency to LOONGSON1_APB_DMA > > Changes in v6: > - Amend Kconfig > - Add DT support > - Use DT data instead of platform data > - Remove MAX_ID_SIZE > - Remove case NAND_OP_CMD_INSTR in ls1x_nand_set_controller() > - Move ECC configuration to ls1x_nand_attach_chip() > - Rename variable "nand" to "ls1x" > - Rename variable "nc" to "nfc" > - Some minor fixes > - Link to v5: https://lore.kernel.org/all/20210520224213.7907-1-keguang.zhang@gmail.com > > Changes in v5: > - Update the driver to fit the raw NAND framework. > - Implement exec_op() instead of legacy cmdfunc(). > - Use dma_request_chan() instead of dma_request_channel(). > - Some minor fixes and cleanups. > > Changes in v4: > - Retrieve the controller from nand_hw_control. > > Changes in v3: > - Replace __raw_readl/__raw_writel with readl/writel. > - Split ls1x_nand into two structures: > ls1x_nand_chip and ls1x_nand_controller. > > Changes in v2: > - Modify the dependency in Kconfig due to the changes of DMA module. > --- > drivers/mtd/nand/raw/Kconfig | 7 + > drivers/mtd/nand/raw/Makefile | 1 + > drivers/mtd/nand/raw/loongson1_nand.c | 748 ++++++++++++++++++++++++++++++++++ > 3 files changed, 756 insertions(+) > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index cbf8ae85e1ae..822bb7a2cea9 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -449,6 +449,13 @@ config MTD_NAND_RENESAS > Enables support for the NAND controller found on Renesas R-Car > Gen3 and RZ/N1 SoC families. > > +config MTD_NAND_LOONGSON1 > + tristate "Loongson1 NAND controller" > + depends on LOONGSON1_APB_DMA || COMPILE_TEST > + select REGMAP_MMIO > + help > + Enables support for NAND controller on Loongson1 SoCs. > + > comment "Misc" > > config MTD_SM_COMMON > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index 25120a4afada..b3c65cab819c 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o > obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o > obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o > obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o > +obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1_nand.o > > nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o > nand-objs += nand_onfi.o > diff --git a/drivers/mtd/nand/raw/loongson1_nand.c b/drivers/mtd/nand/raw/loongson1_nand.c > new file mode 100644 > index 000000000000..d0f66a81ba0b > --- /dev/null > +++ b/drivers/mtd/nand/raw/loongson1_nand.c > @@ -0,0 +1,748 @@ > +// SPDX-License-Identifier: GPL-2.0-or-later > +/* > + * NAND Controller Driver for Loongson-1 SoC > + * > + * Copyright (C) 2015-2024 Keguang Zhang <keguang.zhang@gmail.com> > + */ > + > +#include <linux/kernel.h> > +#include <linux/module.h> > +#include <linux/dmaengine.h> > +#include <linux/dma-mapping.h> > +#include <linux/iopoll.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/rawnand.h> > +#include <linux/of.h> > +#include <linux/platform_device.h> > +#include <linux/regmap.h> > +#include <linux/sizes.h> > + > +/* Loongson-1 NAND Controller Registers */ > +#define NAND_CMD 0x0 > +#define NAND_ADDR1 0x4 > +#define NAND_ADDR2 0x8 > +#define NAND_TIMING 0xc > +#define NAND_IDL 0x10 > +#define NAND_IDH_STATUS 0x14 > +#define NAND_PARAM 0x18 > +#define NAND_OP_NUM 0x1c > +#define MAX_DUMP_REGS 0x20 > + > +#define NAND_DMA_ADDR 0x40 > + > +/* NAND Command Register Bits */ > +#define OP_DONE BIT(10) > +#define OP_SPARE BIT(9) > +#define OP_MAIN BIT(8) > +#define CMD_STATUS BIT(7) > +#define CMD_RESET BIT(6) > +#define CMD_READID BIT(5) > +#define BLOCKS_ERASE BIT(4) > +#define CMD_ERASE BIT(3) > +#define CMD_WRITE BIT(2) > +#define CMD_READ BIT(1) > +#define CMD_VALID BIT(0) Please add a common suffix to all your definitions and functions (LSN_, LSN1_, LOONGSON_, whatever) > + > +#define MAX_ADDR_CYC 5U > + > +#define WAIT_CYCLE_MASK GENMASK(7, 0) > +#define HOLD_CYCLE_MASK GENMASK(15, 8) > +#define CELL_SIZE_MASK GENMASK(11, 8) > + > +#define BITS_PER_WORD (4 * BITS_PER_BYTE) > + > +/* macros for registers read/write */ > +#define nand_readl(nfc, off) \ > + readl((nfc)->reg_base + (off)) > + > +#define nand_writel(nfc, off, val) \ > + writel((val), (nfc)->reg_base + (off)) > + > +struct ls1x_nfc_data { > + unsigned int status_field; > + unsigned int op_scope_field; > + unsigned int hold_cycle; > + unsigned int wait_cycle; > + void (*parse_address)(struct nand_chip *chip, const u8 *addrs, > + unsigned int naddrs, int cmd); > +}; > + > +struct ls1x_nfc { > + void __iomem *reg_base; > + struct regmap *regmap; > + const struct ls1x_nfc_data *data; > + __le32 addr1_reg; > + __le32 addr2_reg; > + > + char *buf; > + unsigned int len; > + unsigned int rdy_timeout; > + > + /* DMA Engine stuff */ > + struct dma_chan *dma_chan; > + dma_cookie_t dma_cookie; > + struct completion dma_complete; > +}; > + > +struct ls1x_nand { > + struct device *dev; > + struct nand_chip chip; > + struct nand_controller controller; > + struct ls1x_nfc nfc; > +}; > + > +static const struct regmap_config ls1x_nand_regmap_config = { > + .reg_bits = 32, > + .val_bits = 32, > + .reg_stride = 4, > +}; > + > +static inline void ls1b_nand_parse_address(struct nand_chip *chip, > + const u8 *addrs, > + unsigned int naddrs, int cmd) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + unsigned int page_shift = chip->page_shift + 1; > + int i; > + > + nfc->addr1_reg = 0; > + nfc->addr2_reg = 0; > + > + if (cmd == CMD_ERASE) { > + page_shift = chip->page_shift; > + > + for (i = 0; i < min(MAX_ADDR_CYC - 2, naddrs); i++) > + nfc->addr1_reg |= > + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * i); > + if (i == MAX_ADDR_CYC - 2) > + nfc->addr2_reg |= > + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - > + BITS_PER_BYTE * (i - 1)); > + > + return; > + } I don't see the point in having this if, can you try to make it a single generic logic? Same below. > + > + for (i = 0; i < min(2U, naddrs); i++) > + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; > + for (i = 2; i < min(MAX_ADDR_CYC, naddrs); i++) > + nfc->addr1_reg |= > + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * (i - 2)); > + if (i == MAX_ADDR_CYC) > + nfc->addr2_reg |= > + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - > + BITS_PER_BYTE * (i - 1)); > +} > + > +static inline void ls1c_nand_parse_address(struct nand_chip *chip, > + const u8 *addrs, > + unsigned int naddrs, int cmd) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + int i; > + > + nfc->addr1_reg = 0; > + nfc->addr2_reg = 0; > + > + if (cmd == CMD_ERASE) { > + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) > + nfc->addr2_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; > + > + return; > + } > + > + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) { > + if (i < 2) > + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; > + else > + nfc->addr2_reg |= > + (u32)addrs[i] << BITS_PER_BYTE * (i - 2); > + } > +} > + > +static int ls1x_nand_set_controller(struct nand_chip *chip, The function name is misleading > + const struct nand_subop *subop, int cmd) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + unsigned int op_id; > + > + nfc->buf = NULL; > + nfc->len = 0; > + nfc->rdy_timeout = 0; > + > + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > + const struct nand_op_instr *instr = &subop->instrs[op_id]; > + unsigned int offset, naddrs; > + const u8 *addrs; > + > + switch (instr->type) { > + case NAND_OP_ADDR_INSTR: > + offset = nand_subop_get_addr_start_off(subop, op_id); > + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > + addrs = &instr->ctx.addr.addrs[offset]; > + > + nfc->data->parse_address(chip, addrs, naddrs, cmd); > + /* set NAND address */ > + nand_writel(nfc, NAND_ADDR1, nfc->addr1_reg); > + nand_writel(nfc, NAND_ADDR2, nfc->addr2_reg); > + break; > + case NAND_OP_DATA_IN_INSTR: > + case NAND_OP_DATA_OUT_INSTR: > + offset = nand_subop_get_data_start_off(subop, op_id); > + nfc->len = nand_subop_get_data_len(subop, op_id); > + if (instr->type == NAND_OP_DATA_IN_INSTR) > + nfc->buf = > + (void *)instr->ctx.data.buf.in + offset; > + else if (instr->type == NAND_OP_DATA_OUT_INSTR) > + nfc->buf = > + (void *)instr->ctx.data.buf.out + offset; The buf pointer feels clunky. You don't know for how long the buffer you point to will be valid, please don't do that. > + > + if (cmd & (CMD_READID | CMD_STATUS)) > + break; > + > + if (!IS_ALIGNED((u32)nfc->buf, chip->buf_align)) { > + dev_err(ls1x->dev, > + "nfc->buf %px is not aligned!\n", > + nfc->buf); > + return -EOPNOTSUPP; > + } else if (!IS_ALIGNED(nfc->len, chip->buf_align)) { > + dev_err(ls1x->dev, > + "nfc->len %u is not aligned!\n", > + nfc->len); > + return -EOPNOTSUPP; > + } > + > + /* set NAND data length */ > + nand_writel(nfc, NAND_OP_NUM, nfc->len); > + > + if (nfc->data->op_scope_field) { > + int op_scope = nfc->len << ffs(nfc->data->op_scope_field); > + > + regmap_update_bits(nfc->regmap, NAND_PARAM, > + nfc->data->op_scope_field, > + op_scope); > + } > + > + break; > + case NAND_OP_WAITRDY_INSTR: > + nfc->rdy_timeout = instr->ctx.waitrdy.timeout_ms; > + break; > + default: > + break; > + } > + } > + > + /* set NAND erase block count */ > + if (cmd & CMD_ERASE) > + nand_writel(nfc, NAND_OP_NUM, 1); > + /* set NAND operation region */ > + if (nfc->buf && nfc->len) > + cmd |= OP_SPARE | OP_MAIN; > + > + /* set NAND command */ > + nand_writel(nfc, NAND_CMD, cmd); > + /* Trigger operation */ > + regmap_write_bits(nfc->regmap, NAND_CMD, CMD_VALID, CMD_VALID); > + > + return 0; > +} > + > +static void ls1x_nand_dma_callback(void *data) > +{ > + struct ls1x_nand *ls1x = (struct ls1x_nand *)data; > + struct ls1x_nfc *nfc = &ls1x->nfc; > + enum dma_status status; > + > + status = dmaengine_tx_status(nfc->dma_chan, nfc->dma_cookie, NULL); > + if (likely(status == DMA_COMPLETE)) > + dev_dbg(ls1x->dev, "DMA complete with cookie=%d\n", > + nfc->dma_cookie); > + else > + dev_err(ls1x->dev, "DMA error with cookie=%d\n", > + nfc->dma_cookie); > + > + complete(&nfc->dma_complete); > +} > + > +static int ls1x_nand_dma_transfer(struct ls1x_nand *ls1x, bool is_write) > +{ > + struct ls1x_nfc *nfc = &ls1x->nfc; > + struct dma_chan *chan = nfc->dma_chan; > + struct dma_async_tx_descriptor *desc; > + enum dma_data_direction data_dir = > + is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; > + enum dma_transfer_direction xfer_dir = > + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; > + dma_addr_t dma_addr; > + int ret; > + > + dma_addr = dma_map_single(chan->device->dev, nfc->buf, nfc->len, > + data_dir); > + if (dma_mapping_error(chan->device->dev, dma_addr)) { > + dev_err(ls1x->dev, "failed to map DMA buffer!\n"); > + return -ENXIO; > + } > + > + desc = dmaengine_prep_slave_single(chan, dma_addr, nfc->len, xfer_dir, > + DMA_PREP_INTERRUPT); > + if (!desc) { > + dev_err(ls1x->dev, "failed to prepare DMA descriptor!\n"); > + ret = PTR_ERR(desc); > + goto err; > + } > + desc->callback = ls1x_nand_dma_callback; > + desc->callback_param = ls1x; > + > + nfc->dma_cookie = dmaengine_submit(desc); > + ret = dma_submit_error(nfc->dma_cookie); > + if (ret) { > + dev_err(ls1x->dev, "failed to submit DMA descriptor!\n"); > + goto err; > + } > + > + dev_dbg(ls1x->dev, "issue DMA with cookie=%d\n", nfc->dma_cookie); > + dma_async_issue_pending(chan); > + > + ret = wait_for_completion_timeout(&nfc->dma_complete, > + msecs_to_jiffies(nfc->rdy_timeout)); > + if (ret <= 0) { > + dev_err(ls1x->dev, "DMA timeout!%u\n", nfc->rdy_timeout); > + dmaengine_terminate_all(chan); > + ret = -EIO; > + } > + ret = 0; > +err: > + dma_unmap_single(chan->device->dev, dma_addr, nfc->len, data_dir); > + > + return ret; > +} > + > +static inline int ls1x_nand_wait_for_op_done(struct ls1x_nfc *nfc) > +{ > + unsigned int val; > + int ret = 0; > + > + /* Wait for operation done */ > + if (nfc->rdy_timeout) > + ret = regmap_read_poll_timeout(nfc->regmap, NAND_CMD, val, > + val & OP_DONE, 0, > + nfc->rdy_timeout * 1000); > + > + return ret; > +} > + > +static int ls1x_nand_reset_exec(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + int ret; > + > + ls1x_nand_set_controller(chip, subop, CMD_RESET); > + > + ret = ls1x_nand_wait_for_op_done(nfc); > + if (ret) > + dev_err(ls1x->dev, "CMD_RESET failed! %d\n", ret); > + > + return ret; > +} > + > +static int ls1x_nand_read_id_exec(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + long long idl = 0; > + int i, ret; > + > + ls1x_nand_set_controller(chip, subop, CMD_READID); > + > + ret = ls1x_nand_wait_for_op_done(nfc); > + if (ret) { > + dev_err(ls1x->dev, "CMD_READID failed! %d\n", ret); > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > + nfc->reg_base, MAX_DUMP_REGS, false); > + return ret; > + } > + > + idl = __be32_to_cpu(nand_readl(nfc, NAND_IDL)); > + memset(nfc->buf, 0x0, nfc->len); > + > + for (i = 0; i < nfc->len; i++) { > + if (i > 0) > + nfc->buf[i] = (char)(idl >> (i - 1) * BITS_PER_BYTE); > + else > + nfc->buf[i] = (char)nand_readl(nfc, NAND_IDH_STATUS); > + } > + > + return ret; > +} > + > +static int ls1x_nand_erase_exec(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + int ret; > + > + ls1x_nand_set_controller(chip, subop, CMD_ERASE); No, you don't know what the command is gonna be, so if your controller forces the command opcodes, you need to go through this: https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/arasan-nand-controller.c#L819 and https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/arasan-nand-controller.c#L940 > + > + ret = ls1x_nand_wait_for_op_done(nfc); > + if (ret) { > + dev_err(ls1x->dev, "CMD_ERASE failed! %d\n", ret); > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > + nfc->reg_base, MAX_DUMP_REGS, false); > + } > + > + return ret; > +} > + > +static int ls1x_nand_read_exec(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + bool is_write = false; > + int ret; > + > + ls1x_nand_set_controller(chip, subop, CMD_READ); > + > + ret = ls1x_nand_dma_transfer(ls1x, is_write); > + if (ret) > + return ret; > + > + ret = ls1x_nand_wait_for_op_done(nfc); > + if (ret) { > + dev_err(ls1x->dev, "CMD_READ failed! %d\n", ret); > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > + nfc->reg_base, MAX_DUMP_REGS, false); > + } > + > + return ret; > +} > + > +static int ls1x_nand_write_exec(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + bool is_write = true; > + int ret; > + > + ls1x_nand_set_controller(chip, subop, CMD_WRITE); > + > + ret = ls1x_nand_dma_transfer(ls1x, is_write); > + if (ret) > + return ret; > + > + ret = ls1x_nand_wait_for_op_done(nfc); > + if (ret) { > + dev_err(ls1x->dev, "CMD_WRITE failed! %d\n", ret); > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > + nfc->reg_base, MAX_DUMP_REGS, false); > + } > + > + return ret; > +} > + > +static int ls1x_nand_read_status_exec(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + int val, ret; > + > + ls1x_nand_set_controller(chip, subop, CMD_STATUS); > + > + ret = ls1x_nand_wait_for_op_done(nfc); > + if (ret) { > + dev_err(ls1x->dev, "CMD_STATUS failed! %d\n", ret); > + return ret; > + } > + > + val = nand_readl(nfc, NAND_IDH_STATUS) & ~nfc->data->status_field; > + nfc->buf[0] = val << ffs(nfc->data->status_field); > + > + return ret; > +} > + > +static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER( > + NAND_OP_PARSER_PATTERN( > + ls1x_nand_reset_exec, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > + NAND_OP_PARSER_PATTERN( > + ls1x_nand_read_id_exec, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), > + NAND_OP_PARSER_PATTERN( > + ls1x_nand_erase_exec, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > + NAND_OP_PARSER_PATTERN( > + ls1x_nand_read_exec, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), > + NAND_OP_PARSER_PATTERN( > + ls1x_nand_write_exec, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0), > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > + NAND_OP_PARSER_PATTERN( > + ls1x_nand_read_status_exec, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), > + ); > + > +static int ls1x_nand_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, bool check_only) > +{ > + return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, > + check_only); > +} > + > +static int ls1x_nand_attach_chip(struct nand_chip *chip) > +{ > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > + struct ls1x_nfc *nfc = &ls1x->nfc; > + u64 chipsize = nanddev_target_size(&chip->base); > + int cell_size = 0; > + > + switch (chipsize) { > + case SZ_128M: > + cell_size = 0x0; > + break; > + case SZ_256M: > + cell_size = 0x1; > + break; > + case SZ_512M: > + cell_size = 0x2; > + break; > + case SZ_1G: > + cell_size = 0x3; > + break; > + case SZ_2G: > + cell_size = 0x4; > + break; > + case SZ_4G: > + cell_size = 0x5; > + break; > + case (SZ_2G * SZ_4G): /* 8G */ > + cell_size = 0x6; > + break; > + case (SZ_4G * SZ_4G): /* 16G */ Why not SZ_8G and SZ_16G? > + cell_size = 0x7; > + break; > + default: > + dev_err(ls1x->dev, "unsupported chip size: %llu MB\n", > + chipsize); You should error out. > + break; > + } > + > + /* Set cell size */ > + regmap_update_bits(nfc->regmap, NAND_PARAM, CELL_SIZE_MASK, > + FIELD_PREP(CELL_SIZE_MASK, cell_size)); > + > + regmap_update_bits(nfc->regmap, NAND_TIMING, HOLD_CYCLE_MASK, > + FIELD_PREP(HOLD_CYCLE_MASK, nfc->data->hold_cycle)); > + regmap_update_bits(nfc->regmap, NAND_TIMING, WAIT_CYCLE_MASK, > + FIELD_PREP(WAIT_CYCLE_MASK, nfc->data->wait_cycle)); > + > + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; > + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; I need to further understand this, see other thread. > + chip->options |= NAND_MONOLITHIC_READ; > + > + return 0; > +} > + > +static const struct nand_controller_ops ls1x_nfc_ops = { > + .exec_op = ls1x_nand_exec_op, > + .attach_chip = ls1x_nand_attach_chip, > +}; > + > +static void ls1x_nand_controller_cleanup(struct ls1x_nand *ls1x) > +{ > + if (ls1x->nfc.dma_chan) > + dma_release_channel(ls1x->nfc.dma_chan); > +} > + > +static int ls1x_nand_controller_init(struct ls1x_nand *ls1x, > + struct platform_device *pdev) > +{ > + struct ls1x_nfc *nfc = &ls1x->nfc; > + struct dma_slave_config cfg; > + int ret; > + > + nfc->reg_base = devm_platform_ioremap_resource(pdev, 0); > + if (IS_ERR(nfc->reg_base)) > + return PTR_ERR(nfc->reg_base); > + > + nfc->regmap = devm_regmap_init_mmio(ls1x->dev, nfc->reg_base, > + &ls1x_nand_regmap_config); > + if (IS_ERR(nfc->regmap)) > + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->regmap), > + "failed to init regmap\n"); > + > + nfc->dma_chan = dma_request_chan(ls1x->dev, "rxtx"); > + if (IS_ERR(nfc->dma_chan)) > + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->dma_chan), > + "failed to request DMA channel\n"); > + dev_info(ls1x->dev, "got %s for %s access\n", > + dma_chan_name(nfc->dma_chan), dev_name(ls1x->dev)); Might be lowered to debug maybe? > + > + cfg.src_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); > + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; > + cfg.dst_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); Doesn't feel right. That shall be a dma_addr_t, not a virtual pointer. > + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; > + > + ret = dmaengine_slave_config(nfc->dma_chan, &cfg); > + if (ret) { > + dev_err(ls1x->dev, "failed to config DMA channel\n"); > + dma_release_channel(nfc->dma_chan); > + return ret; > + } > + > + init_completion(&nfc->dma_complete); > + > + return 0; > +} > + > +static int ls1x_nand_chip_init(struct ls1x_nand *ls1x) > +{ > + int nchips = of_get_child_count(ls1x->dev->of_node); > + struct device_node *chip_np; > + struct nand_chip *chip = &ls1x->chip; > + struct mtd_info *mtd = nand_to_mtd(chip); > + int ret = 0; > + > + if (nchips != 1) > + return dev_err_probe(ls1x->dev, -EINVAL, > + "Currently one NAND chip supported\n"); > + > + chip_np = of_get_next_child(ls1x->dev->of_node, NULL); > + if (!chip_np) > + return dev_err_probe(ls1x->dev, -ENODEV, > + "failed to get child node for NAND chip\n"); > + > + chip->controller = &ls1x->controller; > + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD; > + chip->buf_align = 4; > + nand_set_controller_data(chip, ls1x); > + nand_set_flash_node(chip, chip_np); > + > + mtd->dev.parent = ls1x->dev; > + mtd->name = "ls1x-nand"; > + mtd->owner = THIS_MODULE; > + > + ret = nand_scan(chip, 1); > + if (ret) { > + of_node_put(chip_np); > + return ret; > + } > + > + ret = mtd_device_register(mtd, NULL, 0); > + if (ret) { > + dev_err(ls1x->dev, "failed to register MTD device! %d\n", ret); > + nand_cleanup(chip); > + of_node_put(chip_np); > + } > + > + return ret; > +} > + > +static int ls1x_nand_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + const struct ls1x_nfc_data *data; > + struct ls1x_nand *ls1x; > + int ret; > + > + data = of_device_get_match_data(&pdev->dev); > + if (!data) > + return -ENODEV; > + > + ls1x = devm_kzalloc(dev, sizeof(*ls1x), GFP_KERNEL); > + if (!ls1x) > + return -ENOMEM; > + > + ls1x->nfc.data = data; > + ls1x->dev = dev; > + ls1x->controller.ops = &ls1x_nfc_ops; > + nand_controller_init(&ls1x->controller); It would feel more natural to perform the init and then add the ops. > + > + ret = ls1x_nand_controller_init(ls1x, pdev); > + if (ret) > + return ret; > + > + ret = ls1x_nand_chip_init(ls1x); > + if (ret) > + goto err; > + > + platform_set_drvdata(pdev, ls1x); > + > + return 0; > +err: > + ls1x_nand_controller_cleanup(ls1x); > + return ret; > +} > + > +static int ls1x_nand_remove(struct platform_device *pdev) > +{ > + struct ls1x_nand *ls1x = platform_get_drvdata(pdev); > + struct nand_chip *chip = &ls1x->chip; > + int ret; > + > + ret = mtd_device_unregister(nand_to_mtd(chip)); > + WARN_ON(ret); > + nand_cleanup(chip); > + ls1x_nand_controller_cleanup(ls1x); > + > + return 0; > +} > + > +static const struct ls1x_nfc_data ls1b_nfc_data = { > + .status_field = GENMASK(15, 8), > + .hold_cycle = 0x2, > + .wait_cycle = 0xc, > + .parse_address = ls1b_nand_parse_address, > +}; > + > +static const struct ls1x_nfc_data ls1c_nfc_data = { > + .status_field = GENMASK(23, 16), > + .op_scope_field = GENMASK(29, 16), > + .hold_cycle = 0x2, > + .wait_cycle = 0xc, > + .parse_address = ls1c_nand_parse_address, > +}; > + > +static const struct of_device_id ls1x_nfc_match[] = { > + { .compatible = "loongson,ls1b-nfc", .data = &ls1b_nfc_data }, > + { .compatible = "loongson,ls1c-nfc", .data = &ls1c_nfc_data }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, ls1x_nfc_match); > + > +static struct platform_driver ls1x_nand_driver = { > + .probe = ls1x_nand_probe, > + .remove = ls1x_nand_remove, > + .driver = { > + .name = KBUILD_MODNAME, > + .of_match_table = ls1x_nfc_match, > + }, > +}; > + > +module_platform_driver(ls1x_nand_driver); > + > +MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>"); > +MODULE_DESCRIPTION("Loongson-1 NAND Controller driver"); > +MODULE_LICENSE("GPL"); > Thanks, Miquèl
On Mon, May 6, 2024 at 3:59 PM Miquel Raynal <miquel.raynal@bootlin.com> wrote: > > Hi, > > devnull+keguang.zhang.gmail.com@kernel.org wrote on Tue, 30 Apr 2024 > 19:11:12 +0800: > > > From: Keguang Zhang <keguang.zhang@gmail.com> > > > > This patch adds NAND Controller driver for Loongson-1 SoCs. > > > > Signed-off-by: Keguang Zhang <keguang.zhang@gmail.com> > > --- > > Changes in v7: > > - Rename the dependency to LOONGSON1_APB_DMA > > > > Changes in v6: > > - Amend Kconfig > > - Add DT support > > - Use DT data instead of platform data > > - Remove MAX_ID_SIZE > > - Remove case NAND_OP_CMD_INSTR in ls1x_nand_set_controller() > > - Move ECC configuration to ls1x_nand_attach_chip() > > - Rename variable "nand" to "ls1x" > > - Rename variable "nc" to "nfc" > > - Some minor fixes > > - Link to v5: https://lore.kernel.org/all/20210520224213.7907-1-keguang.zhang@gmail.com > > > > Changes in v5: > > - Update the driver to fit the raw NAND framework. > > - Implement exec_op() instead of legacy cmdfunc(). > > - Use dma_request_chan() instead of dma_request_channel(). > > - Some minor fixes and cleanups. > > > > Changes in v4: > > - Retrieve the controller from nand_hw_control. > > > > Changes in v3: > > - Replace __raw_readl/__raw_writel with readl/writel. > > - Split ls1x_nand into two structures: > > ls1x_nand_chip and ls1x_nand_controller. > > > > Changes in v2: > > - Modify the dependency in Kconfig due to the changes of DMA module. > > --- > > drivers/mtd/nand/raw/Kconfig | 7 + > > drivers/mtd/nand/raw/Makefile | 1 + > > drivers/mtd/nand/raw/loongson1_nand.c | 748 ++++++++++++++++++++++++++++++++++ > > 3 files changed, 756 insertions(+) > > > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > > index cbf8ae85e1ae..822bb7a2cea9 100644 > > --- a/drivers/mtd/nand/raw/Kconfig > > +++ b/drivers/mtd/nand/raw/Kconfig > > @@ -449,6 +449,13 @@ config MTD_NAND_RENESAS > > Enables support for the NAND controller found on Renesas R-Car > > Gen3 and RZ/N1 SoC families. > > > > +config MTD_NAND_LOONGSON1 > > + tristate "Loongson1 NAND controller" > > + depends on LOONGSON1_APB_DMA || COMPILE_TEST > > + select REGMAP_MMIO > > + help > > + Enables support for NAND controller on Loongson1 SoCs. > > + > > comment "Misc" > > > > config MTD_SM_COMMON > > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > > index 25120a4afada..b3c65cab819c 100644 > > --- a/drivers/mtd/nand/raw/Makefile > > +++ b/drivers/mtd/nand/raw/Makefile > > @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o > > obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o > > obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o > > obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o > > +obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1_nand.o > > > > nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o > > nand-objs += nand_onfi.o > > diff --git a/drivers/mtd/nand/raw/loongson1_nand.c b/drivers/mtd/nand/raw/loongson1_nand.c > > new file mode 100644 > > index 000000000000..d0f66a81ba0b > > --- /dev/null > > +++ b/drivers/mtd/nand/raw/loongson1_nand.c > > @@ -0,0 +1,748 @@ > > +// SPDX-License-Identifier: GPL-2.0-or-later > > +/* > > + * NAND Controller Driver for Loongson-1 SoC > > + * > > + * Copyright (C) 2015-2024 Keguang Zhang <keguang.zhang@gmail.com> > > + */ > > + > > +#include <linux/kernel.h> > > +#include <linux/module.h> > > +#include <linux/dmaengine.h> > > +#include <linux/dma-mapping.h> > > +#include <linux/iopoll.h> > > +#include <linux/mtd/mtd.h> > > +#include <linux/mtd/rawnand.h> > > +#include <linux/of.h> > > +#include <linux/platform_device.h> > > +#include <linux/regmap.h> > > +#include <linux/sizes.h> > > + > > +/* Loongson-1 NAND Controller Registers */ > > +#define NAND_CMD 0x0 > > +#define NAND_ADDR1 0x4 > > +#define NAND_ADDR2 0x8 > > +#define NAND_TIMING 0xc > > +#define NAND_IDL 0x10 > > +#define NAND_IDH_STATUS 0x14 > > +#define NAND_PARAM 0x18 > > +#define NAND_OP_NUM 0x1c > > +#define MAX_DUMP_REGS 0x20 > > + > > +#define NAND_DMA_ADDR 0x40 > > + > > +/* NAND Command Register Bits */ > > +#define OP_DONE BIT(10) > > +#define OP_SPARE BIT(9) > > +#define OP_MAIN BIT(8) > > +#define CMD_STATUS BIT(7) > > +#define CMD_RESET BIT(6) > > +#define CMD_READID BIT(5) > > +#define BLOCKS_ERASE BIT(4) > > +#define CMD_ERASE BIT(3) > > +#define CMD_WRITE BIT(2) > > +#define CMD_READ BIT(1) > > +#define CMD_VALID BIT(0) > > Please add a common suffix to all your definitions and functions (LSN_, > LSN1_, LOONGSON_, whatever) > Will do. > > + > > +#define MAX_ADDR_CYC 5U > > + > > +#define WAIT_CYCLE_MASK GENMASK(7, 0) > > +#define HOLD_CYCLE_MASK GENMASK(15, 8) > > +#define CELL_SIZE_MASK GENMASK(11, 8) > > + > > +#define BITS_PER_WORD (4 * BITS_PER_BYTE) > > + > > +/* macros for registers read/write */ > > +#define nand_readl(nfc, off) \ > > + readl((nfc)->reg_base + (off)) > > + > > +#define nand_writel(nfc, off, val) \ > > + writel((val), (nfc)->reg_base + (off)) > > + > > +struct ls1x_nfc_data { > > + unsigned int status_field; > > + unsigned int op_scope_field; > > + unsigned int hold_cycle; > > + unsigned int wait_cycle; > > + void (*parse_address)(struct nand_chip *chip, const u8 *addrs, > > + unsigned int naddrs, int cmd); > > +}; > > + > > +struct ls1x_nfc { > > + void __iomem *reg_base; > > + struct regmap *regmap; > > + const struct ls1x_nfc_data *data; > > + __le32 addr1_reg; > > + __le32 addr2_reg; > > + > > + char *buf; > > + unsigned int len; > > + unsigned int rdy_timeout; > > + > > + /* DMA Engine stuff */ > > + struct dma_chan *dma_chan; > > + dma_cookie_t dma_cookie; > > + struct completion dma_complete; > > +}; > > + > > +struct ls1x_nand { > > + struct device *dev; > > + struct nand_chip chip; > > + struct nand_controller controller; > > + struct ls1x_nfc nfc; > > +}; > > + > > +static const struct regmap_config ls1x_nand_regmap_config = { > > + .reg_bits = 32, > > + .val_bits = 32, > > + .reg_stride = 4, > > +}; > > + > > +static inline void ls1b_nand_parse_address(struct nand_chip *chip, > > + const u8 *addrs, > > + unsigned int naddrs, int cmd) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + unsigned int page_shift = chip->page_shift + 1; > > + int i; > > + > > + nfc->addr1_reg = 0; > > + nfc->addr2_reg = 0; > > + > > + if (cmd == CMD_ERASE) { > > + page_shift = chip->page_shift; > > + > > + for (i = 0; i < min(MAX_ADDR_CYC - 2, naddrs); i++) > > + nfc->addr1_reg |= > > + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * i); > > + if (i == MAX_ADDR_CYC - 2) > > + nfc->addr2_reg |= > > + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - > > + BITS_PER_BYTE * (i - 1)); > > + > > + return; > > + } > > I don't see the point in having this if, can you try to make it a > single generic logic? Same below. > Will improve the logic. > > + > > + for (i = 0; i < min(2U, naddrs); i++) > > + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; > > + for (i = 2; i < min(MAX_ADDR_CYC, naddrs); i++) > > + nfc->addr1_reg |= > > + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * (i - 2)); > > + if (i == MAX_ADDR_CYC) > > + nfc->addr2_reg |= > > + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - > > + BITS_PER_BYTE * (i - 1)); > > +} > > + > > +static inline void ls1c_nand_parse_address(struct nand_chip *chip, > > + const u8 *addrs, > > + unsigned int naddrs, int cmd) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + int i; > > + > > + nfc->addr1_reg = 0; > > + nfc->addr2_reg = 0; > > + > > + if (cmd == CMD_ERASE) { > > + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) > > + nfc->addr2_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; > > + > > + return; > > + } > > + > > + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) { > > + if (i < 2) > > + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; > > + else > > + nfc->addr2_reg |= > > + (u32)addrs[i] << BITS_PER_BYTE * (i - 2); > > + } > > +} > > + > > +static int ls1x_nand_set_controller(struct nand_chip *chip, > > The function name is misleading > Will improve the naming. > > + const struct nand_subop *subop, int cmd) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + unsigned int op_id; > > + > > + nfc->buf = NULL; > > + nfc->len = 0; > > + nfc->rdy_timeout = 0; > > + > > + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > > + const struct nand_op_instr *instr = &subop->instrs[op_id]; > > + unsigned int offset, naddrs; > > + const u8 *addrs; > > + > > + switch (instr->type) { > > + case NAND_OP_ADDR_INSTR: > > + offset = nand_subop_get_addr_start_off(subop, op_id); > > + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > > + addrs = &instr->ctx.addr.addrs[offset]; > > + > > + nfc->data->parse_address(chip, addrs, naddrs, cmd); > > + /* set NAND address */ > > + nand_writel(nfc, NAND_ADDR1, nfc->addr1_reg); > > + nand_writel(nfc, NAND_ADDR2, nfc->addr2_reg); > > + break; > > + case NAND_OP_DATA_IN_INSTR: > > + case NAND_OP_DATA_OUT_INSTR: > > + offset = nand_subop_get_data_start_off(subop, op_id); > > + nfc->len = nand_subop_get_data_len(subop, op_id); > > + if (instr->type == NAND_OP_DATA_IN_INSTR) > > + nfc->buf = > > + (void *)instr->ctx.data.buf.in + offset; > > + else if (instr->type == NAND_OP_DATA_OUT_INSTR) > > + nfc->buf = > > + (void *)instr->ctx.data.buf.out + offset; > > The buf pointer feels clunky. You don't know for how long the buffer > you point to will be valid, please don't do that. > The buf pointer is used for DMA transfer afterwards. I referred to other drivers, and they used the same approach. https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/arasan-nand-controller.c#L647 https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/rockchip-nand-controller.c#L366 > > + > > + if (cmd & (CMD_READID | CMD_STATUS)) > > + break; > > + > > + if (!IS_ALIGNED((u32)nfc->buf, chip->buf_align)) { > > + dev_err(ls1x->dev, > > + "nfc->buf %px is not aligned!\n", > > + nfc->buf); > > + return -EOPNOTSUPP; > > + } else if (!IS_ALIGNED(nfc->len, chip->buf_align)) { > > + dev_err(ls1x->dev, > > + "nfc->len %u is not aligned!\n", > > + nfc->len); > > + return -EOPNOTSUPP; > > + } > > + > > + /* set NAND data length */ > > + nand_writel(nfc, NAND_OP_NUM, nfc->len); > > + > > + if (nfc->data->op_scope_field) { > > + int op_scope = nfc->len << ffs(nfc->data->op_scope_field); > > + > > + regmap_update_bits(nfc->regmap, NAND_PARAM, > > + nfc->data->op_scope_field, > > + op_scope); > > + } > > + > > + break; > > + case NAND_OP_WAITRDY_INSTR: > > + nfc->rdy_timeout = instr->ctx.waitrdy.timeout_ms; > > + break; > > + default: > > + break; > > + } > > + } > > + > > + /* set NAND erase block count */ > > + if (cmd & CMD_ERASE) > > + nand_writel(nfc, NAND_OP_NUM, 1); > > + /* set NAND operation region */ > > + if (nfc->buf && nfc->len) > > + cmd |= OP_SPARE | OP_MAIN; > > + > > + /* set NAND command */ > > + nand_writel(nfc, NAND_CMD, cmd); > > + /* Trigger operation */ > > + regmap_write_bits(nfc->regmap, NAND_CMD, CMD_VALID, CMD_VALID); > > + > > + return 0; > > +} > > + > > +static void ls1x_nand_dma_callback(void *data) > > +{ > > + struct ls1x_nand *ls1x = (struct ls1x_nand *)data; > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + enum dma_status status; > > + > > + status = dmaengine_tx_status(nfc->dma_chan, nfc->dma_cookie, NULL); > > + if (likely(status == DMA_COMPLETE)) > > + dev_dbg(ls1x->dev, "DMA complete with cookie=%d\n", > > + nfc->dma_cookie); > > + else > > + dev_err(ls1x->dev, "DMA error with cookie=%d\n", > > + nfc->dma_cookie); > > + > > + complete(&nfc->dma_complete); > > +} > > + > > +static int ls1x_nand_dma_transfer(struct ls1x_nand *ls1x, bool is_write) > > +{ > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + struct dma_chan *chan = nfc->dma_chan; > > + struct dma_async_tx_descriptor *desc; > > + enum dma_data_direction data_dir = > > + is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; > > + enum dma_transfer_direction xfer_dir = > > + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; > > + dma_addr_t dma_addr; > > + int ret; > > + > > + dma_addr = dma_map_single(chan->device->dev, nfc->buf, nfc->len, > > + data_dir); > > + if (dma_mapping_error(chan->device->dev, dma_addr)) { > > + dev_err(ls1x->dev, "failed to map DMA buffer!\n"); > > + return -ENXIO; > > + } > > + > > + desc = dmaengine_prep_slave_single(chan, dma_addr, nfc->len, xfer_dir, > > + DMA_PREP_INTERRUPT); > > + if (!desc) { > > + dev_err(ls1x->dev, "failed to prepare DMA descriptor!\n"); > > + ret = PTR_ERR(desc); > > + goto err; > > + } > > + desc->callback = ls1x_nand_dma_callback; > > + desc->callback_param = ls1x; > > + > > + nfc->dma_cookie = dmaengine_submit(desc); > > + ret = dma_submit_error(nfc->dma_cookie); > > + if (ret) { > > + dev_err(ls1x->dev, "failed to submit DMA descriptor!\n"); > > + goto err; > > + } > > + > > + dev_dbg(ls1x->dev, "issue DMA with cookie=%d\n", nfc->dma_cookie); > > + dma_async_issue_pending(chan); > > + > > + ret = wait_for_completion_timeout(&nfc->dma_complete, > > + msecs_to_jiffies(nfc->rdy_timeout)); > > + if (ret <= 0) { > > + dev_err(ls1x->dev, "DMA timeout!%u\n", nfc->rdy_timeout); > > + dmaengine_terminate_all(chan); > > + ret = -EIO; > > + } > > + ret = 0; > > +err: > > + dma_unmap_single(chan->device->dev, dma_addr, nfc->len, data_dir); > > + > > + return ret; > > +} > > + > > +static inline int ls1x_nand_wait_for_op_done(struct ls1x_nfc *nfc) > > +{ > > + unsigned int val; > > + int ret = 0; > > + > > + /* Wait for operation done */ > > + if (nfc->rdy_timeout) > > + ret = regmap_read_poll_timeout(nfc->regmap, NAND_CMD, val, > > + val & OP_DONE, 0, > > + nfc->rdy_timeout * 1000); > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_reset_exec(struct nand_chip *chip, > > + const struct nand_subop *subop) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + int ret; > > + > > + ls1x_nand_set_controller(chip, subop, CMD_RESET); > > + > > + ret = ls1x_nand_wait_for_op_done(nfc); > > + if (ret) > > + dev_err(ls1x->dev, "CMD_RESET failed! %d\n", ret); > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_read_id_exec(struct nand_chip *chip, > > + const struct nand_subop *subop) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + long long idl = 0; > > + int i, ret; > > + > > + ls1x_nand_set_controller(chip, subop, CMD_READID); > > + > > + ret = ls1x_nand_wait_for_op_done(nfc); > > + if (ret) { > > + dev_err(ls1x->dev, "CMD_READID failed! %d\n", ret); > > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > > + nfc->reg_base, MAX_DUMP_REGS, false); > > + return ret; > > + } > > + > > + idl = __be32_to_cpu(nand_readl(nfc, NAND_IDL)); > > + memset(nfc->buf, 0x0, nfc->len); > > + > > + for (i = 0; i < nfc->len; i++) { > > + if (i > 0) > > + nfc->buf[i] = (char)(idl >> (i - 1) * BITS_PER_BYTE); > > + else > > + nfc->buf[i] = (char)nand_readl(nfc, NAND_IDH_STATUS); > > + } > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_erase_exec(struct nand_chip *chip, > > + const struct nand_subop *subop) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + int ret; > > + > > + ls1x_nand_set_controller(chip, subop, CMD_ERASE); > > No, you don't know what the command is gonna be, so if your controller > forces the command opcodes, you need to go through this: > > https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/arasan-nand-controller.c#L819 > and > https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/arasan-nand-controller.c#L940 > Will change the command forcing to op cmd mapping and add check_op() accordingly. > > + > > + ret = ls1x_nand_wait_for_op_done(nfc); > > + if (ret) { > > + dev_err(ls1x->dev, "CMD_ERASE failed! %d\n", ret); > > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > > + nfc->reg_base, MAX_DUMP_REGS, false); > > + } > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_read_exec(struct nand_chip *chip, > > + const struct nand_subop *subop) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + bool is_write = false; > > + int ret; > > + > > + ls1x_nand_set_controller(chip, subop, CMD_READ); > > + > > + ret = ls1x_nand_dma_transfer(ls1x, is_write); > > + if (ret) > > + return ret; > > + > > + ret = ls1x_nand_wait_for_op_done(nfc); > > + if (ret) { > > + dev_err(ls1x->dev, "CMD_READ failed! %d\n", ret); > > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > > + nfc->reg_base, MAX_DUMP_REGS, false); > > + } > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_write_exec(struct nand_chip *chip, > > + const struct nand_subop *subop) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + bool is_write = true; > > + int ret; > > + > > + ls1x_nand_set_controller(chip, subop, CMD_WRITE); > > + > > + ret = ls1x_nand_dma_transfer(ls1x, is_write); > > + if (ret) > > + return ret; > > + > > + ret = ls1x_nand_wait_for_op_done(nfc); > > + if (ret) { > > + dev_err(ls1x->dev, "CMD_WRITE failed! %d\n", ret); > > + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, > > + nfc->reg_base, MAX_DUMP_REGS, false); > > + } > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_read_status_exec(struct nand_chip *chip, > > + const struct nand_subop *subop) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + int val, ret; > > + > > + ls1x_nand_set_controller(chip, subop, CMD_STATUS); > > + > > + ret = ls1x_nand_wait_for_op_done(nfc); > > + if (ret) { > > + dev_err(ls1x->dev, "CMD_STATUS failed! %d\n", ret); > > + return ret; > > + } > > + > > + val = nand_readl(nfc, NAND_IDH_STATUS) & ~nfc->data->status_field; > > + nfc->buf[0] = val << ffs(nfc->data->status_field); > > + > > + return ret; > > +} > > + > > +static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER( > > + NAND_OP_PARSER_PATTERN( > > + ls1x_nand_reset_exec, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > > + NAND_OP_PARSER_PATTERN( > > + ls1x_nand_read_id_exec, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), > > + NAND_OP_PARSER_PATTERN( > > + ls1x_nand_erase_exec, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > > + NAND_OP_PARSER_PATTERN( > > + ls1x_nand_read_exec, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), > > + NAND_OP_PARSER_PATTERN( > > + ls1x_nand_write_exec, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), > > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0), > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > > + NAND_OP_PARSER_PATTERN( > > + ls1x_nand_read_status_exec, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), > > + ); > > + > > +static int ls1x_nand_exec_op(struct nand_chip *chip, > > + const struct nand_operation *op, bool check_only) > > +{ > > + return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, > > + check_only); > > +} > > + > > +static int ls1x_nand_attach_chip(struct nand_chip *chip) > > +{ > > + struct ls1x_nand *ls1x = nand_get_controller_data(chip); > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + u64 chipsize = nanddev_target_size(&chip->base); > > + int cell_size = 0; > > + > > + switch (chipsize) { > > + case SZ_128M: > > + cell_size = 0x0; > > + break; > > + case SZ_256M: > > + cell_size = 0x1; > > + break; > > + case SZ_512M: > > + cell_size = 0x2; > > + break; > > + case SZ_1G: > > + cell_size = 0x3; > > + break; > > + case SZ_2G: > > + cell_size = 0x4; > > + break; > > + case SZ_4G: > > + cell_size = 0x5; > > + break; > > + case (SZ_2G * SZ_4G): /* 8G */ > > + cell_size = 0x6; > > + break; > > + case (SZ_4G * SZ_4G): /* 16G */ > > Why not SZ_8G and SZ_16G? > Will do. > > + cell_size = 0x7; > > + break; > > + default: > > + dev_err(ls1x->dev, "unsupported chip size: %llu MB\n", > > + chipsize); > > You should error out. > Will do. > > + break; > > + } > > + > > + /* Set cell size */ > > + regmap_update_bits(nfc->regmap, NAND_PARAM, CELL_SIZE_MASK, > > + FIELD_PREP(CELL_SIZE_MASK, cell_size)); > > + > > + regmap_update_bits(nfc->regmap, NAND_TIMING, HOLD_CYCLE_MASK, > > + FIELD_PREP(HOLD_CYCLE_MASK, nfc->data->hold_cycle)); > > + regmap_update_bits(nfc->regmap, NAND_TIMING, WAIT_CYCLE_MASK, > > + FIELD_PREP(WAIT_CYCLE_MASK, nfc->data->wait_cycle)); > > + > > + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; > > + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; > > I need to further understand this, see other thread. > Will drop NAND_MONOLITHIC_READ and implement subpage read instead. > > + chip->options |= NAND_MONOLITHIC_READ; > > + > > + return 0; > > +} > > + > > +static const struct nand_controller_ops ls1x_nfc_ops = { > > + .exec_op = ls1x_nand_exec_op, > > + .attach_chip = ls1x_nand_attach_chip, > > +}; > > + > > +static void ls1x_nand_controller_cleanup(struct ls1x_nand *ls1x) > > +{ > > + if (ls1x->nfc.dma_chan) > > + dma_release_channel(ls1x->nfc.dma_chan); > > +} > > + > > +static int ls1x_nand_controller_init(struct ls1x_nand *ls1x, > > + struct platform_device *pdev) > > +{ > > + struct ls1x_nfc *nfc = &ls1x->nfc; > > + struct dma_slave_config cfg; > > + int ret; > > + > > + nfc->reg_base = devm_platform_ioremap_resource(pdev, 0); > > + if (IS_ERR(nfc->reg_base)) > > + return PTR_ERR(nfc->reg_base); > > + > > + nfc->regmap = devm_regmap_init_mmio(ls1x->dev, nfc->reg_base, > > + &ls1x_nand_regmap_config); > > + if (IS_ERR(nfc->regmap)) > > + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->regmap), > > + "failed to init regmap\n"); > > + > > + nfc->dma_chan = dma_request_chan(ls1x->dev, "rxtx"); > > + if (IS_ERR(nfc->dma_chan)) > > + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->dma_chan), > > + "failed to request DMA channel\n"); > > + dev_info(ls1x->dev, "got %s for %s access\n", > > + dma_chan_name(nfc->dma_chan), dev_name(ls1x->dev)); > > Might be lowered to debug maybe? > Will do. > > + > > + cfg.src_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); > > + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; > > + cfg.dst_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); > > Doesn't feel right. That shall be a dma_addr_t, not a virtual pointer. > Will define a macro for the DMA_ADDR. > > + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; > > + > > + ret = dmaengine_slave_config(nfc->dma_chan, &cfg); > > + if (ret) { > > + dev_err(ls1x->dev, "failed to config DMA channel\n"); > > + dma_release_channel(nfc->dma_chan); > > + return ret; > > + } > > + > > + init_completion(&nfc->dma_complete); > > + > > + return 0; > > +} > > + > > +static int ls1x_nand_chip_init(struct ls1x_nand *ls1x) > > +{ > > + int nchips = of_get_child_count(ls1x->dev->of_node); > > + struct device_node *chip_np; > > + struct nand_chip *chip = &ls1x->chip; > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + int ret = 0; > > + > > + if (nchips != 1) > > + return dev_err_probe(ls1x->dev, -EINVAL, > > + "Currently one NAND chip supported\n"); > > + > > + chip_np = of_get_next_child(ls1x->dev->of_node, NULL); > > + if (!chip_np) > > + return dev_err_probe(ls1x->dev, -ENODEV, > > + "failed to get child node for NAND chip\n"); > > + > > + chip->controller = &ls1x->controller; > > + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD; > > + chip->buf_align = 4; > > + nand_set_controller_data(chip, ls1x); > > + nand_set_flash_node(chip, chip_np); > > + > > + mtd->dev.parent = ls1x->dev; > > + mtd->name = "ls1x-nand"; > > + mtd->owner = THIS_MODULE; > > + > > + ret = nand_scan(chip, 1); > > + if (ret) { > > + of_node_put(chip_np); > > + return ret; > > + } > > + > > + ret = mtd_device_register(mtd, NULL, 0); > > + if (ret) { > > + dev_err(ls1x->dev, "failed to register MTD device! %d\n", ret); > > + nand_cleanup(chip); > > + of_node_put(chip_np); > > + } > > + > > + return ret; > > +} > > + > > +static int ls1x_nand_probe(struct platform_device *pdev) > > +{ > > + struct device *dev = &pdev->dev; > > + const struct ls1x_nfc_data *data; > > + struct ls1x_nand *ls1x; > > + int ret; > > + > > + data = of_device_get_match_data(&pdev->dev); > > + if (!data) > > + return -ENODEV; > > + > > + ls1x = devm_kzalloc(dev, sizeof(*ls1x), GFP_KERNEL); > > + if (!ls1x) > > + return -ENOMEM; > > + > > + ls1x->nfc.data = data; > > + ls1x->dev = dev; > > + ls1x->controller.ops = &ls1x_nfc_ops; > > + nand_controller_init(&ls1x->controller); > > It would feel more natural to perform the init and then add the ops. > Will do. > > + > > + ret = ls1x_nand_controller_init(ls1x, pdev); > > + if (ret) > > + return ret; > > + > > + ret = ls1x_nand_chip_init(ls1x); > > + if (ret) > > + goto err; > > + > > + platform_set_drvdata(pdev, ls1x); > > + > > + return 0; > > +err: > > + ls1x_nand_controller_cleanup(ls1x); > > + return ret; > > +} > > + > > +static int ls1x_nand_remove(struct platform_device *pdev) > > +{ > > + struct ls1x_nand *ls1x = platform_get_drvdata(pdev); > > + struct nand_chip *chip = &ls1x->chip; > > + int ret; > > + > > + ret = mtd_device_unregister(nand_to_mtd(chip)); > > + WARN_ON(ret); > > + nand_cleanup(chip); > > + ls1x_nand_controller_cleanup(ls1x); > > + > > + return 0; > > +} > > + > > +static const struct ls1x_nfc_data ls1b_nfc_data = { > > + .status_field = GENMASK(15, 8), > > + .hold_cycle = 0x2, > > + .wait_cycle = 0xc, > > + .parse_address = ls1b_nand_parse_address, > > +}; > > + > > +static const struct ls1x_nfc_data ls1c_nfc_data = { > > + .status_field = GENMASK(23, 16), > > + .op_scope_field = GENMASK(29, 16), > > + .hold_cycle = 0x2, > > + .wait_cycle = 0xc, > > + .parse_address = ls1c_nand_parse_address, > > +}; > > + > > +static const struct of_device_id ls1x_nfc_match[] = { > > + { .compatible = "loongson,ls1b-nfc", .data = &ls1b_nfc_data }, > > + { .compatible = "loongson,ls1c-nfc", .data = &ls1c_nfc_data }, > > + { /* sentinel */ } > > +}; > > +MODULE_DEVICE_TABLE(of, ls1x_nfc_match); > > + > > +static struct platform_driver ls1x_nand_driver = { > > + .probe = ls1x_nand_probe, > > + .remove = ls1x_nand_remove, > > + .driver = { > > + .name = KBUILD_MODNAME, > > + .of_match_table = ls1x_nfc_match, > > + }, > > +}; > > + > > +module_platform_driver(ls1x_nand_driver); > > + > > +MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>"); > > +MODULE_DESCRIPTION("Loongson-1 NAND Controller driver"); > > +MODULE_LICENSE("GPL"); > > > > > Thanks, > Miquèl Thanks for your review! -- Best regards, Keguang Zhang
Hi Keguang, > > > + > > > + nfc->data->parse_address(chip, addrs, naddrs, cmd); > > > + /* set NAND address */ > > > + nand_writel(nfc, NAND_ADDR1, nfc->addr1_reg); > > > + nand_writel(nfc, NAND_ADDR2, nfc->addr2_reg); > > > + break; > > > + case NAND_OP_DATA_IN_INSTR: > > > + case NAND_OP_DATA_OUT_INSTR: > > > + offset = nand_subop_get_data_start_off(subop, op_id); > > > + nfc->len = nand_subop_get_data_len(subop, op_id); > > > + if (instr->type == NAND_OP_DATA_IN_INSTR) > > > + nfc->buf = > > > + (void *)instr->ctx.data.buf.in + offset; > > > + else if (instr->type == NAND_OP_DATA_OUT_INSTR) > > > + nfc->buf = > > > + (void *)instr->ctx.data.buf.out + offset; > > > > The buf pointer feels clunky. You don't know for how long the buffer > > you point to will be valid, please don't do that. > > > The buf pointer is used for DMA transfer afterwards. > I referred to other drivers, and they used the same approach. > https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/arasan-nand-controller.c#L647 nfc_op is a local variable, it doesn't live past the function call. > https://elixir.bootlin.com/linux/v6.8.9/source/drivers/mtd/nand/raw/rockchip-nand-controller.c#L366 Thanks, Miquèl
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index cbf8ae85e1ae..822bb7a2cea9 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -449,6 +449,13 @@ config MTD_NAND_RENESAS Enables support for the NAND controller found on Renesas R-Car Gen3 and RZ/N1 SoC families. +config MTD_NAND_LOONGSON1 + tristate "Loongson1 NAND controller" + depends on LOONGSON1_APB_DMA || COMPILE_TEST + select REGMAP_MMIO + help + Enables support for NAND controller on Loongson1 SoCs. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 25120a4afada..b3c65cab819c 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o +obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/loongson1_nand.c b/drivers/mtd/nand/raw/loongson1_nand.c new file mode 100644 index 000000000000..d0f66a81ba0b --- /dev/null +++ b/drivers/mtd/nand/raw/loongson1_nand.c @@ -0,0 +1,748 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NAND Controller Driver for Loongson-1 SoC + * + * Copyright (C) 2015-2024 Keguang Zhang <keguang.zhang@gmail.com> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/iopoll.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/regmap.h> +#include <linux/sizes.h> + +/* Loongson-1 NAND Controller Registers */ +#define NAND_CMD 0x0 +#define NAND_ADDR1 0x4 +#define NAND_ADDR2 0x8 +#define NAND_TIMING 0xc +#define NAND_IDL 0x10 +#define NAND_IDH_STATUS 0x14 +#define NAND_PARAM 0x18 +#define NAND_OP_NUM 0x1c +#define MAX_DUMP_REGS 0x20 + +#define NAND_DMA_ADDR 0x40 + +/* NAND Command Register Bits */ +#define OP_DONE BIT(10) +#define OP_SPARE BIT(9) +#define OP_MAIN BIT(8) +#define CMD_STATUS BIT(7) +#define CMD_RESET BIT(6) +#define CMD_READID BIT(5) +#define BLOCKS_ERASE BIT(4) +#define CMD_ERASE BIT(3) +#define CMD_WRITE BIT(2) +#define CMD_READ BIT(1) +#define CMD_VALID BIT(0) + +#define MAX_ADDR_CYC 5U + +#define WAIT_CYCLE_MASK GENMASK(7, 0) +#define HOLD_CYCLE_MASK GENMASK(15, 8) +#define CELL_SIZE_MASK GENMASK(11, 8) + +#define BITS_PER_WORD (4 * BITS_PER_BYTE) + +/* macros for registers read/write */ +#define nand_readl(nfc, off) \ + readl((nfc)->reg_base + (off)) + +#define nand_writel(nfc, off, val) \ + writel((val), (nfc)->reg_base + (off)) + +struct ls1x_nfc_data { + unsigned int status_field; + unsigned int op_scope_field; + unsigned int hold_cycle; + unsigned int wait_cycle; + void (*parse_address)(struct nand_chip *chip, const u8 *addrs, + unsigned int naddrs, int cmd); +}; + +struct ls1x_nfc { + void __iomem *reg_base; + struct regmap *regmap; + const struct ls1x_nfc_data *data; + __le32 addr1_reg; + __le32 addr2_reg; + + char *buf; + unsigned int len; + unsigned int rdy_timeout; + + /* DMA Engine stuff */ + struct dma_chan *dma_chan; + dma_cookie_t dma_cookie; + struct completion dma_complete; +}; + +struct ls1x_nand { + struct device *dev; + struct nand_chip chip; + struct nand_controller controller; + struct ls1x_nfc nfc; +}; + +static const struct regmap_config ls1x_nand_regmap_config = { + .reg_bits = 32, + .val_bits = 32, + .reg_stride = 4, +}; + +static inline void ls1b_nand_parse_address(struct nand_chip *chip, + const u8 *addrs, + unsigned int naddrs, int cmd) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + unsigned int page_shift = chip->page_shift + 1; + int i; + + nfc->addr1_reg = 0; + nfc->addr2_reg = 0; + + if (cmd == CMD_ERASE) { + page_shift = chip->page_shift; + + for (i = 0; i < min(MAX_ADDR_CYC - 2, naddrs); i++) + nfc->addr1_reg |= + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * i); + if (i == MAX_ADDR_CYC - 2) + nfc->addr2_reg |= + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - + BITS_PER_BYTE * (i - 1)); + + return; + } + + for (i = 0; i < min(2U, naddrs); i++) + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + for (i = 2; i < min(MAX_ADDR_CYC, naddrs); i++) + nfc->addr1_reg |= + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * (i - 2)); + if (i == MAX_ADDR_CYC) + nfc->addr2_reg |= + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - + BITS_PER_BYTE * (i - 1)); +} + +static inline void ls1c_nand_parse_address(struct nand_chip *chip, + const u8 *addrs, + unsigned int naddrs, int cmd) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int i; + + nfc->addr1_reg = 0; + nfc->addr2_reg = 0; + + if (cmd == CMD_ERASE) { + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) + nfc->addr2_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + + return; + } + + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) { + if (i < 2) + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + else + nfc->addr2_reg |= + (u32)addrs[i] << BITS_PER_BYTE * (i - 2); + } +} + +static int ls1x_nand_set_controller(struct nand_chip *chip, + const struct nand_subop *subop, int cmd) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + unsigned int op_id; + + nfc->buf = NULL; + nfc->len = 0; + nfc->rdy_timeout = 0; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + const struct nand_op_instr *instr = &subop->instrs[op_id]; + unsigned int offset, naddrs; + const u8 *addrs; + + switch (instr->type) { + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + nfc->data->parse_address(chip, addrs, naddrs, cmd); + /* set NAND address */ + nand_writel(nfc, NAND_ADDR1, nfc->addr1_reg); + nand_writel(nfc, NAND_ADDR2, nfc->addr2_reg); + break; + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + nfc->len = nand_subop_get_data_len(subop, op_id); + if (instr->type == NAND_OP_DATA_IN_INSTR) + nfc->buf = + (void *)instr->ctx.data.buf.in + offset; + else if (instr->type == NAND_OP_DATA_OUT_INSTR) + nfc->buf = + (void *)instr->ctx.data.buf.out + offset; + + if (cmd & (CMD_READID | CMD_STATUS)) + break; + + if (!IS_ALIGNED((u32)nfc->buf, chip->buf_align)) { + dev_err(ls1x->dev, + "nfc->buf %px is not aligned!\n", + nfc->buf); + return -EOPNOTSUPP; + } else if (!IS_ALIGNED(nfc->len, chip->buf_align)) { + dev_err(ls1x->dev, + "nfc->len %u is not aligned!\n", + nfc->len); + return -EOPNOTSUPP; + } + + /* set NAND data length */ + nand_writel(nfc, NAND_OP_NUM, nfc->len); + + if (nfc->data->op_scope_field) { + int op_scope = nfc->len << ffs(nfc->data->op_scope_field); + + regmap_update_bits(nfc->regmap, NAND_PARAM, + nfc->data->op_scope_field, + op_scope); + } + + break; + case NAND_OP_WAITRDY_INSTR: + nfc->rdy_timeout = instr->ctx.waitrdy.timeout_ms; + break; + default: + break; + } + } + + /* set NAND erase block count */ + if (cmd & CMD_ERASE) + nand_writel(nfc, NAND_OP_NUM, 1); + /* set NAND operation region */ + if (nfc->buf && nfc->len) + cmd |= OP_SPARE | OP_MAIN; + + /* set NAND command */ + nand_writel(nfc, NAND_CMD, cmd); + /* Trigger operation */ + regmap_write_bits(nfc->regmap, NAND_CMD, CMD_VALID, CMD_VALID); + + return 0; +} + +static void ls1x_nand_dma_callback(void *data) +{ + struct ls1x_nand *ls1x = (struct ls1x_nand *)data; + struct ls1x_nfc *nfc = &ls1x->nfc; + enum dma_status status; + + status = dmaengine_tx_status(nfc->dma_chan, nfc->dma_cookie, NULL); + if (likely(status == DMA_COMPLETE)) + dev_dbg(ls1x->dev, "DMA complete with cookie=%d\n", + nfc->dma_cookie); + else + dev_err(ls1x->dev, "DMA error with cookie=%d\n", + nfc->dma_cookie); + + complete(&nfc->dma_complete); +} + +static int ls1x_nand_dma_transfer(struct ls1x_nand *ls1x, bool is_write) +{ + struct ls1x_nfc *nfc = &ls1x->nfc; + struct dma_chan *chan = nfc->dma_chan; + struct dma_async_tx_descriptor *desc; + enum dma_data_direction data_dir = + is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + enum dma_transfer_direction xfer_dir = + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; + dma_addr_t dma_addr; + int ret; + + dma_addr = dma_map_single(chan->device->dev, nfc->buf, nfc->len, + data_dir); + if (dma_mapping_error(chan->device->dev, dma_addr)) { + dev_err(ls1x->dev, "failed to map DMA buffer!\n"); + return -ENXIO; + } + + desc = dmaengine_prep_slave_single(chan, dma_addr, nfc->len, xfer_dir, + DMA_PREP_INTERRUPT); + if (!desc) { + dev_err(ls1x->dev, "failed to prepare DMA descriptor!\n"); + ret = PTR_ERR(desc); + goto err; + } + desc->callback = ls1x_nand_dma_callback; + desc->callback_param = ls1x; + + nfc->dma_cookie = dmaengine_submit(desc); + ret = dma_submit_error(nfc->dma_cookie); + if (ret) { + dev_err(ls1x->dev, "failed to submit DMA descriptor!\n"); + goto err; + } + + dev_dbg(ls1x->dev, "issue DMA with cookie=%d\n", nfc->dma_cookie); + dma_async_issue_pending(chan); + + ret = wait_for_completion_timeout(&nfc->dma_complete, + msecs_to_jiffies(nfc->rdy_timeout)); + if (ret <= 0) { + dev_err(ls1x->dev, "DMA timeout!%u\n", nfc->rdy_timeout); + dmaengine_terminate_all(chan); + ret = -EIO; + } + ret = 0; +err: + dma_unmap_single(chan->device->dev, dma_addr, nfc->len, data_dir); + + return ret; +} + +static inline int ls1x_nand_wait_for_op_done(struct ls1x_nfc *nfc) +{ + unsigned int val; + int ret = 0; + + /* Wait for operation done */ + if (nfc->rdy_timeout) + ret = regmap_read_poll_timeout(nfc->regmap, NAND_CMD, val, + val & OP_DONE, 0, + nfc->rdy_timeout * 1000); + + return ret; +} + +static int ls1x_nand_reset_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_RESET); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) + dev_err(ls1x->dev, "CMD_RESET failed! %d\n", ret); + + return ret; +} + +static int ls1x_nand_read_id_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + long long idl = 0; + int i, ret; + + ls1x_nand_set_controller(chip, subop, CMD_READID); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_READID failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + return ret; + } + + idl = __be32_to_cpu(nand_readl(nfc, NAND_IDL)); + memset(nfc->buf, 0x0, nfc->len); + + for (i = 0; i < nfc->len; i++) { + if (i > 0) + nfc->buf[i] = (char)(idl >> (i - 1) * BITS_PER_BYTE); + else + nfc->buf[i] = (char)nand_readl(nfc, NAND_IDH_STATUS); + } + + return ret; +} + +static int ls1x_nand_erase_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_ERASE); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_ERASE failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + } + + return ret; +} + +static int ls1x_nand_read_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + bool is_write = false; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_READ); + + ret = ls1x_nand_dma_transfer(ls1x, is_write); + if (ret) + return ret; + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_READ failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + } + + return ret; +} + +static int ls1x_nand_write_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + bool is_write = true; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_WRITE); + + ret = ls1x_nand_dma_transfer(ls1x, is_write); + if (ret) + return ret; + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_WRITE failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + } + + return ret; +} + +static int ls1x_nand_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int val, ret; + + ls1x_nand_set_controller(chip, subop, CMD_STATUS); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_STATUS failed! %d\n", ret); + return ret; + } + + val = nand_readl(nfc, NAND_IDH_STATUS) & ~nfc->data->status_field; + nfc->buf[0] = val << ffs(nfc->data->status_field); + + return ret; +} + +static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + ls1x_nand_reset_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_id_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_erase_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_write_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + ); + +static int ls1x_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, + check_only); +} + +static int ls1x_nand_attach_chip(struct nand_chip *chip) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + u64 chipsize = nanddev_target_size(&chip->base); + int cell_size = 0; + + switch (chipsize) { + case SZ_128M: + cell_size = 0x0; + break; + case SZ_256M: + cell_size = 0x1; + break; + case SZ_512M: + cell_size = 0x2; + break; + case SZ_1G: + cell_size = 0x3; + break; + case SZ_2G: + cell_size = 0x4; + break; + case SZ_4G: + cell_size = 0x5; + break; + case (SZ_2G * SZ_4G): /* 8G */ + cell_size = 0x6; + break; + case (SZ_4G * SZ_4G): /* 16G */ + cell_size = 0x7; + break; + default: + dev_err(ls1x->dev, "unsupported chip size: %llu MB\n", + chipsize); + break; + } + + /* Set cell size */ + regmap_update_bits(nfc->regmap, NAND_PARAM, CELL_SIZE_MASK, + FIELD_PREP(CELL_SIZE_MASK, cell_size)); + + regmap_update_bits(nfc->regmap, NAND_TIMING, HOLD_CYCLE_MASK, + FIELD_PREP(HOLD_CYCLE_MASK, nfc->data->hold_cycle)); + regmap_update_bits(nfc->regmap, NAND_TIMING, WAIT_CYCLE_MASK, + FIELD_PREP(WAIT_CYCLE_MASK, nfc->data->wait_cycle)); + + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + chip->options |= NAND_MONOLITHIC_READ; + + return 0; +} + +static const struct nand_controller_ops ls1x_nfc_ops = { + .exec_op = ls1x_nand_exec_op, + .attach_chip = ls1x_nand_attach_chip, +}; + +static void ls1x_nand_controller_cleanup(struct ls1x_nand *ls1x) +{ + if (ls1x->nfc.dma_chan) + dma_release_channel(ls1x->nfc.dma_chan); +} + +static int ls1x_nand_controller_init(struct ls1x_nand *ls1x, + struct platform_device *pdev) +{ + struct ls1x_nfc *nfc = &ls1x->nfc; + struct dma_slave_config cfg; + int ret; + + nfc->reg_base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->reg_base)) + return PTR_ERR(nfc->reg_base); + + nfc->regmap = devm_regmap_init_mmio(ls1x->dev, nfc->reg_base, + &ls1x_nand_regmap_config); + if (IS_ERR(nfc->regmap)) + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->regmap), + "failed to init regmap\n"); + + nfc->dma_chan = dma_request_chan(ls1x->dev, "rxtx"); + if (IS_ERR(nfc->dma_chan)) + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->dma_chan), + "failed to request DMA channel\n"); + dev_info(ls1x->dev, "got %s for %s access\n", + dma_chan_name(nfc->dma_chan), dev_name(ls1x->dev)); + + cfg.src_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + + ret = dmaengine_slave_config(nfc->dma_chan, &cfg); + if (ret) { + dev_err(ls1x->dev, "failed to config DMA channel\n"); + dma_release_channel(nfc->dma_chan); + return ret; + } + + init_completion(&nfc->dma_complete); + + return 0; +} + +static int ls1x_nand_chip_init(struct ls1x_nand *ls1x) +{ + int nchips = of_get_child_count(ls1x->dev->of_node); + struct device_node *chip_np; + struct nand_chip *chip = &ls1x->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (nchips != 1) + return dev_err_probe(ls1x->dev, -EINVAL, + "Currently one NAND chip supported\n"); + + chip_np = of_get_next_child(ls1x->dev->of_node, NULL); + if (!chip_np) + return dev_err_probe(ls1x->dev, -ENODEV, + "failed to get child node for NAND chip\n"); + + chip->controller = &ls1x->controller; + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD; + chip->buf_align = 4; + nand_set_controller_data(chip, ls1x); + nand_set_flash_node(chip, chip_np); + + mtd->dev.parent = ls1x->dev; + mtd->name = "ls1x-nand"; + mtd->owner = THIS_MODULE; + + ret = nand_scan(chip, 1); + if (ret) { + of_node_put(chip_np); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(ls1x->dev, "failed to register MTD device! %d\n", ret); + nand_cleanup(chip); + of_node_put(chip_np); + } + + return ret; +} + +static int ls1x_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + const struct ls1x_nfc_data *data; + struct ls1x_nand *ls1x; + int ret; + + data = of_device_get_match_data(&pdev->dev); + if (!data) + return -ENODEV; + + ls1x = devm_kzalloc(dev, sizeof(*ls1x), GFP_KERNEL); + if (!ls1x) + return -ENOMEM; + + ls1x->nfc.data = data; + ls1x->dev = dev; + ls1x->controller.ops = &ls1x_nfc_ops; + nand_controller_init(&ls1x->controller); + + ret = ls1x_nand_controller_init(ls1x, pdev); + if (ret) + return ret; + + ret = ls1x_nand_chip_init(ls1x); + if (ret) + goto err; + + platform_set_drvdata(pdev, ls1x); + + return 0; +err: + ls1x_nand_controller_cleanup(ls1x); + return ret; +} + +static int ls1x_nand_remove(struct platform_device *pdev) +{ + struct ls1x_nand *ls1x = platform_get_drvdata(pdev); + struct nand_chip *chip = &ls1x->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + ls1x_nand_controller_cleanup(ls1x); + + return 0; +} + +static const struct ls1x_nfc_data ls1b_nfc_data = { + .status_field = GENMASK(15, 8), + .hold_cycle = 0x2, + .wait_cycle = 0xc, + .parse_address = ls1b_nand_parse_address, +}; + +static const struct ls1x_nfc_data ls1c_nfc_data = { + .status_field = GENMASK(23, 16), + .op_scope_field = GENMASK(29, 16), + .hold_cycle = 0x2, + .wait_cycle = 0xc, + .parse_address = ls1c_nand_parse_address, +}; + +static const struct of_device_id ls1x_nfc_match[] = { + { .compatible = "loongson,ls1b-nfc", .data = &ls1b_nfc_data }, + { .compatible = "loongson,ls1c-nfc", .data = &ls1c_nfc_data }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, ls1x_nfc_match); + +static struct platform_driver ls1x_nand_driver = { + .probe = ls1x_nand_probe, + .remove = ls1x_nand_remove, + .driver = { + .name = KBUILD_MODNAME, + .of_match_table = ls1x_nfc_match, + }, +}; + +module_platform_driver(ls1x_nand_driver); + +MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>"); +MODULE_DESCRIPTION("Loongson-1 NAND Controller driver"); +MODULE_LICENSE("GPL");