Message ID | 1359946302-25953-1-git-send-email-shawn.guo@linaro.org (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
On Mon, Feb 04, 2013 at 11:06:22AM -0500, Anson Huang wrote: > > + /* > > + * The setpoints are selected per PLL/PDF frequencies, so we need to > > + * reprogram PLL for frequency scaling. The procedure of reprogramming > > + * PLL1 is as below. > > + * > > + * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it > > + * - Disable pll1_sys_clk and reprogram it > > + * - Enable pll1_sys_clk and reparent pll1_sw_clk back to it > > + * - Disable pll2_pfd2_396m_clk > > + */ > > + clk_prepare_enable(pll2_pfd2_396m_clk); > > + clk_set_parent(step_clk, pll2_pfd2_396m_clk); > > + clk_set_parent(pll1_sw_clk, step_clk); > > + clk_prepare_enable(pll1_sys_clk); > > + if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { > > + clk_disable_unprepare(pll1_sys_clk); > > + clk_set_rate(pll1_sys_clk, freqs.new * 1000); > > + clk_prepare_enable(pll1_sys_clk); > > + clk_set_parent(pll1_sw_clk, pll1_sys_clk); > > + clk_disable_unprepare(pll2_pfd2_396m_clk); > > + } else { > > + /* > > + * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient > > + * to provide the frequency. > > + */ > > + clk_disable_unprepare(pll1_sys_clk); > > + } > Seems like we will get pll2_pfd2_396m_clk's use count mismatch? As every time cpu freq is changed, pll2_pfd2_396m_clk will be added at the beginning of this code piece, but only decreased when cpu freq > 396M, so everytime cpu freq changed to 396M, this pll2_pfd2_396m_clk will in increased? Ah, good catch. And pll1_sys_clk has the same problem. Since it's been verified by FSL kernel that we do not necessarily need to disable pll1_sys_clk before reprogramming it, I would choose to rewrite the code as below to make it cleaner and correct on clock usage. /* * The setpoints are selected per PLL/PDF frequencies, so we need to * reprogram PLL for frequency scaling. The procedure of reprogramming * PLL1 is as below. * * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it * - Disable pll2_pfd2_396m_clk */ clk_prepare_enable(pll2_pfd2_396m_clk); clk_set_parent(step_clk, pll2_pfd2_396m_clk); clk_set_parent(pll1_sw_clk, step_clk); if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { clk_set_rate(pll1_sys_clk, freqs.new * 1000); /* * If we are leaving 396 MHz set-point, we need to enable * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep * their use count correct. */ if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) { clk_prepare_enable(pll1_sys_clk); clk_disable_unprepare(pll2_pfd2_396m_clk); } clk_set_parent(pll1_sw_clk, pll1_sys_clk); clk_disable_unprepare(pll2_pfd2_396m_clk); } else { /* * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient * to provide the frequency. */ clk_disable_unprepare(pll1_sys_clk); } > > + > > + /* Ensure the arm clock divider is what we expect */ > > + ret = clk_set_rate(arm_clk, freqs.new * 1000); > > + if (ret) { > > + dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); > > + regulator_set_voltage_tol(arm_reg, volt_old, 0); > > + return ret; > > + } > > + > > + /* scaling down? scale voltage after frequency */ > > + if (freqs.new < freqs.old) { > > + ret = regulator_set_voltage_tol(arm_reg, volt, 0); > > + if (ret) > > + dev_warn(cpu_dev, > > + "failed to scale vddarm down: %d\n", ret); > > + > > + if (freqs.old == FREQ_1P2_GHZ / 1000) { > > + regulator_set_voltage_tol(pu_reg, > > + PU_SOC_VOLTAGE_NORMAL, 0); > > + regulator_set_voltage_tol(soc_reg, > > + PU_SOC_VOLTAGE_NORMAL, 0); > > + } > > + } > > + > > + for_each_online_cpu(cpu) { > > + freqs.cpu = cpu; > > + cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); > > + } > > + > Should we need to update the percpu loops_per_jiffy variable and global loops_per_jiffy? As the udelay and mdelay will rely on this global loops_per_jiffy? Or the latest kernel has handle it in other place such as cpufreq common driver? I remembered that common cpufreq driver only handle the noSMP case. No, it's not needed since commit ec971ea (ARM: add cpufreq transiton notifier to adjust loops_per_jiffy for smp) is in place. Shawn
On Mon, Feb 04, 2013 at 10:51:42AM +0800, Shawn Guo wrote: > Add an imx6q-cpufreq driver for Freescale i.MX6Q SoC to handle the > hardware specific frequency and voltage scaling requirements. > > The driver supports module build and is instantiated by the platform > device/driver mechanism, so that it will not be instantiated on other > platforms, as IMX is built with multiplatform support. > > Signed-off-by: Shawn Guo <shawn.guo@linaro.org> > Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> > --- > Changes since v4: > * Use regulator API to handle voltage latency > > Rafael, > > I generated the patch against your bleeding-edge branch, so it should > be applied cleanly. > > Shawn > > drivers/cpufreq/Kconfig.arm | 9 ++ > drivers/cpufreq/Makefile | 1 + > drivers/cpufreq/imx6q-cpufreq.c | 331 +++++++++++++++++++++++++++++++++++++++ > 3 files changed, 341 insertions(+) > create mode 100644 drivers/cpufreq/imx6q-cpufreq.c > > diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm > index ffe55b8..c65226c 100644 > --- a/drivers/cpufreq/Kconfig.arm > +++ b/drivers/cpufreq/Kconfig.arm > @@ -77,6 +77,15 @@ config ARM_EXYNOS5250_CPUFREQ > This adds the CPUFreq driver for Samsung EXYNOS5250 > SoC. > > +config ARM_IMX6Q_CPUFREQ > + tristate "Freescale i.MX6Q cpufreq support" > + depends on SOC_IMX6Q > + depends on REGULATOR_ANATOP > + help > + This adds cpufreq driver support for Freescale i.MX6Q SOC. > + > + If in doubt, say N. > + > config ARM_SPEAR_CPUFREQ > bool "SPEAr CPUFreq support" > depends on PLAT_SPEAR > diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile > index e2a5da7..93610b2 100644 > --- a/drivers/cpufreq/Makefile > +++ b/drivers/cpufreq/Makefile > @@ -54,6 +54,7 @@ obj-$(CONFIG_ARM_EXYNOS5250_CPUFREQ) += exynos5250-cpufreq.o > obj-$(CONFIG_ARM_OMAP2PLUS_CPUFREQ) += omap-cpufreq.o > obj-$(CONFIG_ARM_SPEAR_CPUFREQ) += spear-cpufreq.o > obj-$(CONFIG_ARM_HIGHBANK_CPUFREQ) += highbank-cpufreq.o > +obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o > > ################################################################################## > # PowerPC platform drivers > diff --git a/drivers/cpufreq/imx6q-cpufreq.c b/drivers/cpufreq/imx6q-cpufreq.c > new file mode 100644 > index 0000000..f73b245 > --- /dev/null > +++ b/drivers/cpufreq/imx6q-cpufreq.c > @@ -0,0 +1,331 @@ > +/* > + * Copyright (C) 2013 Freescale Semiconductor, Inc. > + * > + * This program is free software; you can redistribute it and/or modify > + * it under the terms of the GNU General Public License version 2 as > + * published by the Free Software Foundation. > + */ > + > +#include <linux/clk.h> > +#include <linux/cpufreq.h> > +#include <linux/delay.h> > +#include <linux/err.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/opp.h> > +#include <linux/platform_device.h> > +#include <linux/regulator/consumer.h> > + > +#define PU_SOC_VOLTAGE_NORMAL 1250000 > +#define PU_SOC_VOLTAGE_HIGH 1275000 > +#define FREQ_1P2_GHZ 1200000000 > + > +static struct regulator *arm_reg; > +static struct regulator *pu_reg; > +static struct regulator *soc_reg; > + > +static struct clk *arm_clk; > +static struct clk *pll1_sys_clk; > +static struct clk *pll1_sw_clk; > +static struct clk *step_clk; > +static struct clk *pll2_pfd2_396m_clk; > + > +static struct device *cpu_dev; > +static struct cpufreq_frequency_table *freq_table; > +static unsigned int transition_latency; > + > +static int imx6q_verify_speed(struct cpufreq_policy *policy) > +{ > + return cpufreq_frequency_table_verify(policy, freq_table); > +} > + > +static unsigned int imx6q_get_speed(unsigned int cpu) > +{ > + return clk_get_rate(arm_clk) / 1000; > +} > + > +static int imx6q_set_target(struct cpufreq_policy *policy, > + unsigned int target_freq, unsigned int relation) > +{ > + struct cpufreq_freqs freqs; > + struct opp *opp; > + unsigned long freq_hz, volt, volt_old; > + unsigned int index, cpu; > + int ret; > + > + ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, > + relation, &index); > + if (ret) { > + dev_err(cpu_dev, "failed to match target frequency %d: %d\n", > + target_freq, ret); > + return ret; > + } > + > + freqs.new = freq_table[index].frequency; > + freq_hz = freqs.new * 1000; > + freqs.old = clk_get_rate(arm_clk) / 1000; > + > + if (freqs.old == freqs.new) > + return 0; > + > + for_each_online_cpu(cpu) { > + freqs.cpu = cpu; > + cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); > + } > + > + rcu_read_lock(); > + opp = opp_find_freq_ceil(cpu_dev, &freq_hz); > + if (IS_ERR(opp)) { > + rcu_read_unlock(); > + dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); > + return PTR_ERR(opp); > + } > + > + volt = opp_get_voltage(opp); > + rcu_read_unlock(); > + volt_old = regulator_get_voltage(arm_reg); > + > + dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", > + freqs.old / 1000, volt_old / 1000, > + freqs.new / 1000, volt / 1000); > + > + /* scaling up? scale voltage before frequency */ > + if (freqs.new > freqs.old) { > + ret = regulator_set_voltage_tol(arm_reg, volt, 0); > + if (ret) { > + dev_err(cpu_dev, > + "failed to scale vddarm up: %d\n", ret); > + return ret; > + } > + > + /* > + * Need to increase vddpu and vddsoc for safety > + * if we are about to run at 1.2 GHz. > + */ > + if (freqs.new == FREQ_1P2_GHZ / 1000) { > + regulator_set_voltage_tol(pu_reg, > + PU_SOC_VOLTAGE_HIGH, 0); > + regulator_set_voltage_tol(soc_reg, > + PU_SOC_VOLTAGE_HIGH, 0); > + } > + } > + > + /* > + * The setpoints are selected per PLL/PDF frequencies, so we need to > + * reprogram PLL for frequency scaling. The procedure of reprogramming > + * PLL1 is as below. > + * > + * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it > + * - Disable pll1_sys_clk and reprogram it > + * - Enable pll1_sys_clk and reparent pll1_sw_clk back to it > + * - Disable pll2_pfd2_396m_clk > + */ > + clk_prepare_enable(pll2_pfd2_396m_clk); > + clk_set_parent(step_clk, pll2_pfd2_396m_clk); > + clk_set_parent(pll1_sw_clk, step_clk); > + clk_prepare_enable(pll1_sys_clk); > + if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { > + clk_disable_unprepare(pll1_sys_clk); > + clk_set_rate(pll1_sys_clk, freqs.new * 1000); > + clk_prepare_enable(pll1_sys_clk); > + clk_set_parent(pll1_sw_clk, pll1_sys_clk); > + clk_disable_unprepare(pll2_pfd2_396m_clk); > + } else { > + /* > + * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient > + * to provide the frequency. > + */ > + clk_disable_unprepare(pll1_sys_clk); > + } Seems like we will get pll2_pfd2_396m_clk's use count mismatch? As every time cpu freq is changed, pll2_pfd2_396m_clk will be added at the beginning of this code piece, but only decreased when cpu freq > 396M, so everytime cpu freq changed to 396M, this pll2_pfd2_396m_clk will in increased? > + > + /* Ensure the arm clock divider is what we expect */ > + ret = clk_set_rate(arm_clk, freqs.new * 1000); > + if (ret) { > + dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); > + regulator_set_voltage_tol(arm_reg, volt_old, 0); > + return ret; > + } > + > + /* scaling down? scale voltage after frequency */ > + if (freqs.new < freqs.old) { > + ret = regulator_set_voltage_tol(arm_reg, volt, 0); > + if (ret) > + dev_warn(cpu_dev, > + "failed to scale vddarm down: %d\n", ret); > + > + if (freqs.old == FREQ_1P2_GHZ / 1000) { > + regulator_set_voltage_tol(pu_reg, > + PU_SOC_VOLTAGE_NORMAL, 0); > + regulator_set_voltage_tol(soc_reg, > + PU_SOC_VOLTAGE_NORMAL, 0); > + } > + } > + > + for_each_online_cpu(cpu) { > + freqs.cpu = cpu; > + cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); > + } > + Should we need to update the percpu loops_per_jiffy variable and global loops_per_jiffy? As the udelay and mdelay will rely on this global loops_per_jiffy? Or the latest kernel has handle it in other place such as cpufreq common driver? I remembered that common cpufreq driver only handle the noSMP case. Anson > + return 0; > +} > + > +static int imx6q_cpufreq_init(struct cpufreq_policy *policy) > +{ > + int ret; > + > + ret = cpufreq_frequency_table_cpuinfo(policy, freq_table); > + if (ret) { > + dev_err(cpu_dev, "invalid frequency table: %d\n", ret); > + return ret; > + } > + > + policy->cpuinfo.transition_latency = transition_latency; > + policy->cur = clk_get_rate(arm_clk) / 1000; > + cpumask_setall(policy->cpus); > + cpufreq_frequency_table_get_attr(freq_table, policy->cpu); > + > + return 0; > +} > + > +static int imx6q_cpufreq_exit(struct cpufreq_policy *policy) > +{ > + cpufreq_frequency_table_put_attr(policy->cpu); > + return 0; > +} > + > +static struct freq_attr *imx6q_cpufreq_attr[] = { > + &cpufreq_freq_attr_scaling_available_freqs, > + NULL, > +}; > + > +static struct cpufreq_driver imx6q_cpufreq_driver = { > + .verify = imx6q_verify_speed, > + .target = imx6q_set_target, > + .get = imx6q_get_speed, > + .init = imx6q_cpufreq_init, > + .exit = imx6q_cpufreq_exit, > + .name = "imx6q-cpufreq", > + .attr = imx6q_cpufreq_attr, > +}; > + > +static int imx6q_cpufreq_probe(struct platform_device *pdev) > +{ > + struct device_node *np; > + struct opp *opp; > + unsigned long min_volt, max_volt; > + int num, ret; > + > + cpu_dev = &pdev->dev; > + > + np = of_find_node_by_path("/cpus/cpu@0"); > + if (!np) { > + dev_err(cpu_dev, "failed to find cpu0 node\n"); > + return -ENOENT; > + } > + > + cpu_dev->of_node = np; > + > + arm_clk = devm_clk_get(cpu_dev, "arm"); > + pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys"); > + pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw"); > + step_clk = devm_clk_get(cpu_dev, "step"); > + pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m"); > + if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || > + IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { > + dev_err(cpu_dev, "failed to get clocks\n"); > + ret = -ENOENT; > + goto put_node; > + } > + > + arm_reg = devm_regulator_get(cpu_dev, "arm"); > + pu_reg = devm_regulator_get(cpu_dev, "pu"); > + soc_reg = devm_regulator_get(cpu_dev, "soc"); > + if (!arm_reg || !pu_reg || !soc_reg) { > + dev_err(cpu_dev, "failed to get regulators\n"); > + ret = -ENOENT; > + goto put_node; > + } > + > + /* We expect an OPP table supplied by platform */ > + num = opp_get_opp_count(cpu_dev); > + if (num < 0) { > + ret = num; > + dev_err(cpu_dev, "no OPP table is found: %d\n", ret); > + goto put_node; > + } > + > + ret = opp_init_cpufreq_table(cpu_dev, &freq_table); > + if (ret) { > + dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); > + goto put_node; > + } > + > + if (of_property_read_u32(np, "clock-latency", &transition_latency)) > + transition_latency = CPUFREQ_ETERNAL; > + > + /* > + * OPP is maintained in order of increasing frequency, and > + * freq_table initialised from OPP is therefore sorted in the > + * same order. > + */ > + rcu_read_lock(); > + opp = opp_find_freq_exact(cpu_dev, > + freq_table[0].frequency * 1000, true); > + min_volt = opp_get_voltage(opp); > + opp = opp_find_freq_exact(cpu_dev, > + freq_table[--num].frequency * 1000, true); > + max_volt = opp_get_voltage(opp); > + rcu_read_unlock(); > + ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); > + if (ret > 0) > + transition_latency += ret * 1000; > + > + /* Count vddpu and vddsoc latency in for 1.2 GHz support */ > + if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) { > + ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL, > + PU_SOC_VOLTAGE_HIGH); > + if (ret > 0) > + transition_latency += ret * 1000; > + ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL, > + PU_SOC_VOLTAGE_HIGH); > + if (ret > 0) > + transition_latency += ret * 1000; > + } > + > + ret = cpufreq_register_driver(&imx6q_cpufreq_driver); > + if (ret) { > + dev_err(cpu_dev, "failed register driver: %d\n", ret); > + goto free_freq_table; > + } > + > + of_node_put(np); > + return 0; > + > +free_freq_table: > + opp_free_cpufreq_table(cpu_dev, &freq_table); > +put_node: > + of_node_put(np); > + return ret; > +} > + > +static int imx6q_cpufreq_remove(struct platform_device *pdev) > +{ > + cpufreq_unregister_driver(&imx6q_cpufreq_driver); > + opp_free_cpufreq_table(cpu_dev, &freq_table); > + > + return 0; > +} > + > +static struct platform_driver imx6q_cpufreq_platdrv = { > + .driver = { > + .name = "imx6q-cpufreq", > + .owner = THIS_MODULE, > + }, > + .probe = imx6q_cpufreq_probe, > + .remove = imx6q_cpufreq_remove, > +}; > +module_platform_driver(imx6q_cpufreq_platdrv); > + > +MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); > +MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); > +MODULE_LICENSE("GPL"); > -- > 1.7.9.5 > > > > _______________________________________________ > linux-arm-kernel mailing list > linux-arm-kernel@lists.infradead.org > http://lists.infradead.org/mailman/listinfo/linux-arm-kernel >
On Mon, Feb 04, 2013 at 01:09:11PM +0800, Shawn Guo wrote: > On Mon, Feb 04, 2013 at 11:06:22AM -0500, Anson Huang wrote: > > > + /* > > > + * The setpoints are selected per PLL/PDF frequencies, so we need to > > > + * reprogram PLL for frequency scaling. The procedure of reprogramming > > > + * PLL1 is as below. > > > + * > > > + * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it > > > + * - Disable pll1_sys_clk and reprogram it > > > + * - Enable pll1_sys_clk and reparent pll1_sw_clk back to it > > > + * - Disable pll2_pfd2_396m_clk > > > + */ > > > + clk_prepare_enable(pll2_pfd2_396m_clk); > > > + clk_set_parent(step_clk, pll2_pfd2_396m_clk); > > > + clk_set_parent(pll1_sw_clk, step_clk); > > > + clk_prepare_enable(pll1_sys_clk); > > > + if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { > > > + clk_disable_unprepare(pll1_sys_clk); > > > + clk_set_rate(pll1_sys_clk, freqs.new * 1000); > > > + clk_prepare_enable(pll1_sys_clk); > > > + clk_set_parent(pll1_sw_clk, pll1_sys_clk); > > > + clk_disable_unprepare(pll2_pfd2_396m_clk); > > > + } else { > > > + /* > > > + * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient > > > + * to provide the frequency. > > > + */ > > > + clk_disable_unprepare(pll1_sys_clk); > > > + } > > Seems like we will get pll2_pfd2_396m_clk's use count mismatch? As every time cpu freq is changed, pll2_pfd2_396m_clk will be added at the beginning of this code piece, but only decreased when cpu freq > 396M, so everytime cpu freq changed to 396M, this pll2_pfd2_396m_clk will in increased? > > Ah, good catch. And pll1_sys_clk has the same problem. Since it's > been verified by FSL kernel that we do not necessarily need to disable > pll1_sys_clk before reprogramming it, I would choose to rewrite the > code as below to make it cleaner and correct on clock usage. > > /* > * The setpoints are selected per PLL/PDF frequencies, so we need to > * reprogram PLL for frequency scaling. The procedure of reprogramming > * PLL1 is as below. > * > * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it > * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it > * - Disable pll2_pfd2_396m_clk > */ > clk_prepare_enable(pll2_pfd2_396m_clk); > clk_set_parent(step_clk, pll2_pfd2_396m_clk); > clk_set_parent(pll1_sw_clk, step_clk); > if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { > clk_set_rate(pll1_sys_clk, freqs.new * 1000); > /* > * If we are leaving 396 MHz set-point, we need to enable > * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep > * their use count correct. > */ > if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) { > clk_prepare_enable(pll1_sys_clk); > clk_disable_unprepare(pll2_pfd2_396m_clk); > } > clk_set_parent(pll1_sw_clk, pll1_sys_clk); > clk_disable_unprepare(pll2_pfd2_396m_clk); > } else { > /* > * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient > * to provide the frequency. > */ > clk_disable_unprepare(pll1_sys_clk); > } > Looks good:) > > > + > > > + /* Ensure the arm clock divider is what we expect */ > > > + ret = clk_set_rate(arm_clk, freqs.new * 1000); > > > + if (ret) { > > > + dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); > > > + regulator_set_voltage_tol(arm_reg, volt_old, 0); > > > + return ret; > > > + } > > > + > > > + /* scaling down? scale voltage after frequency */ > > > + if (freqs.new < freqs.old) { > > > + ret = regulator_set_voltage_tol(arm_reg, volt, 0); > > > + if (ret) > > > + dev_warn(cpu_dev, > > > + "failed to scale vddarm down: %d\n", ret); > > > + > > > + if (freqs.old == FREQ_1P2_GHZ / 1000) { > > > + regulator_set_voltage_tol(pu_reg, > > > + PU_SOC_VOLTAGE_NORMAL, 0); > > > + regulator_set_voltage_tol(soc_reg, > > > + PU_SOC_VOLTAGE_NORMAL, 0); > > > + } > > > + } > > > + > > > + for_each_online_cpu(cpu) { > > > + freqs.cpu = cpu; > > > + cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); > > > + } > > > + > > Should we need to update the percpu loops_per_jiffy variable and global loops_per_jiffy? As the udelay and mdelay will rely on this global loops_per_jiffy? Or the latest kernel has handle it in other place such as cpufreq common driver? I remembered that common cpufreq driver only handle the noSMP case. > > No, it's not needed since commit ec971ea (ARM: add cpufreq transiton > notifier to adjust loops_per_jiffy for smp) is in place. > > Shawn I see, just check the latest kernel's implementation about global loops_per_jiffy, it is OK.
diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm index ffe55b8..c65226c 100644 --- a/drivers/cpufreq/Kconfig.arm +++ b/drivers/cpufreq/Kconfig.arm @@ -77,6 +77,15 @@ config ARM_EXYNOS5250_CPUFREQ This adds the CPUFreq driver for Samsung EXYNOS5250 SoC. +config ARM_IMX6Q_CPUFREQ + tristate "Freescale i.MX6Q cpufreq support" + depends on SOC_IMX6Q + depends on REGULATOR_ANATOP + help + This adds cpufreq driver support for Freescale i.MX6Q SOC. + + If in doubt, say N. + config ARM_SPEAR_CPUFREQ bool "SPEAr CPUFreq support" depends on PLAT_SPEAR diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile index e2a5da7..93610b2 100644 --- a/drivers/cpufreq/Makefile +++ b/drivers/cpufreq/Makefile @@ -54,6 +54,7 @@ obj-$(CONFIG_ARM_EXYNOS5250_CPUFREQ) += exynos5250-cpufreq.o obj-$(CONFIG_ARM_OMAP2PLUS_CPUFREQ) += omap-cpufreq.o obj-$(CONFIG_ARM_SPEAR_CPUFREQ) += spear-cpufreq.o obj-$(CONFIG_ARM_HIGHBANK_CPUFREQ) += highbank-cpufreq.o +obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o ################################################################################## # PowerPC platform drivers diff --git a/drivers/cpufreq/imx6q-cpufreq.c b/drivers/cpufreq/imx6q-cpufreq.c new file mode 100644 index 0000000..f73b245 --- /dev/null +++ b/drivers/cpufreq/imx6q-cpufreq.c @@ -0,0 +1,331 @@ +/* + * Copyright (C) 2013 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/clk.h> +#include <linux/cpufreq.h> +#include <linux/delay.h> +#include <linux/err.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/opp.h> +#include <linux/platform_device.h> +#include <linux/regulator/consumer.h> + +#define PU_SOC_VOLTAGE_NORMAL 1250000 +#define PU_SOC_VOLTAGE_HIGH 1275000 +#define FREQ_1P2_GHZ 1200000000 + +static struct regulator *arm_reg; +static struct regulator *pu_reg; +static struct regulator *soc_reg; + +static struct clk *arm_clk; +static struct clk *pll1_sys_clk; +static struct clk *pll1_sw_clk; +static struct clk *step_clk; +static struct clk *pll2_pfd2_396m_clk; + +static struct device *cpu_dev; +static struct cpufreq_frequency_table *freq_table; +static unsigned int transition_latency; + +static int imx6q_verify_speed(struct cpufreq_policy *policy) +{ + return cpufreq_frequency_table_verify(policy, freq_table); +} + +static unsigned int imx6q_get_speed(unsigned int cpu) +{ + return clk_get_rate(arm_clk) / 1000; +} + +static int imx6q_set_target(struct cpufreq_policy *policy, + unsigned int target_freq, unsigned int relation) +{ + struct cpufreq_freqs freqs; + struct opp *opp; + unsigned long freq_hz, volt, volt_old; + unsigned int index, cpu; + int ret; + + ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, + relation, &index); + if (ret) { + dev_err(cpu_dev, "failed to match target frequency %d: %d\n", + target_freq, ret); + return ret; + } + + freqs.new = freq_table[index].frequency; + freq_hz = freqs.new * 1000; + freqs.old = clk_get_rate(arm_clk) / 1000; + + if (freqs.old == freqs.new) + return 0; + + for_each_online_cpu(cpu) { + freqs.cpu = cpu; + cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); + } + + rcu_read_lock(); + opp = opp_find_freq_ceil(cpu_dev, &freq_hz); + if (IS_ERR(opp)) { + rcu_read_unlock(); + dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); + return PTR_ERR(opp); + } + + volt = opp_get_voltage(opp); + rcu_read_unlock(); + volt_old = regulator_get_voltage(arm_reg); + + dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", + freqs.old / 1000, volt_old / 1000, + freqs.new / 1000, volt / 1000); + + /* scaling up? scale voltage before frequency */ + if (freqs.new > freqs.old) { + ret = regulator_set_voltage_tol(arm_reg, volt, 0); + if (ret) { + dev_err(cpu_dev, + "failed to scale vddarm up: %d\n", ret); + return ret; + } + + /* + * Need to increase vddpu and vddsoc for safety + * if we are about to run at 1.2 GHz. + */ + if (freqs.new == FREQ_1P2_GHZ / 1000) { + regulator_set_voltage_tol(pu_reg, + PU_SOC_VOLTAGE_HIGH, 0); + regulator_set_voltage_tol(soc_reg, + PU_SOC_VOLTAGE_HIGH, 0); + } + } + + /* + * The setpoints are selected per PLL/PDF frequencies, so we need to + * reprogram PLL for frequency scaling. The procedure of reprogramming + * PLL1 is as below. + * + * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it + * - Disable pll1_sys_clk and reprogram it + * - Enable pll1_sys_clk and reparent pll1_sw_clk back to it + * - Disable pll2_pfd2_396m_clk + */ + clk_prepare_enable(pll2_pfd2_396m_clk); + clk_set_parent(step_clk, pll2_pfd2_396m_clk); + clk_set_parent(pll1_sw_clk, step_clk); + clk_prepare_enable(pll1_sys_clk); + if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { + clk_disable_unprepare(pll1_sys_clk); + clk_set_rate(pll1_sys_clk, freqs.new * 1000); + clk_prepare_enable(pll1_sys_clk); + clk_set_parent(pll1_sw_clk, pll1_sys_clk); + clk_disable_unprepare(pll2_pfd2_396m_clk); + } else { + /* + * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient + * to provide the frequency. + */ + clk_disable_unprepare(pll1_sys_clk); + } + + /* Ensure the arm clock divider is what we expect */ + ret = clk_set_rate(arm_clk, freqs.new * 1000); + if (ret) { + dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); + regulator_set_voltage_tol(arm_reg, volt_old, 0); + return ret; + } + + /* scaling down? scale voltage after frequency */ + if (freqs.new < freqs.old) { + ret = regulator_set_voltage_tol(arm_reg, volt, 0); + if (ret) + dev_warn(cpu_dev, + "failed to scale vddarm down: %d\n", ret); + + if (freqs.old == FREQ_1P2_GHZ / 1000) { + regulator_set_voltage_tol(pu_reg, + PU_SOC_VOLTAGE_NORMAL, 0); + regulator_set_voltage_tol(soc_reg, + PU_SOC_VOLTAGE_NORMAL, 0); + } + } + + for_each_online_cpu(cpu) { + freqs.cpu = cpu; + cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); + } + + return 0; +} + +static int imx6q_cpufreq_init(struct cpufreq_policy *policy) +{ + int ret; + + ret = cpufreq_frequency_table_cpuinfo(policy, freq_table); + if (ret) { + dev_err(cpu_dev, "invalid frequency table: %d\n", ret); + return ret; + } + + policy->cpuinfo.transition_latency = transition_latency; + policy->cur = clk_get_rate(arm_clk) / 1000; + cpumask_setall(policy->cpus); + cpufreq_frequency_table_get_attr(freq_table, policy->cpu); + + return 0; +} + +static int imx6q_cpufreq_exit(struct cpufreq_policy *policy) +{ + cpufreq_frequency_table_put_attr(policy->cpu); + return 0; +} + +static struct freq_attr *imx6q_cpufreq_attr[] = { + &cpufreq_freq_attr_scaling_available_freqs, + NULL, +}; + +static struct cpufreq_driver imx6q_cpufreq_driver = { + .verify = imx6q_verify_speed, + .target = imx6q_set_target, + .get = imx6q_get_speed, + .init = imx6q_cpufreq_init, + .exit = imx6q_cpufreq_exit, + .name = "imx6q-cpufreq", + .attr = imx6q_cpufreq_attr, +}; + +static int imx6q_cpufreq_probe(struct platform_device *pdev) +{ + struct device_node *np; + struct opp *opp; + unsigned long min_volt, max_volt; + int num, ret; + + cpu_dev = &pdev->dev; + + np = of_find_node_by_path("/cpus/cpu@0"); + if (!np) { + dev_err(cpu_dev, "failed to find cpu0 node\n"); + return -ENOENT; + } + + cpu_dev->of_node = np; + + arm_clk = devm_clk_get(cpu_dev, "arm"); + pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys"); + pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw"); + step_clk = devm_clk_get(cpu_dev, "step"); + pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m"); + if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || + IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { + dev_err(cpu_dev, "failed to get clocks\n"); + ret = -ENOENT; + goto put_node; + } + + arm_reg = devm_regulator_get(cpu_dev, "arm"); + pu_reg = devm_regulator_get(cpu_dev, "pu"); + soc_reg = devm_regulator_get(cpu_dev, "soc"); + if (!arm_reg || !pu_reg || !soc_reg) { + dev_err(cpu_dev, "failed to get regulators\n"); + ret = -ENOENT; + goto put_node; + } + + /* We expect an OPP table supplied by platform */ + num = opp_get_opp_count(cpu_dev); + if (num < 0) { + ret = num; + dev_err(cpu_dev, "no OPP table is found: %d\n", ret); + goto put_node; + } + + ret = opp_init_cpufreq_table(cpu_dev, &freq_table); + if (ret) { + dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); + goto put_node; + } + + if (of_property_read_u32(np, "clock-latency", &transition_latency)) + transition_latency = CPUFREQ_ETERNAL; + + /* + * OPP is maintained in order of increasing frequency, and + * freq_table initialised from OPP is therefore sorted in the + * same order. + */ + rcu_read_lock(); + opp = opp_find_freq_exact(cpu_dev, + freq_table[0].frequency * 1000, true); + min_volt = opp_get_voltage(opp); + opp = opp_find_freq_exact(cpu_dev, + freq_table[--num].frequency * 1000, true); + max_volt = opp_get_voltage(opp); + rcu_read_unlock(); + ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); + if (ret > 0) + transition_latency += ret * 1000; + + /* Count vddpu and vddsoc latency in for 1.2 GHz support */ + if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) { + ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL, + PU_SOC_VOLTAGE_HIGH); + if (ret > 0) + transition_latency += ret * 1000; + ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL, + PU_SOC_VOLTAGE_HIGH); + if (ret > 0) + transition_latency += ret * 1000; + } + + ret = cpufreq_register_driver(&imx6q_cpufreq_driver); + if (ret) { + dev_err(cpu_dev, "failed register driver: %d\n", ret); + goto free_freq_table; + } + + of_node_put(np); + return 0; + +free_freq_table: + opp_free_cpufreq_table(cpu_dev, &freq_table); +put_node: + of_node_put(np); + return ret; +} + +static int imx6q_cpufreq_remove(struct platform_device *pdev) +{ + cpufreq_unregister_driver(&imx6q_cpufreq_driver); + opp_free_cpufreq_table(cpu_dev, &freq_table); + + return 0; +} + +static struct platform_driver imx6q_cpufreq_platdrv = { + .driver = { + .name = "imx6q-cpufreq", + .owner = THIS_MODULE, + }, + .probe = imx6q_cpufreq_probe, + .remove = imx6q_cpufreq_remove, +}; +module_platform_driver(imx6q_cpufreq_platdrv); + +MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); +MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); +MODULE_LICENSE("GPL");