@@ -1544,6 +1544,181 @@ void xe_migrate_wait(struct xe_migrate *m)
dma_fence_wait(m->fence, false);
}
+static u32 pte_update_cmd_size(u64 size)
+{
+ u32 num_dword;
+ u64 entries = DIV_ROUND_UP(size, XE_PAGE_SIZE);
+
+ XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER);
+ /*
+ * MI_STORE_DATA_IMM command is used to update page table. Each
+ * instruction can update maximumly 0x1ff pte entries. To update
+ * n (n <= 0x1ff) pte entries, we need:
+ * 1 dword for the MI_STORE_DATA_IMM command header (opcode etc)
+ * 2 dword for the page table's physical location
+ * 2*n dword for value of pte to fill (each pte entry is 2 dwords)
+ */
+ num_dword = (1 + 2) * DIV_ROUND_UP(entries, 0x1ff);
+ num_dword += entries * 2;
+
+ return num_dword;
+}
+
+static void build_pt_update_batch_sram(struct xe_migrate *m,
+ struct xe_bb *bb, u32 pt_offset,
+ dma_addr_t *sram_addr, u32 size)
+{
+ u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB];
+ u32 ptes;
+ int i = 0;
+
+ ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
+ while (ptes) {
+ u32 chunk = min(0x1ffU, ptes);
+
+ bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
+ bb->cs[bb->len++] = pt_offset;
+ bb->cs[bb->len++] = 0;
+
+ pt_offset += chunk * 8;
+ ptes -= chunk;
+
+ while (chunk--) {
+ u64 addr = sram_addr[i++] & PAGE_MASK;
+
+ xe_tile_assert(m->tile, addr);
+ addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
+ addr, pat_index,
+ 0, false, 0);
+ bb->cs[bb->len++] = lower_32_bits(addr);
+ bb->cs[bb->len++] = upper_32_bits(addr);
+ }
+ }
+}
+
+enum xe_migrate_copy_dir {
+ XE_MIGRATE_COPY_TO_VRAM,
+ XE_MIGRATE_COPY_TO_SRAM,
+};
+
+static struct dma_fence *xe_migrate_vram(struct xe_migrate *m,
+ unsigned long npages,
+ dma_addr_t *sram_addr, u64 vram_addr,
+ const enum xe_migrate_copy_dir dir)
+{
+ struct xe_gt *gt = m->tile->primary_gt;
+ struct xe_device *xe = gt_to_xe(gt);
+ struct dma_fence *fence = NULL;
+ u32 batch_size = 2;
+ u64 src_L0_ofs, dst_L0_ofs;
+ u64 round_update_size;
+ struct xe_sched_job *job;
+ struct xe_bb *bb;
+ u32 update_idx, pt_slot = 0;
+ int err;
+
+ if (npages * PAGE_SIZE > MAX_PREEMPTDISABLE_TRANSFER)
+ return ERR_PTR(-EINVAL);
+
+ round_update_size = npages * PAGE_SIZE;
+ batch_size += pte_update_cmd_size(round_update_size);
+ batch_size += EMIT_COPY_DW;
+
+ bb = xe_bb_new(gt, batch_size, true);
+ if (IS_ERR(bb)) {
+ err = PTR_ERR(bb);
+ return ERR_PTR(err);
+ }
+
+ build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE,
+ sram_addr, round_update_size);
+
+ if (dir == XE_MIGRATE_COPY_TO_VRAM) {
+ src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0);
+ dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
+
+ } else {
+ src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
+ dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0);
+ }
+
+ bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
+ update_idx = bb->len;
+
+ emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, round_update_size,
+ XE_PAGE_SIZE);
+
+ job = xe_bb_create_migration_job(m->q, bb,
+ xe_migrate_batch_base(m, true),
+ update_idx);
+ if (IS_ERR(job)) {
+ err = PTR_ERR(job);
+ goto err;
+ }
+
+ xe_sched_job_add_migrate_flush(job, 0);
+
+ mutex_lock(&m->job_mutex);
+ xe_sched_job_arm(job);
+ fence = dma_fence_get(&job->drm.s_fence->finished);
+ xe_sched_job_push(job);
+
+ dma_fence_put(m->fence);
+ m->fence = dma_fence_get(fence);
+ mutex_unlock(&m->job_mutex);
+
+ xe_bb_free(bb, fence);
+
+ return fence;
+
+err:
+ xe_bb_free(bb, NULL);
+
+ return ERR_PTR(err);
+}
+
+/**
+ * xe_migrate_to_vram() - Migrate to VRAM
+ * @m: The migration context.
+ * @npages: Number of pages to migrate.
+ * @src_addr: Array of dma addresses (source of migrate)
+ * @dst_addr: Device physical address of VRAM (destination of migrate)
+ *
+ * Copy from an array dma addresses to a VRAM device physical address
+ *
+ * Return: dma fence for migrate to signal completion on succees, ERR_PTR on
+ * failure
+ */
+struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
+ unsigned long npages,
+ dma_addr_t *src_addr,
+ u64 dst_addr)
+{
+ return xe_migrate_vram(m, npages, src_addr, dst_addr,
+ XE_MIGRATE_COPY_TO_VRAM);
+}
+
+/**
+ * xe_migrate_from_vram() - Migrate from VRAM
+ * @m: The migration context.
+ * @npages: Number of pages to migrate.
+ * @src_addr: Device physical address of VRAM (source of migrate)
+ * @dst_addr: Array of dma addresses (destination of migrate)
+ *
+ * Copy from a VRAM device physical address to an array dma addresses
+ *
+ * Return: dma fence for migrate to signal completion on succees, ERR_PTR on
+ * failure
+ */
+struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
+ unsigned long npages,
+ u64 src_addr,
+ dma_addr_t *dst_addr)
+{
+ return xe_migrate_vram(m, npages, dst_addr, src_addr,
+ XE_MIGRATE_COPY_TO_SRAM);
+}
+
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
#include "tests/xe_migrate.c"
#endif
@@ -95,6 +95,16 @@ struct xe_migrate_pt_update {
struct xe_migrate *xe_migrate_init(struct xe_tile *tile);
+struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
+ unsigned long npages,
+ dma_addr_t *src_addr,
+ u64 dst_addr);
+
+struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
+ unsigned long npages,
+ u64 src_addr,
+ dma_addr_t *dst_addr);
+
struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
struct xe_bo *src_bo,
struct xe_bo *dst_bo,