From patchwork Mon May 19 10:10:53 2014 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: Maarten Lankhorst X-Patchwork-Id: 4200811 Return-Path: X-Original-To: patchwork-dri-devel@patchwork.kernel.org Delivered-To: patchwork-parsemail@patchwork1.web.kernel.org Received: from mail.kernel.org (mail.kernel.org [198.145.19.201]) by patchwork1.web.kernel.org (Postfix) with ESMTP id 87E0A9F32A for ; Mon, 19 May 2014 10:11:03 +0000 (UTC) Received: from mail.kernel.org (localhost [127.0.0.1]) by mail.kernel.org (Postfix) with ESMTP id B85C620221 for ; Mon, 19 May 2014 10:11:01 +0000 (UTC) Received: from gabe.freedesktop.org (gabe.freedesktop.org [131.252.210.177]) by mail.kernel.org (Postfix) with ESMTP id 86E50202A1 for ; Mon, 19 May 2014 10:10:59 +0000 (UTC) Received: from gabe.freedesktop.org (localhost [127.0.0.1]) by gabe.freedesktop.org (Postfix) with ESMTP id D32676E3BE; Mon, 19 May 2014 03:10:57 -0700 (PDT) X-Original-To: dri-devel@lists.freedesktop.org Delivered-To: dri-devel@lists.freedesktop.org Received: from youngberry.canonical.com (youngberry.canonical.com [91.189.89.112]) by gabe.freedesktop.org (Postfix) with ESMTP id 28A126E3BE; Mon, 19 May 2014 03:10:56 -0700 (PDT) Received: from 5ed49945.cm-7-5c.dynamic.ziggo.nl ([94.212.153.69] helo=[192.168.1.128]) by youngberry.canonical.com with esmtpsa (TLS1.0:DHE_RSA_AES_128_CBC_SHA1:16) (Exim 4.71) (envelope-from ) id 1WmKWz-0001O0-TX; Mon, 19 May 2014 10:10:53 +0000 Message-ID: <5379D8AD.1000904@canonical.com> Date: Mon, 19 May 2014 12:10:53 +0200 From: Maarten Lankhorst User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101 Thunderbird/24.5.0 MIME-Version: 1.0 To: =?ISO-8859-1?Q?Christian_K=F6nig?= , airlied@linux.ie Subject: Re: [RFC PATCH v1 08/16] drm/radeon: use common fence implementation for fences References: <20140514145134.21163.32350.stgit@patser> <20140514145809.21163.64947.stgit@patser> <53738BCC.2070809@vodafone.de> <5374131D.4010906@canonical.com> <53748702.6070606@vodafone.de> <53748AFA.8010109@canonical.com> <53748BFD.1050608@vodafone.de> <5374BB4A.6070102@canonical.com> <5374BEE2.4060608@vodafone.de> <5374CC9A.9090905@canonical.com> <5374E1B5.2020408@vodafone.de> <5374E410.1080203@canonical.com> <5374E792.4070607@vodafone.de> <5379BA04.8000901@canonical.com> <5379C06D.3050507@vodafone.de> In-Reply-To: <5379C06D.3050507@vodafone.de> Cc: nouveau@lists.freedesktop.org, linux-kernel@vger.kernel.org, dri-devel@lists.freedesktop.org X-BeenThere: dri-devel@lists.freedesktop.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: Direct Rendering Infrastructure - Development List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: dri-devel-bounces@lists.freedesktop.org Sender: "dri-devel" X-Spam-Status: No, score=-4.8 required=5.0 tests=BAYES_00, MIME_QP_LONG_LINE, RCVD_IN_DNSWL_MED, RP_MATCHES_RCVD, UNPARSEABLE_RELAY autolearn=unavailable version=3.3.1 X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on mail.kernel.org X-Virus-Scanned: ClamAV using ClamSMTP op 19-05-14 10:27, Christian König schreef: > Am 19.05.2014 10:00, schrieb Maarten Lankhorst: >> op 15-05-14 18:13, Christian König schreef: >>> Am 15.05.2014 17:58, schrieb Maarten Lankhorst: >>>> op 15-05-14 17:48, Christian König schreef: >>>>> Am 15.05.2014 16:18, schrieb Maarten Lankhorst: >>>>>> op 15-05-14 15:19, Christian König schreef: >>>>>>> Am 15.05.2014 15:04, schrieb Maarten Lankhorst: >>>>>>>> op 15-05-14 11:42, Christian König schreef: >>>>>>>>> Am 15.05.2014 11:38, schrieb Maarten Lankhorst: >>>>>>>>>> op 15-05-14 11:21, Christian König schreef: >>>>>>>>>>> Am 15.05.2014 03:06, schrieb Maarten Lankhorst: >>>>>>>>>>>> op 14-05-14 17:29, Christian König schreef: >>>>>>>>>>>>>> + /* did fence get signaled after we enabled the sw irq? */ >>>>>>>>>>>>>> + if (atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { >>>>>>>>>>>>>> + radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); >>>>>>>>>>>>>> + return false; >>>>>>>>>>>>>> + } >>>>>>>>>>>>>> + >>>>>>>>>>>>>> + fence->fence_wake.flags = 0; >>>>>>>>>>>>>> + fence->fence_wake.private = NULL; >>>>>>>>>>>>>> + fence->fence_wake.func = radeon_fence_check_signaled; >>>>>>>>>>>>>> + __add_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); >>>>>>>>>>>>>> + fence_get(f); >>>>>>>>>>>>> That looks like a race condition to me. The fence needs to be added to the wait queue before the check, not after. >>>>>>>>>>>>> >>>>>>>>>>>>> Apart from that the whole approach looks like a really bad idea to me. How for example is lockup detection supposed to happen with this? >>>>>>>>>>>> It's not a race condition because fence_queue.lock is held when this function is called. >>>>>>>>>>> Ah, I see. That's also the reason why you moved the wake_up_all out of the processing function. >>>>>>>>>> Correct. :-) >>>>>>>>>>>> Lockup's a bit of a weird problem, the changes wouldn't allow core ttm code to handle the lockup any more, >>>>>>>>>>>> but any driver specific wait code would still handle this. I did this by design, because in future patches the wait >>>>>>>>>>>> function may be called from outside of the radeon driver. The official wait function takes a timeout parameter, >>>>>>>>>>>> so lockups wouldn't be fatal if the timeout is set to something like 30*HZ for example, it would still return >>>>>>>>>>>> and report that the function timed out. >>>>>>>>>>> Timeouts help with the detection of the lockup, but not at all with the handling of them. >>>>>>>>>>> >>>>>>>>>>> What we essentially need is a wait callback into the driver that is called in non atomic context without any locks held. >>>>>>>>>>> >>>>>>>>>>> This way we can block for the fence to become signaled with a timeout and can then also initiate the reset handling if necessary. >>>>>>>>>>> >>>>>>>>>>> The way you designed the interface now means that the driver never gets a chance to wait for the hardware to become idle and so never has the opportunity to the reset the whole thing. >>>>>>>>>> You could set up a hangcheck timer like intel does, and end up with a reliable hangcheck detection that doesn't depend on cpu waits. :-) Or override the default wait function and restore the old behavior. >>>>>>>>> >>>>>>>>> Overriding the default wait function sounds better, please implement it this way. >>>>>>>>> >>>>>>>>> Thanks, >>>>>>>>> Christian. >>>>>>>> >>>>>>>> Does this modification look sane? >>>>>>> Adding the timeout is on my todo list for quite some time as well, so this part makes sense. >>>>>>> >>>>>>>> +static long __radeon_fence_wait(struct fence *f, bool intr, long timeout) >>>>>>>> +{ >>>>>>>> + struct radeon_fence *fence = to_radeon_fence(f); >>>>>>>> + u64 target_seq[RADEON_NUM_RINGS] = {}; >>>>>>>> + >>>>>>>> + target_seq[fence->ring] = fence->seq; >>>>>>>> + return radeon_fence_wait_seq_timeout(fence->rdev, target_seq, intr, timeout); >>>>>>>> +} >>>>>>> When this call is comming from outside the radeon driver you need to lock rdev->exclusive_lock here to make sure not to interfere with a possible reset. >>>>>> Ah thanks, I'll add that. >>>>>> >>>>>>>> .get_timeline_name = radeon_fence_get_timeline_name, >>>>>>>> .enable_signaling = radeon_fence_enable_signaling, >>>>>>>> .signaled = __radeon_fence_signaled, >>>>>>> Do we still need those callback when we implemented the wait callback? >>>>>> .get_timeline_name is used for debugging (trace events). >>>>>> .signaled is the non-blocking call to check if the fence is signaled or not. >>>>>> .enable_signaling is used for adding callbacks upon fence completion, the default 'fence_default_wait' uses it, so >>>>>> when it works no separate implementation is needed unless you want to do more than just waiting. >>>>>> It's also used when fence_add_callback is called. i915 can be patched to use it. ;-) >>>>> >>>>> I just meant enable_signaling, the other ones are fine with me. The problem with enable_signaling is that it's called with a spin lock held, so we can't sleep. >>>>> >>>>> While resetting the GPU could be moved out into a timer the problem here is that I can't lock rdev->exclusive_lock in such situations. >>>>> >>>>> This means when i915 would call into radeon to enable signaling for a fence we can't make sure that there is not GPU reset running on another CPU. And touching the IRQ registers while a reset is going on is a really good recipe to lockup the whole system. >>>> If you increase the irq counter on all rings before doing a gpu reset, adjust the state and call sw_irq_put when done this race could never happen. Or am I missing something? >>>> >>> Beside that's being extremely ugly in the case of a hard PCI reset even touching any register or just accessing VRAM in this moment can crash the box. Just working around the enable/disable of the interrupt here won't help us much. >>> >>> Adding another spin lock won't work so well either, because the reset function itself wants to sleep as well. >>> >>> The only solution I see off hand is making the critical reset code path work in atomic context as well, but that's not really doable cause AFAIK we need to work with functions from the PCI subsystem and spinning on a lock for up to a second is not really desirable also. >> I've checked the code a little but that can be the case now as well. the new implementation's __radeon_fence_wait will be protected by the exclusive_lock,, but enable_signaling is only protected by the fence_queue.lock and is_signaled is not protected. But this is not a change from the current situation, so it would only become a problem if the gpu hangs in a cross-device situation. >> >> I think adding 1 to the irq refcount in the reset sequence and adding a down_read_trylock on the exclusive lock would help. If the trylock fails we could perform only the safe actions without touching any of the gpu registers or vram, adding the refcount is needed to ensure enable_signaling works as intended. > > The problem here is that the whole approach collides with the way we do reset handling from a conceptual point of view. Every IOCTL or other call chain into the driver is protected by the read side of the exclusive_lock semaphore. So in the case of a GPU lockup we can take the write side of the semaphore and so make sure that we have nobody else accessing the hardware or internal driver structures only changed at init time. > > Leaking a drivers IRQ context into another driver as well as calling into a driver in atomic context is just a quite uncommon approach and should be considered very carefully. > > I would rather vote for a completely synchronous interface only allowing blocking waits and checks if a fence is signaled from not atomic context. > > If a driver needs to avoid blocking it should just use a workqueue and checking a fence outside your own driver is probably be better done in a bottom halve handler anyway. Except that you might want to do something like fence_is_signaled() in another driver to check whether you need to defer, or can submit the batch buffer immediately, saving a bunch of context switches. Running the is_signaled atomic is really useful here because it means you can't do too many scary things in your is_signaled handler. In case of enable_signaling it was the only sane solution, because fence_signal can be called from irq context, and any calls after that to fence_add_callback and fence_wait aren't allowed to do anything, so fence_enable_sw_signaling and the default wait implementation must be atomic. fence_wait itself doesn't have to be, so it's easy to grab exclusive_lock there. Simple fence drivers may drop some state after calling fence_signal, so calling .enable_signaling after fence_signal is bad, and fence_signal must also wait for any previous call to enable_signaling to be completed. This means those functions have to be implemented with the atomic spinlock held and irqs disabled. :-) The .signaled callback could strictly speaking still be called after fence_signal is called, but this function is optional. I tried other locking approaches, but when I used a separate spinlock for the fence things got even messier and I ended up with impossible to eliminate locking inversions, or I removed the guarantee that calling fence_signal meant that enable_signaling had either been not called or completed, or other bugs and much harder to read code. ~Maarten Revised diff below. --- ---- diff --git a/drivers/gpu/drm/radeon/radeon.h b/drivers/gpu/drm/radeon/radeon.h index 68528619834a..a7d839a158ae 100644 --- a/drivers/gpu/drm/radeon/radeon.h +++ b/drivers/gpu/drm/radeon/radeon.h @@ -64,6 +64,7 @@ #include #include #include +#include #include #include @@ -113,9 +114,6 @@ extern int radeon_hard_reset; #define RADEONFB_CONN_LIMIT 4 #define RADEON_BIOS_NUM_SCRATCH 8 -/* fence seq are set to this number when signaled */ -#define RADEON_FENCE_SIGNALED_SEQ 0LL - /* internal ring indices */ /* r1xx+ has gfx CP ring */ #define RADEON_RING_TYPE_GFX_INDEX 0 @@ -347,12 +345,15 @@ struct radeon_fence_driver { }; struct radeon_fence { + struct fence base; + struct radeon_device *rdev; - struct kref kref; /* protected by radeon_fence.lock */ uint64_t seq; /* RB, DMA, etc. */ unsigned ring; + + wait_queue_t fence_wake; }; int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring); @@ -2256,6 +2257,7 @@ struct radeon_device { struct radeon_mman mman; struct radeon_fence_driver fence_drv[RADEON_NUM_RINGS]; wait_queue_head_t fence_queue; + unsigned fence_context; struct mutex ring_lock; struct radeon_ring ring[RADEON_NUM_RINGS]; bool ib_pool_ready; @@ -2346,11 +2348,6 @@ u32 cik_mm_rdoorbell(struct radeon_device *rdev, u32 index); void cik_mm_wdoorbell(struct radeon_device *rdev, u32 index, u32 v); /* - * Cast helper - */ -#define to_radeon_fence(p) ((struct radeon_fence *)(p)) - -/* * Registers read & write functions. */ #define RREG8(reg) readb((rdev->rmmio) + (reg)) diff --git a/drivers/gpu/drm/radeon/radeon_device.c b/drivers/gpu/drm/radeon/radeon_device.c index 0e770bbf7e29..19c6911ed49f 100644 --- a/drivers/gpu/drm/radeon/radeon_device.c +++ b/drivers/gpu/drm/radeon/radeon_device.c @@ -1175,6 +1175,7 @@ int radeon_device_init(struct radeon_device *rdev, for (i = 0; i < RADEON_NUM_RINGS; i++) { rdev->ring[i].idx = i; } + rdev->fence_context = fence_context_alloc(RADEON_NUM_RINGS); DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X).\n", radeon_family_name[rdev->family], pdev->vendor, pdev->device, @@ -1565,6 +1566,54 @@ int radeon_resume_kms(struct drm_device *dev, bool resume, bool fbcon) return 0; } +static uint32_t radeon_gpu_mask_sw_irq(struct radeon_device *rdev) +{ + uint32_t mask = 0; + int i; + + if (!rdev->ddev->irq_enabled) + return mask; + + /* + * increase refcount on sw interrupts for all rings to stop + * enabling interrupts in radeon_fence_enable_signaling during + * gpu reset. + */ + + for (i = 0; i < RADEON_NUM_RINGS; ++i) { + if (!rdev->ring[i].ready) + continue; + + atomic_inc(&rdev->irq.ring_int[i]); + mask |= 1 << i; + } + return mask; +} + +static void radeon_gpu_unmask_sw_irq(struct radeon_device *rdev, uint32_t mask) +{ + unsigned long irqflags; + int i; + + if (!mask) + return; + + /* + * undo refcount increase, and reset irqs to correct value. + */ + + for (i = 0; i < RADEON_NUM_RINGS; ++i) { + if (!(mask & (1 << i))) + continue; + + atomic_dec(&rdev->irq.ring_int[i]); + } + + spin_lock_irqsave(&rdev->irq.lock, irqflags); + radeon_irq_set(rdev); + spin_unlock_irqrestore(&rdev->irq.lock, irqflags); +} + /** * radeon_gpu_reset - reset the asic * @@ -1582,6 +1631,7 @@ int radeon_gpu_reset(struct radeon_device *rdev) int i, r; int resched; + uint32_t sw_mask; down_write(&rdev->exclusive_lock); @@ -1595,6 +1645,7 @@ int radeon_gpu_reset(struct radeon_device *rdev) radeon_save_bios_scratch_regs(rdev); /* block TTM */ resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev); + sw_mask = radeon_gpu_mask_sw_irq(rdev); radeon_pm_suspend(rdev); radeon_suspend(rdev); @@ -1644,6 +1695,7 @@ retry: radeon_pm_resume(rdev); drm_helper_resume_force_mode(rdev->ddev); + radeon_gpu_unmask_sw_irq(rdev, sw_mask); ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched); if (r) { /* bad news, how to tell it to userspace ? */ diff --git a/drivers/gpu/drm/radeon/radeon_fence.c b/drivers/gpu/drm/radeon/radeon_fence.c index a77b1c13ea43..db1f3b4708fa 100644 --- a/drivers/gpu/drm/radeon/radeon_fence.c +++ b/drivers/gpu/drm/radeon/radeon_fence.c @@ -39,6 +39,15 @@ #include "radeon.h" #include "radeon_trace.h" +static const struct fence_ops radeon_fence_ops; + +#define to_radeon_fence(p) \ + ({ \ + struct radeon_fence *__f; \ + __f = container_of((p), struct radeon_fence, base); \ + __f->base.ops == &radeon_fence_ops ? __f : NULL; \ + }) + /* * Fences * Fences mark an event in the GPUs pipeline and are used @@ -111,30 +120,55 @@ int radeon_fence_emit(struct radeon_device *rdev, struct radeon_fence **fence, int ring) { + u64 seq = ++rdev->fence_drv[ring].sync_seq[ring]; + /* we are protected by the ring emission mutex */ *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); if ((*fence) == NULL) { return -ENOMEM; } - kref_init(&((*fence)->kref)); - (*fence)->rdev = rdev; - (*fence)->seq = ++rdev->fence_drv[ring].sync_seq[ring]; (*fence)->ring = ring; + __fence_init(&(*fence)->base, &radeon_fence_ops, + &rdev->fence_queue.lock, rdev->fence_context + ring, seq); + (*fence)->rdev = rdev; + (*fence)->seq = seq; radeon_fence_ring_emit(rdev, ring, *fence); trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq); return 0; } /** - * radeon_fence_process - process a fence - * - * @rdev: radeon_device pointer - * @ring: ring index the fence is associated with + * radeon_fence_check_signaled - callback from fence_queue * - * Checks the current fence value and wakes the fence queue - * if the sequence number has increased (all asics). + * this function is called with fence_queue lock held, which is also used + * for the fence locking itself, so unlocked variants are used for + * fence_signal, and remove_wait_queue. */ -void radeon_fence_process(struct radeon_device *rdev, int ring) +static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key) +{ + struct radeon_fence *fence; + u64 seq; + + fence = container_of(wait, struct radeon_fence, fence_wake); + + seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); + if (seq >= fence->seq) { + int ret = __fence_signal(&fence->base); + + if (!ret) + FENCE_TRACE(&fence->base, "signaled from irq context\n"); + else + FENCE_TRACE(&fence->base, "was already signaled\n"); + + radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); + __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); + fence_put(&fence->base); + } else + FENCE_TRACE(&fence->base, "pending\n"); + return 0; +} + +static bool __radeon_fence_process(struct radeon_device *rdev, int ring) { uint64_t seq, last_seq, last_emitted; unsigned count_loop = 0; @@ -190,23 +224,22 @@ void radeon_fence_process(struct radeon_device *rdev, int ring) } } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); - if (wake) - wake_up_all(&rdev->fence_queue); + return wake; } /** - * radeon_fence_destroy - destroy a fence + * radeon_fence_process - process a fence * - * @kref: fence kref + * @rdev: radeon_device pointer + * @ring: ring index the fence is associated with * - * Frees the fence object (all asics). + * Checks the current fence value and wakes the fence queue + * if the sequence number has increased (all asics). */ -static void radeon_fence_destroy(struct kref *kref) +void radeon_fence_process(struct radeon_device *rdev, int ring) { - struct radeon_fence *fence; - - fence = container_of(kref, struct radeon_fence, kref); - kfree(fence); + if (__radeon_fence_process(rdev, ring)) + wake_up_all(&rdev->fence_queue); } /** @@ -237,6 +270,69 @@ static bool radeon_fence_seq_signaled(struct radeon_device *rdev, return false; } +static bool __radeon_fence_signaled(struct fence *f) +{ + struct radeon_fence *fence = to_radeon_fence(f); + struct radeon_device *rdev = fence->rdev; + unsigned ring = fence->ring; + u64 seq = fence->seq; + + if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { + return true; + } + + if (down_read_trylock(&rdev->exclusive_lock)) { + radeon_fence_process(rdev, ring); + up_read(&rdev->exclusive_lock); + + if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) { + return true; + } + } + return false; +} + +/** + * radeon_fence_enable_signaling - enable signalling on fence + * @fence: fence + * + * This function is called with fence_queue lock held, and adds a callback + * to fence_queue that checks if this fence is signaled, and if so it + * signals the fence and removes itself. + */ +static bool radeon_fence_enable_signaling(struct fence *f) +{ + struct radeon_fence *fence = to_radeon_fence(f); + struct radeon_device *rdev = fence->rdev; + + if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq || + !rdev->ddev->irq_enabled) + return false; + + radeon_irq_kms_sw_irq_get(rdev, fence->ring); + + if (down_read_trylock(&rdev->exclusive_lock)) { + if (__radeon_fence_process(rdev, fence->ring)) + wake_up_all_locked(&rdev->fence_queue); + + up_read(&rdev->exclusive_lock); + } + + /* did fence get signaled after we enabled the sw irq? */ + if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { + radeon_irq_kms_sw_irq_put(rdev, fence->ring); + return false; + } + + fence->fence_wake.flags = 0; + fence->fence_wake.private = NULL; + fence->fence_wake.func = radeon_fence_check_signaled; + __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); + fence_get(f); + + return true; +} + /** * radeon_fence_signaled - check if a fence has signaled * @@ -250,11 +346,13 @@ bool radeon_fence_signaled(struct radeon_fence *fence) if (!fence) { return true; } - if (fence->seq == RADEON_FENCE_SIGNALED_SEQ) { - return true; - } + if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { - fence->seq = RADEON_FENCE_SIGNALED_SEQ; + int ret; + + ret = fence_signal(&fence->base); + if (!ret) + FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n"); return true; } return false; @@ -283,28 +381,35 @@ static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) } /** - * radeon_fence_wait_seq - wait for a specific sequence numbers + * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers * * @rdev: radeon device pointer * @target_seq: sequence number(s) we want to wait for * @intr: use interruptable sleep + * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait * * Wait for the requested sequence number(s) to be written by any ring * (all asics). Sequnce number array is indexed by ring id. * @intr selects whether to use interruptable (true) or non-interruptable * (false) sleep when waiting for the sequence number. Helper function * for radeon_fence_wait_*(). - * Returns 0 if the sequence number has passed, error for all other cases. + * Returns remaining time if the sequence number has passed, 0 when + * the wait timeout, or an error for all other cases. * -EDEADLK is returned when a GPU lockup has been detected. */ -static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 *target_seq, - bool intr) +static int radeon_fence_wait_seq_timeout(struct radeon_device *rdev, + u64 *target_seq, bool intr, + long timeout) { uint64_t last_seq[RADEON_NUM_RINGS]; bool signaled; - int i, r; + int i; while (!radeon_fence_any_seq_signaled(rdev, target_seq)) { + long r, waited = timeout; + + waited = timeout < RADEON_FENCE_JIFFIES_TIMEOUT ? + timeout : RADEON_FENCE_JIFFIES_TIMEOUT; /* Save current sequence values, used to check for GPU lockups */ for (i = 0; i < RADEON_NUM_RINGS; ++i) { @@ -319,13 +424,15 @@ static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 *target_seq, if (intr) { r = wait_event_interruptible_timeout(rdev->fence_queue, ( (signaled = radeon_fence_any_seq_signaled(rdev, target_seq)) - || rdev->needs_reset), RADEON_FENCE_JIFFIES_TIMEOUT); + || rdev->needs_reset), waited); } else { r = wait_event_timeout(rdev->fence_queue, ( (signaled = radeon_fence_any_seq_signaled(rdev, target_seq)) - || rdev->needs_reset), RADEON_FENCE_JIFFIES_TIMEOUT); + || rdev->needs_reset), waited); } + timeout -= waited - r; + for (i = 0; i < RADEON_NUM_RINGS; ++i) { if (!target_seq[i]) continue; @@ -337,6 +444,12 @@ static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 *target_seq, if (unlikely(r < 0)) return r; + /* + * If this is a timed wait and the wait completely timed out just return. + */ + if (!timeout) + break; + if (unlikely(!signaled)) { if (rdev->needs_reset) return -EDEADLK; @@ -379,14 +492,14 @@ static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 *target_seq, } } } - return 0; + return timeout; } /** * radeon_fence_wait - wait for a fence to signal * * @fence: radeon fence object - * @intr: use interruptable sleep + * @intr: use interruptible sleep * * Wait for the requested fence to signal (all asics). * @intr selects whether to use interruptable (true) or non-interruptable @@ -398,20 +511,17 @@ int radeon_fence_wait(struct radeon_fence *fence, bool intr) uint64_t seq[RADEON_NUM_RINGS] = {}; int r; - if (fence == NULL) { - WARN(1, "Querying an invalid fence : %p !\n", fence); - return -EINVAL; - } - - seq[fence->ring] = fence->seq; - if (seq[fence->ring] == RADEON_FENCE_SIGNALED_SEQ) + if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags)) return 0; - r = radeon_fence_wait_seq(fence->rdev, seq, intr); - if (r) + seq[fence->ring] = fence->seq; + r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); + if (r < 0) { return r; - - fence->seq = RADEON_FENCE_SIGNALED_SEQ; + } + r = fence_signal(&fence->base); + if (!r) + FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); return 0; } @@ -434,7 +544,7 @@ int radeon_fence_wait_any(struct radeon_device *rdev, { uint64_t seq[RADEON_NUM_RINGS]; unsigned i, num_rings = 0; - int r; + long r; for (i = 0; i < RADEON_NUM_RINGS; ++i) { seq[i] = 0; @@ -443,20 +553,21 @@ int radeon_fence_wait_any(struct radeon_device *rdev, continue; } + if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fences[i]->base.flags)) { + /* already signaled */ + return 0; + } + seq[i] = fences[i]->seq; ++num_rings; - - /* test if something was allready signaled */ - if (seq[i] == RADEON_FENCE_SIGNALED_SEQ) - return 0; } /* nothing to wait for ? */ if (num_rings == 0) return -ENOENT; - r = radeon_fence_wait_seq(rdev, seq, intr); - if (r) { + r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); + if (r < 0) { return r; } return 0; @@ -475,6 +586,7 @@ int radeon_fence_wait_any(struct radeon_device *rdev, int radeon_fence_wait_next(struct radeon_device *rdev, int ring) { uint64_t seq[RADEON_NUM_RINGS] = {}; + long r; seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { @@ -482,7 +594,10 @@ int radeon_fence_wait_next(struct radeon_device *rdev, int ring) already the last emited fence */ return -ENOENT; } - return radeon_fence_wait_seq(rdev, seq, false); + r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); + if (r < 0) + return r; + return 0; } /** @@ -504,8 +619,8 @@ int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) if (!seq[ring]) return 0; - r = radeon_fence_wait_seq(rdev, seq, false); - if (r) { + r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); + if (r < 0) { if (r == -EDEADLK) return -EDEADLK; @@ -525,7 +640,7 @@ int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) */ struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) { - kref_get(&fence->kref); + fence_get(&fence->base); return fence; } @@ -541,9 +656,8 @@ void radeon_fence_unref(struct radeon_fence **fence) struct radeon_fence *tmp = *fence; *fence = NULL; - if (tmp) { - kref_put(&tmp->kref, radeon_fence_destroy); - } + if (tmp) + fence_put(&tmp->base); } /** @@ -832,3 +946,51 @@ int radeon_debugfs_fence_init(struct radeon_device *rdev) return 0; #endif } + +static long __radeon_fence_wait(struct fence *f, bool intr, long timeout) +{ + struct radeon_fence *fence = to_radeon_fence(f); + u64 target_seq[RADEON_NUM_RINGS] = {}; + struct radeon_device *rdev = fence->rdev; + unsigned long r; + + target_seq[fence->ring] = fence->seq; + + down_read(&rdev->exclusive_lock); + r = radeon_fence_wait_seq_timeout(fence->rdev, target_seq, intr, timeout); + + if (r > 0 && !fence_signal(&fence->base)) + FENCE_TRACE(&fence->base, "signaled from __radeon_fence_wait\n"); + + up_read(&rdev->exclusive_lock); + return r; + +} + +static const char *radeon_fence_get_driver_name(struct fence *fence) +{ + return "radeon"; +} + +static const char *radeon_fence_get_timeline_name(struct fence *f) +{ + struct radeon_fence *fence = to_radeon_fence(f); + switch (fence->ring) { + case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; + case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; + case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; + case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; + case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; + case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; + default: WARN_ON_ONCE(1); return "radeon.unk"; + } +} + +static const struct fence_ops radeon_fence_ops = { + .get_driver_name = radeon_fence_get_driver_name, + .get_timeline_name = radeon_fence_get_timeline_name, + .enable_signaling = radeon_fence_enable_signaling, + .signaled = __radeon_fence_signaled, + .wait = __radeon_fence_wait, + .release = NULL, +};