@@ -1114,6 +1114,19 @@ __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
if (new_start == lower_32_bits(*prev_start))
return;
+ /*
+ * When gt is unparked, we update the gt timestamp and start the ping
+ * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
+ * is unparked, all switched in contexts will have a start time that is
+ * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
+ *
+ * If neither gt_stamp nor new_start has rolled over, then the
+ * gt_stamp_hi does not need to be adjusted, however if one of them has
+ * rolled over, we need to adjust gt_stamp_hi accordingly.
+ *
+ * The below conditions address the cases of new_start rollover and
+ * gt_stamp_last rollover respectively.
+ */
if (new_start < gt_stamp_last &&
(new_start - gt_stamp_last) <= POLL_TIME_CLKS)
gt_stamp_hi++;
@@ -1125,17 +1138,45 @@ __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
}
-static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
+/*
+ * GuC updates shared memory and KMD reads it. Since this is not synchronized,
+ * we run into a race where the value read is inconsistent. Sometimes the
+ * inconsistency is in reading the upper MSB bytes of the last_in value when
+ * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
+ * 24 bits are zero. Since these are non-zero values, it is non-trivial to
+ * determine validity of these values. Instead we read the values multiple times
+ * until they are consistent. In test runs, 3 attempts results in consistent
+ * values. The upper bound is set to 6 attempts and may need to be tuned as per
+ * any new occurences.
+ */
+static void __get_engine_usage_record(struct intel_engine_cs *engine,
+ u32 *last_in, u32 *id, u32 *total)
{
struct guc_engine_usage_record *rec = intel_guc_engine_usage(engine);
+ int i = 0;
+
+ do {
+ *last_in = READ_ONCE(rec->last_switch_in_stamp);
+ *id = READ_ONCE(rec->current_context_index);
+ *total = READ_ONCE(rec->total_runtime);
+
+ if (READ_ONCE(rec->last_switch_in_stamp) == *last_in &&
+ READ_ONCE(rec->current_context_index) == *id &&
+ READ_ONCE(rec->total_runtime) == *total)
+ break;
+ } while (++i < 6);
+}
+
+static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
+{
struct intel_engine_guc_stats *stats = &engine->stats.guc;
struct intel_guc *guc = &engine->gt->uc.guc;
- u32 last_switch = rec->last_switch_in_stamp;
- u32 ctx_id = rec->current_context_index;
- u32 total = rec->total_runtime;
+ u32 last_switch, ctx_id, total;
lockdep_assert_held(&guc->timestamp.lock);
+ __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
+
stats->running = ctx_id != ~0U && last_switch;
if (stats->running)
__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
@@ -1237,6 +1278,10 @@ static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
stats_saved = *stats;
gt_stamp_saved = guc->timestamp.gt_stamp;
+ /*
+ * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
+ * start_gt_clk' calculation below for active engines.
+ */
guc_update_engine_gt_clks(engine);
guc_update_pm_timestamp(guc, now);
intel_gt_pm_put_async(gt);
@@ -1365,10 +1410,15 @@ void intel_guc_busyness_park(struct intel_gt *gt)
void intel_guc_busyness_unpark(struct intel_gt *gt)
{
struct intel_guc *guc = >->uc.guc;
+ unsigned long flags;
+ ktime_t unused;
if (!guc_submission_initialized(guc))
return;
+ spin_lock_irqsave(&guc->timestamp.lock, flags);
+ guc_update_pm_timestamp(guc, &unused);
+ spin_unlock_irqrestore(&guc->timestamp.lock, flags);
mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
guc->timestamp.ping_delay);
}