From patchwork Wed Jun 21 17:49:51 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Raghavendra Rao Ananta X-Patchwork-Id: 13287790 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by smtp.lore.kernel.org (Postfix) with ESMTP id 88902EB64D7 for ; Wed, 21 Jun 2023 17:50:42 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S231715AbjFURuk (ORCPT ); Wed, 21 Jun 2023 13:50:40 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:51934 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S230177AbjFURue (ORCPT ); Wed, 21 Jun 2023 13:50:34 -0400 Received: from mail-io1-xd49.google.com (mail-io1-xd49.google.com [IPv6:2607:f8b0:4864:20::d49]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 1C2621BE8 for ; Wed, 21 Jun 2023 10:50:21 -0700 (PDT) Received: by mail-io1-xd49.google.com with SMTP id ca18e2360f4ac-77e45f12b5bso274409439f.0 for ; Wed, 21 Jun 2023 10:50:21 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=20221208; t=1687369821; x=1689961821; h=cc:to:from:subject:message-id:mime-version:date:from:to:cc:subject :date:message-id:reply-to; bh=M2Pi5NoHESj8Z3cVyjIxHBZGJuUOmh0ZEAwy6lBZcrU=; b=hJzB2Nn+BXbJOesj3BRdRalcdIS0aZKiICVYVvpJ3ITu86QerkEAcsP0kJnwKKxlm7 LWZZBvLLQNjmdlsblij+vLZ31OghtrxdjK1mMtB6EZslpQdRkzgyvZPEV4r5AxEh52GH LPUhNJOi8cnJQ5nABmiaBw3nf5m5Zttm49kZmBn66qa3l0fn6vjiDKpIoZ3PxqXLfqPR cmAeyEzBmUgHB5BSoi6Wn7CoIro+OdMJdw94IP7BUcA0TrUAph4sNmOmfNSBlWyizxAM ZFdcdE/8bB0bHLWyhJe1kKrYdkgYEOh0nCOJd58opPaK9O4dNl1T/rOphsjHFFCKaD2n mnxQ== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20221208; t=1687369821; x=1689961821; h=cc:to:from:subject:message-id:mime-version:date:x-gm-message-state :from:to:cc:subject:date:message-id:reply-to; bh=M2Pi5NoHESj8Z3cVyjIxHBZGJuUOmh0ZEAwy6lBZcrU=; b=CavJ6K86fSy/l+cPhI5ylqCCCebKfMrr2IdE1pV1RIX8W849Io3UcNWsBGa1N0J1pq kQNZ1gyZWhhcvsErHpDimXjQnRjx5lO0WzXHUVDi5qXYVa2zVvideIspROh8LbqBg/pM zj6pWTQF4bZ4bmtb4gGgacCcAHbxNfpz//9dc42vooIk529WkteqehsLuBk+t7/1Ac/z 6uU1BHP2Lt4ywwgCt2KPNGP0j8DMM0GE5M//k7NIV61X/J/hlGWehFE7lvgHSS/NgYTx GKmJPZUj5vYBUdxaJhLb7Rsk9sOeLNIQS1xfgwp/U2xyNzcq4VFT7boRiEycHNbgxWSJ IVYg== X-Gm-Message-State: AC+VfDwaV8ikyTImMzT09YLQqnIR2AtyskKMY7QSpR1b8AsvIPV/GHHj XYYQpXl/EkD5KEHY5tPWdfk0vlQLWfDi X-Google-Smtp-Source: ACHHUZ6jd+CficbuyDuk8zE7kXanXSvf9kb2DPEw0WaC/8oltZOemjbHmf512hoWU2WdxW4XtM8DzAzxnyx6 X-Received: from rananta-linux.c.googlers.com ([fda3:e722:ac3:cc00:2b:ff92:c0a8:22b5]) (user=rananta job=sendgmr) by 2002:a05:6602:2013:b0:77e:2301:4b15 with SMTP id y19-20020a056602201300b0077e23014b15mr6271858iod.1.1687369821170; Wed, 21 Jun 2023 10:50:21 -0700 (PDT) Date: Wed, 21 Jun 2023 17:49:51 +0000 Mime-Version: 1.0 X-Mailer: git-send-email 2.41.0.162.gfafddb0af9-goog Message-ID: <20230621175002.2832640-1-rananta@google.com> Subject: [RESEND PATCH v5 00/11] KVM: arm64: Add support for FEAT_TLBIRANGE From: Raghavendra Rao Ananta To: Oliver Upton , Marc Zyngier , James Morse , Suzuki K Poulose Cc: Paolo Bonzini , Sean Christopherson , Huacai Chen , Zenghui Yu , Anup Patel , Atish Patra , Jing Zhang , Colton Lewis , Raghavendra Rao Anata , David Matlack , linux-arm-kernel@lists.infradead.org, kvmarm@lists.linux.dev, linux-mips@vger.kernel.org, kvm-riscv@lists.infradead.org, linux-riscv@lists.infradead.org, linux-kernel@vger.kernel.org, kvm@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: kvm@vger.kernel.org In certain code paths, KVM/ARM currently invalidates the entire VM's page-tables instead of just invalidating a necessary range. For example, when collapsing a table PTE to a block PTE, instead of iterating over each PTE and flushing them, KVM uses 'vmalls12e1is' TLBI operation to flush all the entries. This is inefficient since the guest would have to refill the TLBs again, even for the addresses that aren't covered by the table entry. The performance impact would scale poorly if many addresses in the VM is going through this remapping. For architectures that implement FEAT_TLBIRANGE, KVM can replace such inefficient paths by performing the invalidations only on the range of addresses that are in scope. This series tries to achieve the same in the areas of stage-2 map, unmap and write-protecting the pages. As suggested by Oliver in the original v5 of the series [1], I'm reposting the series by including v2 of David Matlack's 'KVM: Add a common API for range-based TLB invalidation' series [2]. Patches 1-4 includes David M.'s patches 1, 2, 6, and 7 from [2]. Patch-5 refactors the core arm64's __flush_tlb_range() to be used by other entities. Patch-6,7 adds a range-based TLBI mechanism for KVM (VHE and nVHE). Patch-8 implements the kvm_arch_flush_remote_tlbs_range() for arm64. Patch-9 aims to flush only the memslot that undergoes a write-protect, instead of the entire VM. Patch-10 operates on stage2_try_break_pte() to use the range based TLBI instructions when collapsing a table entry. The map path is the immediate consumer of this when KVM remaps a table entry into a block. Patch-11 modifies the stage-2 unmap path in which, if the system supports FEAT_TLBIRANGE, the TLB invalidations are skipped during the page-table. walk. Instead it's done in one go after the entire walk is finished. The series is based off of upstream v6.4-rc2. The performance evaluation was done on a hardware that supports FEAT_TLBIRANGE, on a VHE configuration, using a modified kvm_page_table_test. The modified version updates the guest code in the ADJUST_MAPPINGS case to not only access this page but also to access up to 512 pages backwards for every new page it iterates through. This is done to test the effect of TLBI misses after KVM has handled a fault. The series captures the impact in the map and unmap paths as described above. $ kvm_page_table_test -m 2 -v 128 -s anonymous_hugetlb_2mb -b $i +--------+------------------------------+------------------------------+ | mem_sz | ADJUST_MAPPINGS (s) | Unmap VM (s) | | (GB) | Baseline | Baseline + series | Baseline | Baseline + series | +--------+----------|-------------------+------------------------------+ | 1 | 3.44 | 2.97 | 0.007 | 0.005 | | 2 | 5.56 | 5.63 | 0.010 | 0.006 | | 4 | 11.03 | 10.44 | 0.015 | 0.008 | | 8 | 24.54 | 19.00 | 0.024 | 0.011 | | 16 | 40.16 | 36.83 | 0.041 | 0.018 | | 32 | 75.76 | 73.84 | 0.074 | 0.029 | | 64 | 151.58 | 152.62 | 0.148 | 0.050 | | 128 | 330.42 | 306.86 | 0.280 | 0.090 | +--------+----------+-------------------+----------+-------------------+ $ kvm_page_table_test -m 2 -b 128G -s anonymous_hugetlb_2mb -v $i +--------+------------------------------+ | vCPUs | ADJUST_MAPPINGS (s) | | | Baseline | Baseline + series | +--------+----------|-------------------+ | 1 | 138.69 | 135.58 | | 2 | 138.77 | 137.54 | | 4 | 162.57 | 135.82 | | 8 | 154.92 | 143.67 | | 16 | 122.02 | 118.86 | | 32 | 119.99 | 118.81 | | 64 | 190.70 | 169.36 | | 128 | 330.42 | 306.86 | +--------+----------+-------------------+ For the ADJUST_MAPPINGS cases, which maps back the 4K table entries to 2M hugepages, the series sees an average improvement of ~7%. For unmapping 2M hugepages, we see at least a 3x improvement. $ kvm_page_table_test -m 2 -b $i +--------+------------------------------+ | mem_sz | Unmap VM (s) | | (GB) | Baseline | Baseline + series | +--------+------------------------------+ | 1 | 0.52 | 0.13 | | 2 | 1.03 | 0.25 | | 4 | 2.04 | 0.47 | | 8 | 4.05 | 0.94 | | 16 | 8.11 | 1.82 | | 32 | 16.11 | 3.69 | | 64 | 32.35 | 7.22 | | 128 | 64.66 | 14.69 | +--------+----------+-------------------+ The series sees an average gain of 4x when the guest backed by PAGE_SIZE (4K) pages. Other testing: - Booted on x86_64 and ran KVM selftests. - Build tested for MIPS and RISCV architectures. Cc: David Matlack v5: https://lore.kernel.org/all/20230606192858.3600174-1-rananta@google.com/ Thank you, Marc and Oliver for the comments - Introduced a helper, kvm_tlb_flush_vmid_range(), to handle the decision of using range-based TLBI instructions or invalidating the entire VMID, rather than depending on __kvm_tlb_flush_vmid_range() for it. - kvm_tlb_flush_vmid_range() splits the range-based invalidations if the requested range exceeds MAX_TLBI_RANGE_PAGES. - All the users in need of invalidating the TLB upon a range now depends on kvm_tlb_flush_vmid_range() rather than directly on __kvm_tlb_flush_vmid_range(). - stage2_unmap_defer_tlb_flush() introduces a WARN_ON() to track if there's any change in TLBIRANGE or FWB support during the unmap process as the features are based on alternative patching and the TLBI operations solely depend on this check. - Corrected an incorrect hunk being present on v4's patch-3. - Updated the patches changelog and code comments as per the suggestions. v4: https://lore.kernel.org/all/20230519005231.3027912-1-rananta@google.com/ Thanks again, Oliver for all the comments - Updated the __kvm_tlb_flush_vmid_range() implementation for nVHE to adjust with the modfied __tlb_switch_to_guest() that accepts a new 'bool nsh' arg. - Renamed stage2_put_pte() to stage2_unmap_put_pte() and removed the 'skip_flush' argument. - Defined stage2_unmap_defer_tlb_flush() to check if the PTE flushes can be deferred during the unmap table walk. It's being called from stage2_unmap_put_pte() and kvm_pgtable_stage2_unmap(). - Got rid of the 'struct stage2_unmap_data'. v3: https://lore.kernel.org/all/20230414172922.812640-1-rananta@google.com/ Thanks, Oliver for all the suggestions. - The core flush API (__kvm_tlb_flush_vmid_range()) now checks if the system support FEAT_TLBIRANGE or not, thus elimiating the redundancy in the upper layers. - If FEAT_TLBIRANGE is not supported, the implementation falls back to invalidating all the TLB entries with the VMID, instead of doing an iterative flush for the range. - The kvm_arch_flush_remote_tlbs_range() doesn't return -EOPNOTSUPP if the system doesn't implement FEAT_TLBIRANGE. It depends on __kvm_tlb_flush_vmid_range() to do take care of the decisions and return 0 regardless of the underlying feature support. - __kvm_tlb_flush_vmid_range() doesn't take 'level' as input to calculate the 'stride'. Instead, it always assumes PAGE_SIZE. - Fast unmap path is eliminated. Instead, the existing unmap walker is modified to skip the TLBIs during the walk, and do it all at once after the walk, using the range-based instructions. v2: https://lore.kernel.org/all/20230206172340.2639971-1-rananta@google.com/ - Rebased the series on top of David Matlack's series for common TLB invalidation API[1]. - Implement kvm_arch_flush_remote_tlbs_range() for arm64, by extending the support introduced by [1]. - Use kvm_flush_remote_tlbs_memslot() introduced by [1] to flush only the current memslot after write-protect. - Modified the __kvm_tlb_flush_range() macro to accepts 'level' as an argument to calculate the 'stride' instead of just using PAGE_SIZE. - Split the patch that introduces the range-based TLBI to KVM and the implementation of IPA-based invalidation into its own patches. - Dropped the patch that tries to optimize the mmu notifiers paths. - Rename the function kvm_table_pte_flush() to kvm_pgtable_stage2_flush_range(), and accept the range of addresses to flush. [Oliver] - Drop the 'tlb_level' argument for stage2_try_break_pte() and directly pass '0' as 'tlb_level' to kvm_pgtable_stage2_flush_range(). [Oliver] v1: https://lore.kernel.org/all/20230109215347.3119271-1-rananta@google.com/ Thank you. Raghavendra [1]: https://lore.kernel.org/all/ZIrONR6cSegiK1e2@linux.dev/ [2]: https://lore.kernel.org/linux-arm-kernel/20230126184025.2294823-1-dmatlack@google.com/ David Matlack (4): KVM: Rename kvm_arch_flush_remote_tlb() to kvm_arch_flush_remote_tlbs() KVM: arm64: Use kvm_arch_flush_remote_tlbs() KVM: Allow range-based TLB invalidation from common code KVM: Move kvm_arch_flush_remote_tlbs_memslot() to common code Raghavendra Rao Ananta (7): arm64: tlb: Refactor the core flush algorithm of __flush_tlb_range KVM: arm64: Implement __kvm_tlb_flush_vmid_range() KVM: arm64: Define kvm_tlb_flush_vmid_range() KVM: arm64: Implement kvm_arch_flush_remote_tlbs_range() KVM: arm64: Flush only the memslot after write-protect KVM: arm64: Invalidate the table entries upon a range KVM: arm64: Use TLBI range-based intructions for unmap arch/arm64/include/asm/kvm_asm.h | 3 + arch/arm64/include/asm/kvm_host.h | 6 ++ arch/arm64/include/asm/kvm_pgtable.h | 10 +++ arch/arm64/include/asm/tlbflush.h | 108 ++++++++++++++------------- arch/arm64/kvm/Kconfig | 1 - arch/arm64/kvm/arm.c | 6 -- arch/arm64/kvm/hyp/nvhe/hyp-main.c | 11 +++ arch/arm64/kvm/hyp/nvhe/tlb.c | 30 ++++++++ arch/arm64/kvm/hyp/pgtable.c | 90 +++++++++++++++++++--- arch/arm64/kvm/hyp/vhe/tlb.c | 28 +++++++ arch/arm64/kvm/mmu.c | 15 +++- arch/mips/include/asm/kvm_host.h | 4 +- arch/mips/kvm/mips.c | 12 +-- arch/riscv/kvm/mmu.c | 6 -- arch/x86/include/asm/kvm_host.h | 7 +- arch/x86/kvm/mmu/mmu.c | 25 ++----- arch/x86/kvm/mmu/mmu_internal.h | 3 - arch/x86/kvm/x86.c | 2 +- include/linux/kvm_host.h | 20 +++-- virt/kvm/Kconfig | 3 - virt/kvm/kvm_main.c | 35 +++++++-- 21 files changed, 294 insertions(+), 131 deletions(-)