Message ID | 158836917028.8433.13715345616117345453.stgit@gimli.home (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | vfio-pci: Block user access to disabled device MMIO | expand |
On Fri, May 01, 2020 at 03:39:30PM -0600, Alex Williamson wrote: > static int vfio_pci_add_vma(struct vfio_pci_device *vdev, > struct vm_area_struct *vma) > { > @@ -1346,15 +1450,49 @@ static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) > { > struct vm_area_struct *vma = vmf->vma; > struct vfio_pci_device *vdev = vma->vm_private_data; > + vm_fault_t ret = VM_FAULT_NOPAGE; > > - if (vfio_pci_add_vma(vdev, vma)) > - return VM_FAULT_OOM; > + /* > + * Zap callers hold memory_lock and acquire mmap_sem, we hold > + * mmap_sem and need to acquire memory_lock to avoid races with > + * memory bit settings. Release mmap_sem, wait, and retry, or fail. > + */ > + if (unlikely(!down_read_trylock(&vdev->memory_lock))) { > + if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) { > + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) > + return VM_FAULT_RETRY; > + > + up_read(&vma->vm_mm->mmap_sem); > + > + if (vmf->flags & FAULT_FLAG_KILLABLE) { > + if (!down_read_killable(&vdev->memory_lock)) > + up_read(&vdev->memory_lock); > + } else { > + down_read(&vdev->memory_lock); > + up_read(&vdev->memory_lock); > + } > + return VM_FAULT_RETRY; > + } > + return VM_FAULT_SIGBUS; > + } So, why have the wait? It isn't reliable - if this gets faulted from a call site that can't handle retry then it will SIGBUS anyhow? The weird use of a rwsem as a completion suggest that perhaps using wait_event might improve things: disable: // Clean out the vma list with zap, then: down_read(mm->mmap_sem) mutex_lock(vma_lock); list_for_each_entry_safe() // zap and remove all vmas pause_faults = true; mutex_write(vma_lock); fault: // Already have down_read(mmap_sem) mutex_lock(vma_lock); while (pause_faults) { mutex_unlock(vma_lock) wait_event(..., !pause_faults) mutex_lock(vma_lock) } list_add() remap_pfn() mutex_unlock(vma_lock) enable: pause_faults = false wake_event() The only requirement here is that while inside the write side of memory_lock you cannot touch user pages (ie no copy_from_user/etc) Jason
On Fri, 1 May 2020 20:48:49 -0300 Jason Gunthorpe <jgg@ziepe.ca> wrote: > On Fri, May 01, 2020 at 03:39:30PM -0600, Alex Williamson wrote: > > > static int vfio_pci_add_vma(struct vfio_pci_device *vdev, > > struct vm_area_struct *vma) > > { > > @@ -1346,15 +1450,49 @@ static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) > > { > > struct vm_area_struct *vma = vmf->vma; > > struct vfio_pci_device *vdev = vma->vm_private_data; > > + vm_fault_t ret = VM_FAULT_NOPAGE; > > > > - if (vfio_pci_add_vma(vdev, vma)) > > - return VM_FAULT_OOM; > > + /* > > + * Zap callers hold memory_lock and acquire mmap_sem, we hold > > + * mmap_sem and need to acquire memory_lock to avoid races with > > + * memory bit settings. Release mmap_sem, wait, and retry, or fail. > > + */ > > + if (unlikely(!down_read_trylock(&vdev->memory_lock))) { > > + if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) { > > + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) > > + return VM_FAULT_RETRY; > > + > > + up_read(&vma->vm_mm->mmap_sem); > > + > > + if (vmf->flags & FAULT_FLAG_KILLABLE) { > > + if (!down_read_killable(&vdev->memory_lock)) > > + up_read(&vdev->memory_lock); > > + } else { > > + down_read(&vdev->memory_lock); > > + up_read(&vdev->memory_lock); > > + } > > + return VM_FAULT_RETRY; > > + } > > + return VM_FAULT_SIGBUS; > > + } > > So, why have the wait? It isn't reliable - if this gets faulted from a > call site that can't handle retry then it will SIGBUS anyhow? Do such call sites exist? My assumption was that half of the branch was unlikely to ever occur. > The weird use of a rwsem as a completion suggest that perhaps using > wait_event might improve things: > > disable: > // Clean out the vma list with zap, then: > > down_read(mm->mmap_sem) I assume this is simplifying the dance we do in zapping to first take vma_lock in order to walk vma_list, to find a vma from which we can acquire the mm, drop vma_lock, get mmap_sem, then re-get vma_lock below. Also accounting that vma_list might be empty and we might need to drop and re-acquire vma_lock to get to another mm, so we really probably want to set pause_faults at the start rather than at the end. > mutex_lock(vma_lock); > list_for_each_entry_safe() > // zap and remove all vmas > > pause_faults = true; > mutex_write(vma_lock); > > fault: > // Already have down_read(mmap_sem) > mutex_lock(vma_lock); > while (pause_faults) { > mutex_unlock(vma_lock) > wait_event(..., !pause_faults) > mutex_lock(vma_lock) > } Nit, we need to test the memory enable bit setting somewhere under this lock since it seems to be the only thing protecting it now. > list_add() > remap_pfn() > mutex_unlock(vma_lock) The read and write file ops would need similar mechanisms. > enable: > pause_faults = false > wake_event() Hmm, vma_lock was dropped above and not re-acquired here. I'm not sure if it was an oversight that pause_faults was not tested in the disable path, but this combination appears to lead to concurrent writers and serialized readers?? So yeah, this might resolve a theoretical sigbus if we can't retry to get the memory_lock ordering correct, but we also lose the concurrency that memory_lock provided us. > > The only requirement here is that while inside the write side of > memory_lock you cannot touch user pages (ie no copy_from_user/etc) I'm lost at this statement, I can only figure the above works if we remove memory_lock. Are you referring to a different lock? Thanks, Alex
On Mon, May 04, 2020 at 12:26:43PM -0600, Alex Williamson wrote: > On Fri, 1 May 2020 20:48:49 -0300 > Jason Gunthorpe <jgg@ziepe.ca> wrote: > > > On Fri, May 01, 2020 at 03:39:30PM -0600, Alex Williamson wrote: > > > > > static int vfio_pci_add_vma(struct vfio_pci_device *vdev, > > > struct vm_area_struct *vma) > > > { > > > @@ -1346,15 +1450,49 @@ static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) > > > { > > > struct vm_area_struct *vma = vmf->vma; > > > struct vfio_pci_device *vdev = vma->vm_private_data; > > > + vm_fault_t ret = VM_FAULT_NOPAGE; > > > > > > - if (vfio_pci_add_vma(vdev, vma)) > > > - return VM_FAULT_OOM; > > > + /* > > > + * Zap callers hold memory_lock and acquire mmap_sem, we hold > > > + * mmap_sem and need to acquire memory_lock to avoid races with > > > + * memory bit settings. Release mmap_sem, wait, and retry, or fail. > > > + */ > > > + if (unlikely(!down_read_trylock(&vdev->memory_lock))) { > > > + if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) { > > > + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) > > > + return VM_FAULT_RETRY; > > > + > > > + up_read(&vma->vm_mm->mmap_sem); > > > + > > > + if (vmf->flags & FAULT_FLAG_KILLABLE) { > > > + if (!down_read_killable(&vdev->memory_lock)) > > > + up_read(&vdev->memory_lock); > > > + } else { > > > + down_read(&vdev->memory_lock); > > > + up_read(&vdev->memory_lock); > > > + } > > > + return VM_FAULT_RETRY; > > > + } > > > + return VM_FAULT_SIGBUS; > > > + } > > > > So, why have the wait? It isn't reliable - if this gets faulted from a > > call site that can't handle retry then it will SIGBUS anyhow? > > Do such call sites exist? My assumption was that half of the branch > was unlikely to ever occur. hmm_range_fault() for instance doesn't set ALLOW_RETRY, I assume there are enough other case to care about, but am not so sure > > The weird use of a rwsem as a completion suggest that perhaps using > > wait_event might improve things: > > > > disable: > > // Clean out the vma list with zap, then: > > > > down_read(mm->mmap_sem) > > I assume this is simplifying the dance we do in zapping to first take > vma_lock in order to walk vma_list, to find a vma from which we can > acquire the mm, drop vma_lock, get mmap_sem, then re-get vma_lock > below. No, that has to stay.. > Also accounting that vma_list might be empty and we might need > to drop and re-acquire vma_lock to get to another mm, so we really > probably want to set pause_faults at the start rather than at the end. New vmas should not created/faulted while vma_lock is held, so the order shouldn't matter.. > > mutex_lock(vma_lock); > > list_for_each_entry_safe() > > // zap and remove all vmas > > > > pause_faults = true; > > mutex_write(vma_lock); > > > > fault: > > // Already have down_read(mmap_sem) > > mutex_lock(vma_lock); > > while (pause_faults) { > > mutex_unlock(vma_lock) > > wait_event(..., !pause_faults) > > mutex_lock(vma_lock) > > } > > Nit, we need to test the memory enable bit setting somewhere under this > lock since it seems to be the only thing protecting it now. I was thinking you'd keep the same locking for the memory enable bit, the pause_faults is a shadow of that bit with locking connected to vma_lock.. > > list_add() > > remap_pfn() > > mutex_unlock(vma_lock) > > The read and write file ops would need similar mechanisms. Keep using the rwsem? > > enable: > > pause_faults = false > > wake_event() > > Hmm, vma_lock was dropped above and not re-acquired here. I was thinking this would be under a continous rwlock > I'm not sure if it was an oversight that pause_faults was not tested > in the disable path, but this combination appears to lead to > concurrent writers and serialized readers?? ? pause_faults only exists to prevent the vm_ops fault callback from progressing to a fault. I don't think any concurrancy is lost > > The only requirement here is that while inside the write side of > > memory_lock you cannot touch user pages (ie no copy_from_user/etc) > > I'm lost at this statement, I can only figure the above works if we > remove memory_lock. Are you referring to a different lock? Thanks, No This is just an approach to avoid the ABBA deadlock problem when using a rwsem by using a looser form of lock combined witih the already correctly nested vma_lock. Stated another way, you can keep the existing memory_lock as is, if it is structured like this: disable: down_read(mmap_sem) mutex_lock(vma_lock) list_for_each_entry_safe() // zap and remove all vmas down_write(memory_lock) // Now inside vma_lock! mutex_unlock(vma_lock) up_read(mmap_sem [ do the existing stuff under memory_lock ] fault: mutex_lock(vma_lock) down_write(memory_lock) remap_pfn up_write(memory_lock) mutex_unlock(vma_lock) enable: up_write(memory_lock) Ie the key is to organize things to move the down_write(memory_lock) to be under the mmap_sem/vma_lock Jason
On Mon, 4 May 2020 15:44:36 -0300 Jason Gunthorpe <jgg@ziepe.ca> wrote: > On Mon, May 04, 2020 at 12:26:43PM -0600, Alex Williamson wrote: > > On Fri, 1 May 2020 20:48:49 -0300 > > Jason Gunthorpe <jgg@ziepe.ca> wrote: > > > > > On Fri, May 01, 2020 at 03:39:30PM -0600, Alex Williamson wrote: > > > > > > > static int vfio_pci_add_vma(struct vfio_pci_device *vdev, > > > > struct vm_area_struct *vma) > > > > { > > > > @@ -1346,15 +1450,49 @@ static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) > > > > { > > > > struct vm_area_struct *vma = vmf->vma; > > > > struct vfio_pci_device *vdev = vma->vm_private_data; > > > > + vm_fault_t ret = VM_FAULT_NOPAGE; > > > > > > > > - if (vfio_pci_add_vma(vdev, vma)) > > > > - return VM_FAULT_OOM; > > > > + /* > > > > + * Zap callers hold memory_lock and acquire mmap_sem, we hold > > > > + * mmap_sem and need to acquire memory_lock to avoid races with > > > > + * memory bit settings. Release mmap_sem, wait, and retry, or fail. > > > > + */ > > > > + if (unlikely(!down_read_trylock(&vdev->memory_lock))) { > > > > + if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) { > > > > + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) > > > > + return VM_FAULT_RETRY; > > > > + > > > > + up_read(&vma->vm_mm->mmap_sem); > > > > + > > > > + if (vmf->flags & FAULT_FLAG_KILLABLE) { > > > > + if (!down_read_killable(&vdev->memory_lock)) > > > > + up_read(&vdev->memory_lock); > > > > + } else { > > > > + down_read(&vdev->memory_lock); > > > > + up_read(&vdev->memory_lock); > > > > + } > > > > + return VM_FAULT_RETRY; > > > > + } > > > > + return VM_FAULT_SIGBUS; > > > > + } > > > > > > So, why have the wait? It isn't reliable - if this gets faulted from a > > > call site that can't handle retry then it will SIGBUS anyhow? > > > > Do such call sites exist? My assumption was that half of the branch > > was unlikely to ever occur. > > hmm_range_fault() for instance doesn't set ALLOW_RETRY, I assume there > are enough other case to care about, but am not so sure > > > > The weird use of a rwsem as a completion suggest that perhaps using > > > wait_event might improve things: > > > > > > disable: > > > // Clean out the vma list with zap, then: > > > > > > down_read(mm->mmap_sem) > > > > I assume this is simplifying the dance we do in zapping to first take > > vma_lock in order to walk vma_list, to find a vma from which we can > > acquire the mm, drop vma_lock, get mmap_sem, then re-get vma_lock > > below. > > No, that has to stay.. Sorry, I stated that unclearly, I'm assuming we keep that and it's been omitted from this pseudo code for simplicity. > > Also accounting that vma_list might be empty and we might need > > to drop and re-acquire vma_lock to get to another mm, so we really > > probably want to set pause_faults at the start rather than at the end. > > New vmas should not created/faulted while vma_lock is held, so the > order shouldn't matter.. Technically that's true, but if vfio_pci_zap_mmap_vmas() drops vma_lock to go back and get another mm, then vm_ops.fault() could get another vma into the list while we're trying to zap and clear them all. The result is the same, but we might be doing unnecessary work versus holding off the fault from the start. > > > mutex_lock(vma_lock); > > > list_for_each_entry_safe() > > > // zap and remove all vmas > > > > > > pause_faults = true; > > > mutex_write(vma_lock); > > > > > > fault: > > > // Already have down_read(mmap_sem) > > > mutex_lock(vma_lock); > > > while (pause_faults) { > > > mutex_unlock(vma_lock) > > > wait_event(..., !pause_faults) > > > mutex_lock(vma_lock) > > > } > > > > Nit, we need to test the memory enable bit setting somewhere under this > > lock since it seems to be the only thing protecting it now. > > I was thinking you'd keep the same locking for the memory enable bit, > the pause_faults is a shadow of that bit with locking connected to > vma_lock.. Oh! I totally did not get that! > > > list_add() > > > remap_pfn() > > > mutex_unlock(vma_lock) > > > > The read and write file ops would need similar mechanisms. > > Keep using the rwsem? > > > > enable: > > > pause_faults = false > > > wake_event() > > > > Hmm, vma_lock was dropped above and not re-acquired here. > > I was thinking this would be under a continous rwlock > > > I'm not sure if it was an oversight that pause_faults was not tested > > in the disable path, but this combination appears to lead to > > concurrent writers and serialized readers?? > > ? pause_faults only exists to prevent the vm_ops fault callback from > progressing to a fault. I don't think any concurrancy is lost > > > > The only requirement here is that while inside the write side of > > > memory_lock you cannot touch user pages (ie no copy_from_user/etc) > > > > I'm lost at this statement, I can only figure the above works if we > > remove memory_lock. Are you referring to a different lock? Thanks, > > No > > This is just an approach to avoid the ABBA deadlock problem when using > a rwsem by using a looser form of lock combined witih the already > correctly nested vma_lock. > > Stated another way, you can keep the existing memory_lock as is, if it > is structured like this: > > disable: > down_read(mmap_sem) > mutex_lock(vma_lock) > list_for_each_entry_safe() > // zap and remove all vmas > down_write(memory_lock) // Now inside vma_lock! > mutex_unlock(vma_lock) > up_read(mmap_sem > > [ do the existing stuff under memory_lock ] > > > fault: > mutex_lock(vma_lock) > down_write(memory_lock) > remap_pfn > up_write(memory_lock) > mutex_unlock(vma_lock) > > enable: > up_write(memory_lock) > > Ie the key is to organize things to move the down_write(memory_lock) > to be under the mmap_sem/vma_lock Ok, this all makes a lot more sense with memory_lock still in the picture. And it looks like you're not insisting on the wait_event, we can block on memory_lock so long as we don't have an ordering issue. I'll see what I can do. Thanks, Alex
On Mon, May 04, 2020 at 01:35:52PM -0600, Alex Williamson wrote: > Ok, this all makes a lot more sense with memory_lock still in the > picture. And it looks like you're not insisting on the wait_event, we > can block on memory_lock so long as we don't have an ordering issue. > I'll see what I can do. Thanks, Right, you can block on the rwsem if it is ordered properly vs mmap_sem. Jason
On Mon, 4 May 2020 17:01:23 -0300 Jason Gunthorpe <jgg@ziepe.ca> wrote: > On Mon, May 04, 2020 at 01:35:52PM -0600, Alex Williamson wrote: > > > Ok, this all makes a lot more sense with memory_lock still in the > > picture. And it looks like you're not insisting on the wait_event, we > > can block on memory_lock so long as we don't have an ordering issue. > > I'll see what I can do. Thanks, > > Right, you can block on the rwsem if it is ordered properly vs > mmap_sem. This is what I've come up with, please see if you agree with the logic: void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_device *vdev) { struct vfio_pci_mmap_vma *mmap_vma, *tmp; /* * Lock ordering: * vma_lock is nested under mmap_sem for vm_ops callback paths. * The memory_lock semaphore is used by both code paths calling * into this function to zap vmas and the vm_ops.fault callback * to protect the memory enable state of the device. * * When zapping vmas we need to maintain the mmap_sem => vma_lock * ordering, which requires using vma_lock to walk vma_list to * acquire an mm, then dropping vma_lock to get the mmap_sem and * reacquiring vma_lock. This logic is derived from similar * requirements in uverbs_user_mmap_disassociate(). * * mmap_sem must always be the top-level lock when it is taken. * Therefore we can only hold the memory_lock write lock when * vma_list is empty, as we'd need to take mmap_sem to clear * entries. vma_list can only be guaranteed empty when holding * vma_lock, thus memory_lock is nested under vma_lock. * * This enables the vm_ops.fault callback to acquire vma_lock, * followed by memory_lock read lock, while already holding * mmap_sem without risk of deadlock. */ while (1) { struct mm_struct *mm = NULL; mutex_lock(&vdev->vma_lock); while (!list_empty(&vdev->vma_list)) { mmap_vma = list_first_entry(&vdev->vma_list, struct vfio_pci_mmap_vma, vma_next); mm = mmap_vma->vma->vm_mm; if (mmget_not_zero(mm)) break; list_del(&mmap_vma->vma_next); kfree(mmap_vma); mm = NULL; } if (!mm) break; mutex_unlock(&vdev->vma_lock); down_read(&mm->mmap_sem); if (mmget_still_valid(mm)) { mutex_lock(&vdev->vma_lock); list_for_each_entry_safe(mmap_vma, tmp, &vdev->vma_list, vma_next) { struct vm_area_struct *vma = mmap_vma->vma; if (vma->vm_mm != mm) continue; list_del(&mmap_vma->vma_next); kfree(mmap_vma); zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); } mutex_unlock(&vdev->vma_lock); } up_read(&mm->mmap_sem); mmput(mm); } down_write(&vdev->memory_lock); mutex_unlock(&vdev->vma_lock); } As noted in the comment, the fault handler can simply do: mutex_lock(&vdev->vma_lock); down_read(&vdev->memory_lock); This should be deadlock free now, so we can drop the retry handling Paths needing to acquire memory_lock with vmas zapped (device reset, memory bit *->0 transition) call this function, perform their operation, then simply release with up_write(&vdev->memory_lock). Both the read and write version of acquiring memory_lock can still occur outside this function for operations that don't require flushing all vmas or otherwise touch vma_lock or mmap_sem (ex. read/write, MSI-X vector table access, writing *->1 to memory enable bit). I still need to work on the bus reset path as acquiring memory_lock write locks across multiple devices seems like it requires try-lock behavior, which is clearly complicated, or at least messy in the above function. Does this seem like it's going in a reasonable direction? Thanks, Alex
On Tue, May 05, 2020 at 11:12:27AM -0600, Alex Williamson wrote: > > As noted in the comment, the fault handler can simply do: > > mutex_lock(&vdev->vma_lock); > down_read(&vdev->memory_lock); > > This should be deadlock free now, so we can drop the retry handling That does look like the right direction, because the memory_lock can be done at the very end it means it doesn't need to be nested inside mmap_sem This is much cleaner! Jason
diff --git a/drivers/vfio/pci/vfio_pci.c b/drivers/vfio/pci/vfio_pci.c index da2fef666d9c..ce2bb3e62b18 100644 --- a/drivers/vfio/pci/vfio_pci.c +++ b/drivers/vfio/pci/vfio_pci.c @@ -26,6 +26,7 @@ #include <linux/vfio.h> #include <linux/vgaarb.h> #include <linux/nospec.h> +#include <linux/sched/mm.h> #include "vfio_pci_private.h" @@ -184,6 +185,7 @@ static void vfio_pci_probe_mmaps(struct vfio_pci_device *vdev) static void vfio_pci_try_bus_reset(struct vfio_pci_device *vdev); static void vfio_pci_disable(struct vfio_pci_device *vdev); +static int vfio_pci_lock_mem(struct pci_dev *pdev, void *data); /* * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND @@ -736,6 +738,12 @@ int vfio_pci_register_dev_region(struct vfio_pci_device *vdev, return 0; } +struct vfio_devices { + struct vfio_device **devices; + int cur_index; + int max_index; +}; + static long vfio_pci_ioctl(void *device_data, unsigned int cmd, unsigned long arg) { @@ -984,8 +992,17 @@ static long vfio_pci_ioctl(void *device_data, return ret; } else if (cmd == VFIO_DEVICE_RESET) { - return vdev->reset_works ? - pci_try_reset_function(vdev->pdev) : -EINVAL; + int ret; + + if (!vdev->reset_works) + return -EINVAL; + + down_write(&vdev->memory_lock); + vfio_pci_zap_mmap_vmas(vdev); + ret = pci_try_reset_function(vdev->pdev); + up_write(&vdev->memory_lock); + + return ret; } else if (cmd == VFIO_DEVICE_GET_PCI_HOT_RESET_INFO) { struct vfio_pci_hot_reset_info hdr; @@ -1065,6 +1082,7 @@ static long vfio_pci_ioctl(void *device_data, int32_t *group_fds; struct vfio_pci_group_entry *groups; struct vfio_pci_group_info info; + struct vfio_devices devs = { .cur_index = 0 }; bool slot = false; int i, count = 0, ret = 0; @@ -1153,11 +1171,39 @@ static long vfio_pci_ioctl(void *device_data, ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_validate_devs, &info, slot); - if (!ret) - /* User has access, do the reset */ - ret = pci_reset_bus(vdev->pdev); + if (ret) + goto hot_reset_release; + + devs.max_index = count; + devs.devices = kcalloc(count, sizeof(struct vfio_device *), + GFP_KERNEL); + if (!devs.devices) { + ret = -ENOMEM; + goto hot_reset_release; + } + + ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, + vfio_pci_lock_mem, + &devs, slot); + if (ret) + goto hot_reset_release; + + /* User has access, do the reset */ + ret = pci_reset_bus(vdev->pdev); hot_reset_release: + while (devs.cur_index) { + struct vfio_device *device; + struct vfio_pci_device *tmp; + + device = devs.devices[--devs.cur_index]; + tmp = vfio_device_data(device); + + up_write(&tmp->memory_lock); + vfio_device_put(device); + } + kfree(devs.devices); + for (i--; i >= 0; i--) vfio_group_put_external_user(groups[i].group); @@ -1299,6 +1345,64 @@ static ssize_t vfio_pci_write(void *device_data, const char __user *buf, return vfio_pci_rw(device_data, (char __user *)buf, count, ppos, true); } +/* Zap and remove vma tracking */ +void vfio_pci_zap_mmap_vmas(struct vfio_pci_device *vdev) +{ + struct vfio_pci_mmap_vma *mmap_vma, *tmp; + + /* + * vma_lock is necessarily nested under the mmap_sem as the latter + * is implicitly held for the vm_ops callbacks. Therefore we need + * to do a little dance to keep the locks in the same order here. + * All vmas will typically use the same mm. Trickery derived from + * uverbs_user_mmap_disassociate() + */ + while (1) { + struct mm_struct *mm = NULL; + + mutex_lock(&vdev->vma_lock); + while (!list_empty(&vdev->vma_list)) { + mmap_vma = list_first_entry(&vdev->vma_list, + struct vfio_pci_mmap_vma, + vma_next); + mm = mmap_vma->vma->vm_mm; + if (mmget_not_zero(mm)) + break; + + list_del(&mmap_vma->vma_next); + kfree(mmap_vma); + mm = NULL; + } + mutex_unlock(&vdev->vma_lock); + + if (!mm) + return; + + down_read(&mm->mmap_sem); + if (!mmget_still_valid(mm)) + goto skip_mm; + + mutex_lock(&vdev->vma_lock); + list_for_each_entry_safe(mmap_vma, tmp, + &vdev->vma_list, vma_next) { + struct vm_area_struct *vma = mmap_vma->vma; + + if (vma->vm_mm != mm) + continue; + + list_del(&mmap_vma->vma_next); + kfree(mmap_vma); + + zap_vma_ptes(vma, vma->vm_start, + vma->vm_end - vma->vm_start); + } + mutex_unlock(&vdev->vma_lock); +skip_mm: + up_read(&mm->mmap_sem); + mmput(mm); + } +} + static int vfio_pci_add_vma(struct vfio_pci_device *vdev, struct vm_area_struct *vma) { @@ -1346,15 +1450,49 @@ static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct vfio_pci_device *vdev = vma->vm_private_data; + vm_fault_t ret = VM_FAULT_NOPAGE; - if (vfio_pci_add_vma(vdev, vma)) - return VM_FAULT_OOM; + /* + * Zap callers hold memory_lock and acquire mmap_sem, we hold + * mmap_sem and need to acquire memory_lock to avoid races with + * memory bit settings. Release mmap_sem, wait, and retry, or fail. + */ + if (unlikely(!down_read_trylock(&vdev->memory_lock))) { + if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) { + if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) + return VM_FAULT_RETRY; + + up_read(&vma->vm_mm->mmap_sem); + + if (vmf->flags & FAULT_FLAG_KILLABLE) { + if (!down_read_killable(&vdev->memory_lock)) + up_read(&vdev->memory_lock); + } else { + down_read(&vdev->memory_lock); + up_read(&vdev->memory_lock); + } + return VM_FAULT_RETRY; + } + return VM_FAULT_SIGBUS; + } + + if (!__vfio_pci_memory_enabled(vdev)) { + ret = VM_FAULT_SIGBUS; + goto up_out; + } + + if (vfio_pci_add_vma(vdev, vma)) { + ret = VM_FAULT_OOM; + goto up_out; + } if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot)) - return VM_FAULT_SIGBUS; + ret = VM_FAULT_SIGBUS; - return VM_FAULT_NOPAGE; +up_out: + up_read(&vdev->memory_lock); + return ret; } static const struct vm_operations_struct vfio_pci_mmap_ops = { @@ -1680,6 +1818,7 @@ static int vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) INIT_LIST_HEAD(&vdev->ioeventfds_list); mutex_init(&vdev->vma_lock); INIT_LIST_HEAD(&vdev->vma_list); + init_rwsem(&vdev->memory_lock); ret = vfio_add_group_dev(&pdev->dev, &vfio_pci_ops, vdev); if (ret) @@ -1933,12 +2072,6 @@ static void vfio_pci_reflck_put(struct vfio_pci_reflck *reflck) kref_put_mutex(&reflck->kref, vfio_pci_reflck_release, &reflck_lock); } -struct vfio_devices { - struct vfio_device **devices; - int cur_index; - int max_index; -}; - static int vfio_pci_get_unused_devs(struct pci_dev *pdev, void *data) { struct vfio_devices *devs = data; @@ -1969,6 +2102,43 @@ static int vfio_pci_get_unused_devs(struct pci_dev *pdev, void *data) return 0; } +static int vfio_pci_lock_mem(struct pci_dev *pdev, void *data) +{ + struct vfio_devices *devs = data; + struct vfio_device *device; + struct vfio_pci_device *vdev; + int locked; + + if (devs->cur_index == devs->max_index) + return -ENOSPC; + + device = vfio_device_get_from_dev(&pdev->dev); + if (!device) + return -EINVAL; + + if (pci_dev_driver(pdev) != &vfio_pci_driver) { + vfio_device_put(device); + return -EBUSY; + } + + vdev = vfio_device_data(device); + + /* + * Locking multiple devices is prone to deadlock, runaway and + * unwind if we hit contention. + */ + locked = down_write_trylock(&vdev->memory_lock); + if (!locked) { + vfio_device_put(device); + return -EBUSY; + } + + vfio_pci_zap_mmap_vmas(vdev); + + devs->devices[devs->cur_index++] = device; + return 0; +} + /* * If a bus or slot reset is available for the provided device and: * - All of the devices affected by that bus or slot reset are unused diff --git a/drivers/vfio/pci/vfio_pci_config.c b/drivers/vfio/pci/vfio_pci_config.c index 90c0b80f8acf..87d0cc8c86ad 100644 --- a/drivers/vfio/pci/vfio_pci_config.c +++ b/drivers/vfio/pci/vfio_pci_config.c @@ -395,6 +395,14 @@ static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write) *(__le32 *)(&p->write[off]) = cpu_to_le32(write); } +/* Caller should hold memory_lock semaphore */ +bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev) +{ + u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); + + return cmd & PCI_COMMAND_MEMORY; +} + /* * Restore the *real* BARs after we detect a FLR or backdoor reset. * (backdoor = some device specific technique that we didn't catch) @@ -560,6 +568,10 @@ static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos, virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY); new_mem = !!(new_cmd & PCI_COMMAND_MEMORY); + down_write(&vdev->memory_lock); + if (!new_mem) + vfio_pci_zap_mmap_vmas(vdev); + phys_io = !!(phys_cmd & PCI_COMMAND_IO); virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO); new_io = !!(new_cmd & PCI_COMMAND_IO); @@ -579,8 +591,11 @@ static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos, } count = vfio_default_config_write(vdev, pos, count, perm, offset, val); - if (count < 0) + if (count < 0) { + if (offset == PCI_COMMAND) + up_write(&vdev->memory_lock); return count; + } /* * Save current memory/io enable bits in vconfig to allow for @@ -591,6 +606,8 @@ static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos, *virt_cmd &= cpu_to_le16(~mask); *virt_cmd |= cpu_to_le16(new_cmd & mask); + + up_write(&vdev->memory_lock); } /* Emulate INTx disable */ @@ -828,8 +845,12 @@ static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos, pos - offset + PCI_EXP_DEVCAP, &cap); - if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) + if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) { + down_write(&vdev->memory_lock); + vfio_pci_zap_mmap_vmas(vdev); pci_try_reset_function(vdev->pdev); + up_write(&vdev->memory_lock); + } } /* @@ -907,8 +928,12 @@ static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos, pos - offset + PCI_AF_CAP, &cap); - if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) + if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) { + down_write(&vdev->memory_lock); + vfio_pci_zap_mmap_vmas(vdev); pci_try_reset_function(vdev->pdev); + up_write(&vdev->memory_lock); + } } return count; diff --git a/drivers/vfio/pci/vfio_pci_intrs.c b/drivers/vfio/pci/vfio_pci_intrs.c index 2056f3f85f59..54102a7eb9d3 100644 --- a/drivers/vfio/pci/vfio_pci_intrs.c +++ b/drivers/vfio/pci/vfio_pci_intrs.c @@ -626,6 +626,8 @@ int vfio_pci_set_irqs_ioctl(struct vfio_pci_device *vdev, uint32_t flags, int (*func)(struct vfio_pci_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) = NULL; + int ret; + u16 cmd; switch (index) { case VFIO_PCI_INTX_IRQ_INDEX: @@ -673,5 +675,19 @@ int vfio_pci_set_irqs_ioctl(struct vfio_pci_device *vdev, uint32_t flags, if (!func) return -ENOTTY; - return func(vdev, index, start, count, flags, data); + if (index == VFIO_PCI_MSIX_IRQ_INDEX) { + down_write(&vdev->memory_lock); + pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); + pci_write_config_word(vdev->pdev, PCI_COMMAND, + cmd | PCI_COMMAND_MEMORY); + } + + ret = func(vdev, index, start, count, flags, data); + + if (index == VFIO_PCI_MSIX_IRQ_INDEX) { + pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); + up_write(&vdev->memory_lock); + } + + return ret; } diff --git a/drivers/vfio/pci/vfio_pci_private.h b/drivers/vfio/pci/vfio_pci_private.h index 9b25f9f6ce1d..9e10e6ba8682 100644 --- a/drivers/vfio/pci/vfio_pci_private.h +++ b/drivers/vfio/pci/vfio_pci_private.h @@ -139,6 +139,7 @@ struct vfio_pci_device { struct notifier_block nb; struct mutex vma_lock; struct list_head vma_list; + struct rw_semaphore memory_lock; }; #define is_intx(vdev) (vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) @@ -181,6 +182,9 @@ extern int vfio_pci_register_dev_region(struct vfio_pci_device *vdev, extern int vfio_pci_set_power_state(struct vfio_pci_device *vdev, pci_power_t state); +extern bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev); +extern void vfio_pci_zap_mmap_vmas(struct vfio_pci_device *vdev); + #ifdef CONFIG_VFIO_PCI_IGD extern int vfio_pci_igd_init(struct vfio_pci_device *vdev); #else diff --git a/drivers/vfio/pci/vfio_pci_rdwr.c b/drivers/vfio/pci/vfio_pci_rdwr.c index a87992892a9f..f58c45308682 100644 --- a/drivers/vfio/pci/vfio_pci_rdwr.c +++ b/drivers/vfio/pci/vfio_pci_rdwr.c @@ -162,6 +162,7 @@ ssize_t vfio_pci_bar_rw(struct vfio_pci_device *vdev, char __user *buf, size_t x_start = 0, x_end = 0; resource_size_t end; void __iomem *io; + struct resource *res = &vdev->pdev->resource[bar]; ssize_t done; if (pci_resource_start(pdev, bar)) @@ -200,8 +201,19 @@ ssize_t vfio_pci_bar_rw(struct vfio_pci_device *vdev, char __user *buf, x_end = vdev->msix_offset + vdev->msix_size; } + if (res->flags & IORESOURCE_MEM) { + down_read(&vdev->memory_lock); + if (!__vfio_pci_memory_enabled(vdev)) { + up_read(&vdev->memory_lock); + return -EIO; + } + } + done = do_io_rw(io, buf, pos, count, x_start, x_end, iswrite); + if (res->flags & IORESOURCE_MEM) + up_read(&vdev->memory_lock); + if (done >= 0) *ppos += done;
Accessing the disabled memory space of a PCI device would typically result in a master abort response on conventional PCI, or an unsupported request on PCI express. The user would generally see these as a -1 response for the read return data and the write would be silently discarded, possibly with an uncorrected, non-fatal AER error triggered on the host. Some systems however take it upon themselves to bring down the entire system when they see something that might indicate a loss of data, such as this discarded write to a disabled memory space. To avoid this, we want to try to block the user from accessing memory spaces while they're disabled. We start with a semaphore around the memory enable bit, where writers modify the memory enable state and must be serialized, while readers make use of the memory region and can access in parallel. Writers include both direct manipulation via the command register, as well as any reset path where the internal mechanics of the reset may both explicitly and implicitly disable memory access, and manipulation of the MSI-X configuration, where the MSI-X vector table resides in MMIO space of the device. Readers include the read and write file ops to access the vfio device fd offsets as well as memory mapped access. In the latter case, we make use of our new vma list support to zap, or invalidate, those memory mappings in order to force them to be faulted back in on access. Our semaphore usage will stall user access to MMIO spaces across internal operations like reset, but the user might experience new behavior when trying to access the MMIO space while disabled via the PCI command register. Access via read or write while disabled will return -EIO and access via memory maps will result in a SIGBUS. This is expected to be compatible with known use cases and potentially provides better error handling capabilities than present in the hardware, while avoiding the more readily accessible and severe platform error responses that might otherwise occur. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> --- drivers/vfio/pci/vfio_pci.c | 200 ++++++++++++++++++++++++++++++++--- drivers/vfio/pci/vfio_pci_config.c | 31 +++++ drivers/vfio/pci/vfio_pci_intrs.c | 18 +++ drivers/vfio/pci/vfio_pci_private.h | 4 + drivers/vfio/pci/vfio_pci_rdwr.c | 12 ++ 5 files changed, 246 insertions(+), 19 deletions(-)