diff mbox

[24/27] nVMX: Handling of CR0.TS and #NM for Lazy FPU loading

Message ID 201010171015.o9HAFqST029601@rice.haifa.ibm.com (mailing list archive)
State New, archived
Headers show

Commit Message

Nadav Har'El Oct. 17, 2010, 10:15 a.m. UTC
None
diff mbox

Patch

--- .before/arch/x86/kvm/vmx.c	2010-10-17 11:52:03.000000000 +0200
+++ .after/arch/x86/kvm/vmx.c	2010-10-17 11:52:03.000000000 +0200
@@ -1098,6 +1098,17 @@  static void update_exception_bitmap(stru
 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 	if (vcpu->fpu_active)
 		eb &= ~(1u << NM_VECTOR);
+
+	/* When we are running a nested L2 guest and L1 specified for it a
+	 * certain exception bitmap, we must trap the same exceptions and pass
+	 * them to L1. When running L2, we will only handle the exceptions
+	 * specified above if L1 did not want them.
+	 */
+	if (to_vmx(vcpu)->nested.nested_mode) {
+		u32 nested_eb = get_vmcs12_fields(vcpu)->exception_bitmap;
+		eb |= nested_eb;
+	}
+
 	vmcs_write32(EXCEPTION_BITMAP, eb);
 }
 
@@ -1422,8 +1433,19 @@  static void vmx_fpu_activate(struct kvm_
 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
 	vmcs_writel(GUEST_CR0, cr0);
-	update_exception_bitmap(vcpu);
 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+	if (to_vmx(vcpu)->nested.nested_mode) {
+		/* While we (L0) no longer care about NM exceptions or cr0.TS
+		 * changes, our guest hypervisor (L1) might care in which case
+		 * we must trap them for it.
+		 */
+		u32 eb = vmcs_read32(EXCEPTION_BITMAP) & ~(1u << NM_VECTOR);
+		struct vmcs_fields *vmcs12 = get_vmcs12_fields(vcpu);
+		eb |= vmcs12->exception_bitmap;
+		vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+		vmcs_write32(EXCEPTION_BITMAP, eb);
+	} else
+		update_exception_bitmap(vcpu);
 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 }
 
@@ -1431,12 +1453,24 @@  static void vmx_decache_cr0_guest_bits(s
 
 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
 {
+	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
+	 * set this *before* calling this function.
+	 */
 	vmx_decache_cr0_guest_bits(vcpu);
 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
-	update_exception_bitmap(vcpu);
+	vmcs_write32(EXCEPTION_BITMAP,
+		vmcs_read32(EXCEPTION_BITMAP) | (1u << NM_VECTOR));
 	vcpu->arch.cr0_guest_owned_bits = 0;
 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
-	vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
+	if (to_vmx(vcpu)->nested.nested_mode)
+		/* Unfortunately in nested mode we play with arch.cr0's PG
+		 * bit, so we musn't copy it all, just the relevant TS bit
+		 */
+		vmcs_writel(CR0_READ_SHADOW,
+			(vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS) |
+			(vcpu->arch.cr0 & X86_CR0_TS));
+	else
+		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
 }
 
 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
@@ -3876,6 +3910,52 @@  static void complete_insn_gp(struct kvm_
 		skip_emulated_instruction(vcpu);
 }
 
+/* called to set cr0 as approriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	if (to_vmx(vcpu)->nested.nested_mode) {
+		/* When running L2, we usually do what L1 wants: it decides
+		 * which cr0 bits to intercept, we forward it cr0-change events
+		 * (see nested_vmx_exit_handled()). We only get here when a cr0
+		 * bit was changed that L1 did not ask to intercept, but L0
+		 * nevertheless did. Currently this can only happen with the TS
+		 * bit (see CR0_GUEST_HOST_MASK in prepare_vmcs02()).
+		 * We must change only this bit in GUEST_CR0 and CR0_READ_SHADOW
+		 * and not call kvm_set_cr0 because it enforces a relationship
+		 * between the two that is specific to KVM (i.e., only the TS
+		 * bit might differ) and with which L1 might not agree.
+		 */
+		long new_cr0 = vmcs_readl(GUEST_CR0);
+		long new_cr0_rs = vmcs_readl(CR0_READ_SHADOW);
+		if (val & X86_CR0_TS) {
+			new_cr0 |= X86_CR0_TS;
+			new_cr0_rs |= X86_CR0_TS;
+			vcpu->arch.cr0 |= X86_CR0_TS;
+		} else {
+			new_cr0 &= ~X86_CR0_TS;
+			new_cr0_rs &= ~X86_CR0_TS;
+			vcpu->arch.cr0 &= ~X86_CR0_TS;
+		}
+		vmcs_writel(GUEST_CR0, new_cr0);
+		vmcs_writel(CR0_READ_SHADOW, new_cr0_rs);
+		return 0;
+	} else
+		return kvm_set_cr0(vcpu, val);
+}
+
+/* called to set cr0 as approriate for clts instruction exit. */
+static void handle_clts(struct kvm_vcpu *vcpu)
+{
+	if (to_vmx(vcpu)->nested.nested_mode) {
+		/* As in handle_set_cr0(), we can't call vmx_set_cr0 here */
+		vmcs_writel(GUEST_CR0, vmcs_readl(GUEST_CR0) & ~X86_CR0_TS);
+		vmcs_writel(CR0_READ_SHADOW,
+			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
+		vcpu->arch.cr0 &= ~X86_CR0_TS;
+	} else
+		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+}
+
 static int handle_cr(struct kvm_vcpu *vcpu)
 {
 	unsigned long exit_qualification, val;
@@ -3892,7 +3972,7 @@  static int handle_cr(struct kvm_vcpu *vc
 		trace_kvm_cr_write(cr, val);
 		switch (cr) {
 		case 0:
-			err = kvm_set_cr0(vcpu, val);
+			err = handle_set_cr0(vcpu, val);
 			complete_insn_gp(vcpu, err);
 			return 1;
 		case 3:
@@ -3918,7 +3998,7 @@  static int handle_cr(struct kvm_vcpu *vc
 		};
 		break;
 	case 2: /* clts */
-		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+		handle_clts(vcpu);
 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
 		skip_emulated_instruction(vcpu);
 		vmx_fpu_activate(vcpu);