@@ -149,6 +149,15 @@
#define HSR_ISS (HSR_IL - 1)
#define HSR_ISV_SHIFT (24)
#define HSR_ISV (1U << HSR_ISV_SHIFT)
+#define HSR_FSC (0x3f)
+#define HSR_FSC_TYPE (0x3c)
+#define HSR_WNR (1 << 6)
+
+#define FSC_FAULT (0x04)
+#define FSC_PERM (0x0c)
+
+/* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
+#define HPFAR_MASK (~0xf)
#define HSR_EC_UNKNOWN (0x00)
#define HSR_EC_WFI (0x01)
@@ -34,6 +34,7 @@
#define SMCHYP_HVBAR_W 0xfffffff0
#ifndef __ASSEMBLY__
+struct kvm;
struct kvm_vcpu;
extern char __kvm_hyp_init[];
@@ -47,6 +48,8 @@ extern char __kvm_hyp_vector[];
extern char __kvm_hyp_code_start[];
extern char __kvm_hyp_code_end[];
+extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
+
extern void __kvm_flush_vm_context(void);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
@@ -140,4 +140,20 @@ struct kvm_vcpu_stat {
u32 halt_wakeup;
};
+#define KVM_ARCH_WANT_MMU_NOTIFIER
+struct kvm;
+int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
+
+/* We do not have shadow page tables, hence the empty hooks */
+static inline int kvm_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ return 0;
+}
+
+static inline int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ return 0;
+}
+
#endif /* __ARM_KVM_HOST_H__ */
@@ -102,6 +102,15 @@
*/
#define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
+/*
+ * 2-nd stage PTE definitions for LPAE.
+ */
+#define L_PTE2_SHARED L_PTE_SHARED
+#define L_PTE2_READ (_AT(pteval_t, 1) << 6) /* HAP[0] */
+#define L_PTE2_WRITE (_AT(pteval_t, 1) << 7) /* HAP[1] */
+#define L_PTE2_NORM_WB (_AT(pteval_t, 3) << 4) /* MemAttr[3:2] */
+#define L_PTE2_INNER_WB (_AT(pteval_t, 3) << 2) /* MemAttr[1:0] */
+
#ifndef __ASSEMBLY__
#define pud_none(pud) (!pud_val(pud))
@@ -70,6 +70,7 @@ extern void __pgd_error(const char *file, int line, pgd_t);
extern pgprot_t pgprot_user;
extern pgprot_t pgprot_kernel;
+extern pgprot_t pgprot_guest;
#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
@@ -83,6 +84,9 @@ extern pgprot_t pgprot_kernel;
#define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
#define PAGE_KERNEL_EXEC pgprot_kernel
#define PAGE_HYP _MOD_PROT(pgprot_kernel, L_PTE_USER)
+#define PAGE_KVM_GUEST _MOD_PROT(pgprot_guest, L_PTE2_READ | \
+ L_PTE2_NORM_WB | L_PTE2_INNER_WB | \
+ L_PTE2_SHARED)
#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
@@ -36,6 +36,7 @@ config KVM_ARM_HOST
depends on KVM
depends on MMU
depends on CPU_V7 && ARM_VIRT_EXT
+ select MMU_NOTIFIER
---help---
Provides host support for ARM processors.
@@ -33,5 +33,6 @@ EXPORT_SYMBOL_GPL(__kvm_hyp_code_end);
EXPORT_SYMBOL_GPL(__kvm_vcpu_run);
EXPORT_SYMBOL_GPL(__kvm_flush_vm_context);
+EXPORT_SYMBOL_GPL(__kvm_tlb_flush_vmid);
EXPORT_SYMBOL_GPL(smp_send_reschedule);
@@ -36,9 +36,46 @@ __kvm_hyp_code_start:
.globl __kvm_hyp_code_start
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
+@ Flush per-VMID TLBs
+@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
+
+/*
+ * void __kvm_tlb_flush_vmid(struct kvm *kvm);
+ *
+ * We rely on the hardware to broadcast the TLB invalidation to all CPUs
+ * inside the inner-shareable domain (which is the case for all v7
+ * implementations). If we come across a non-IS SMP implementation, we'll
+ * have to use an IPI based mechanism. Until then, we stick to the simple
+ * hardware assisted version.
+ */
+ENTRY(__kvm_tlb_flush_vmid)
+ hvc #0 @ Switch to Hyp mode
+ push {r2, r3}
+
+ add r0, r0, #KVM_VTTBR
+ ldrd r2, r3, [r0]
+ mcrr p15, 6, r2, r3, c2 @ Write VTTBR
+ isb
+ mcr p15, 0, r0, c8, c3, 0 @ TLBIALLIS (rt ignored)
+ dsb
+ isb
+ mov r2, #0
+ mov r3, #0
+ mcrr p15, 6, r2, r3, c2 @ Back to VMID #0
+ isb
+
+ pop {r2, r3}
+ hvc #0 @ Back to SVC
+ bx lr
+ENDPROC(__kvm_tlb_flush_vmid)
+
+@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Flush TLBs and instruction caches of current CPU for all VMIDs
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
+/*
+ * void __kvm_flush_vm_context(void);
+ */
ENTRY(__kvm_flush_vm_context)
hvc #0 @ switch to hyp-mode
@@ -22,6 +22,7 @@
#include <asm/pgalloc.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
+#include <asm/kvm_asm.h>
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
@@ -169,6 +170,9 @@ out:
* Allocates the 1st level table only of size defined by PGD2_ORDER (can
* support either full 40-bit input addresses or limited to 32-bit input
* addresses). Clears the allocated pages.
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * created, which can only be done once.
*/
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
@@ -229,6 +233,9 @@ static void free_stage2_ptes(pmd_t *pmd, unsigned long addr)
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
* underlying level-2 and level-3 tables before freeing the actual level-1 table
* and setting the struct pointer to NULL.
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * destroyed, which can only be done once.
*/
void kvm_free_stage2_pgd(struct kvm *kvm)
{
@@ -264,7 +271,216 @@ void kvm_free_stage2_pgd(struct kvm *kvm)
kvm->arch.pgd = NULL;
}
+static const pte_t null_pte;
+
+static int stage2_set_pte(struct kvm *kvm, phys_addr_t addr,
+ const pte_t *new_pte)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ /* Create 2nd stage page table mapping - Level 1 */
+ pgd = kvm->arch.pgd + pgd_index(addr);
+ pud = pud_offset(pgd, addr);
+ if (pud_none(*pud)) {
+ BUG_ON(new_pte == &null_pte);
+ pmd = pmd_alloc_one(NULL, addr);
+ if (!pmd) {
+ kvm_err("Cannot allocate 2nd stage pmd\n");
+ return -ENOMEM;
+ }
+ pud_populate(NULL, pud, pmd);
+ pmd += pmd_index(addr);
+ } else
+ pmd = pmd_offset(pud, addr);
+
+ /* Create 2nd stage page table mapping - Level 2 */
+ if (pmd_none(*pmd)) {
+ BUG_ON(new_pte == &null_pte);
+ pte = pte_alloc_one_kernel(NULL, addr);
+ if (!pte) {
+ kvm_err("Cannot allocate 2nd stage pte\n");
+ return -ENOMEM;
+ }
+ pmd_populate_kernel(NULL, pmd, pte);
+ pte += pte_index(addr);
+ } else
+ pte = pte_offset_kernel(pmd, addr);
+
+ /* Create 2nd stage page table mapping - Level 3 */
+ set_pte_ext(pte, *new_pte, 0);
+
+ return 0;
+}
+
+static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+ gfn_t gfn, struct kvm_memory_slot *memslot,
+ bool is_iabt)
+{
+ pte_t new_pte;
+ pfn_t pfn;
+ int ret;
+ bool write_fault, writable;
+
+ /* TODO: Use instr. decoding for non-ISV to determine r/w fault */
+ if (is_iabt)
+ write_fault = false;
+ else if ((vcpu->arch.hsr & HSR_ISV) && !(vcpu->arch.hsr & HSR_WNR))
+ write_fault = false;
+ else
+ write_fault = true;
+
+ if ((vcpu->arch.hsr & HSR_FSC_TYPE) == FSC_PERM && !write_fault) {
+ kvm_err("Unexpected L2 read permission error\n");
+ return -EFAULT;
+ }
+
+ /* preemption disabled for handle_exit, gfn_to_pfn may sleep */
+ preempt_enable();
+ pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
+ preempt_disable();
+
+ if (is_error_pfn(pfn)) {
+ put_page(pfn_to_page(pfn));
+ kvm_err("No host mapping: gfn %u (0x%08x)\n",
+ (unsigned int)gfn,
+ (unsigned int)gfn << PAGE_SHIFT);
+ return -EFAULT;
+ }
+
+ mutex_lock(&vcpu->kvm->arch.pgd_mutex);
+ new_pte = pfn_pte(pfn, PAGE_KVM_GUEST);
+ if (writable)
+ new_pte |= L_PTE2_WRITE;
+ ret = stage2_set_pte(vcpu->kvm, fault_ipa, &new_pte);
+ if (ret)
+ put_page(pfn_to_page(pfn));
+ mutex_unlock(&vcpu->kvm->arch.pgd_mutex);
+
+ return ret;
+}
+
+/**
+ * kvm_handle_guest_abort - handles all 2nd stage aborts
+ * @vcpu: the VCPU pointer
+ * @run: the kvm_run structure
+ *
+ * Any abort that gets to the host is almost guaranteed to be caused by a
+ * missing second stage translation table entry, which can mean that either the
+ * guest simply needs more memory and we must allocate an appropriate page or it
+ * can mean that the guest tried to access I/O memory, which is emulated by user
+ * space. The distinction is based on the IPA causing the fault and whether this
+ * memory region has been registered as standard RAM by user space.
+ */
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
- return -EINVAL;
+ unsigned long hsr_ec;
+ unsigned long fault_status;
+ phys_addr_t fault_ipa;
+ struct kvm_memory_slot *memslot = NULL;
+ bool is_iabt;
+ gfn_t gfn;
+
+ hsr_ec = vcpu->arch.hsr >> HSR_EC_SHIFT;
+ is_iabt = (hsr_ec == HSR_EC_IABT);
+
+ /* Check that the second stage fault is a translation fault */
+ fault_status = (vcpu->arch.hsr & HSR_FSC_TYPE);
+ if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
+ kvm_err("Unsupported fault status: EC=%#lx DFCS=%#lx\n",
+ hsr_ec, fault_status);
+ return -EFAULT;
+ }
+
+ fault_ipa = ((phys_addr_t)vcpu->arch.hpfar & HPFAR_MASK) << 8;
+
+ gfn = fault_ipa >> PAGE_SHIFT;
+ if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
+ if (is_iabt) {
+ kvm_err("Inst. abort on I/O address %08lx\n",
+ (unsigned long)fault_ipa);
+ return -EFAULT;
+ }
+
+ kvm_pr_unimpl("I/O address abort...");
+ return 0;
+ }
+
+ memslot = gfn_to_memslot(vcpu->kvm, gfn);
+ if (!memslot->user_alloc) {
+ kvm_err("non user-alloc memslots not supported\n");
+ return -EINVAL;
+ }
+
+ return user_mem_abort(vcpu, fault_ipa, gfn, memslot, is_iabt);
+}
+
+static bool hva_to_gpa(struct kvm *kvm, unsigned long hva, gpa_t *gpa)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ bool found = false;
+
+ mutex_lock(&kvm->slots_lock);
+ slots = kvm_memslots(kvm);
+
+ /* we only care about the pages that the guest sees */
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long start = memslot->userspace_addr;
+ unsigned long end;
+
+ end = start + (memslot->npages << PAGE_SHIFT);
+ if (hva >= start && hva < end) {
+ gpa_t gpa_offset = hva - start;
+ *gpa = (memslot->base_gfn << PAGE_SHIFT) + gpa_offset;
+ found = true;
+ /* no overlapping memslots allowed: break */
+ break;
+ }
+ }
+
+ mutex_unlock(&kvm->slots_lock);
+ return found;
+}
+
+int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
+{
+ bool found;
+ gpa_t gpa;
+
+ if (!kvm->arch.pgd)
+ return 0;
+
+ mutex_lock(&kvm->arch.pgd_mutex);
+ found = hva_to_gpa(kvm, hva, &gpa);
+ if (found) {
+ stage2_set_pte(kvm, gpa, &null_pte);
+ __kvm_tlb_flush_vmid(kvm);
+ }
+ mutex_unlock(&kvm->arch.pgd_mutex);
+ return 0;
+}
+
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+ gpa_t gpa;
+ bool found;
+
+ if (!kvm->arch.pgd)
+ return;
+
+ mutex_lock(&kvm->arch.pgd_mutex);
+ found = hva_to_gpa(kvm, hva, &gpa);
+ if (found) {
+ stage2_set_pte(kvm, gpa, &pte);
+ /*
+ * Ignore return code from stage2_set_pte, since -ENOMEM would
+ * indicate this IPA is is not mapped and there is no harm
+ * that the PTE changed.
+ */
+ __kvm_tlb_flush_vmid(kvm);
+ }
+ mutex_unlock(&kvm->arch.pgd_mutex);
}
@@ -56,9 +56,11 @@ static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
pgprot_t pgprot_user;
pgprot_t pgprot_kernel;
+pgprot_t pgprot_guest;
EXPORT_SYMBOL(pgprot_user);
EXPORT_SYMBOL(pgprot_kernel);
+EXPORT_SYMBOL(pgprot_guest);
struct cachepolicy {
const char policy[16];
@@ -520,6 +522,7 @@ static void __init build_mem_type_table(void)
pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
L_PTE_DIRTY | kern_pgprot);
+ pgprot_guest = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG);
mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;