@@ -777,6 +777,16 @@ PAGE_TYPE_OPS(Buddy, buddy)
* not onlined when onlining the section).
* The content of these pages is effectively stale. Such pages should not
* be touched (read/write/dump/save) except by their owner.
+ *
+ * If a driver wants to allow to offline unmovable PageOffline() pages without
+ * putting them back to the buddy, it can do so via the memory notifier by
+ * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
+ * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
+ * pages (now with a reference count of zero) are treated like free pages,
+ * allowing the containing memory block to get offlined. A driver that
+ * relies on this feature is aware that re-onlining the memory block will
+ * require to re-set the pages PageOffline() and not giving them to the
+ * buddy via online_page_callback_t.
*/
PAGE_TYPE_OPS(Offline, offline)
@@ -1224,11 +1224,17 @@ struct zone *test_pages_in_a_zone(unsigned long start_pfn,
/*
* Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
- * non-lru movable pages and hugepages). We scan pfn because it's much
- * easier than scanning over linked list. This function returns the pfn
- * of the first found movable page if it's found, otherwise 0.
+ * non-lru movable pages and hugepages). Will skip over most unmovable
+ * pages (esp., pages that can be skipped when offlining), but bail out on
+ * definitely unmovable pages.
+ *
+ * Returns:
+ * 0 in case a movable page is found and movable_pfn was updated.
+ * -ENOENT in case no movable page was found.
+ * -EBUSY in case a definitely unmovable page was found.
*/
-static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
+static int scan_movable_pages(unsigned long start, unsigned long end,
+ unsigned long *movable_pfn)
{
unsigned long pfn;
@@ -1240,18 +1246,30 @@ static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
continue;
page = pfn_to_page(pfn);
if (PageLRU(page))
- return pfn;
+ goto found;
if (__PageMovable(page))
- return pfn;
+ goto found;
+
+ /*
+ * PageOffline() pages that are not marked __PageMovable() and
+ * have a reference count > 0 (after MEM_GOING_OFFLINE) are
+ * definitely unmovable. If their reference count would be 0,
+ * they could at least be skipped when offlining memory.
+ */
+ if (PageOffline(page) && page_count(page))
+ return -EBUSY;
if (!PageHuge(page))
continue;
head = compound_head(page);
if (page_huge_active(head))
- return pfn;
+ goto found;
skip = compound_nr(head) - (page - head);
pfn += skip - 1;
}
+ return -ENOENT;
+found:
+ *movable_pfn = pfn;
return 0;
}
@@ -1518,7 +1536,8 @@ static int __ref __offline_pages(unsigned long start_pfn,
}
do {
- for (pfn = start_pfn; pfn;) {
+ pfn = start_pfn;
+ do {
if (signal_pending(current)) {
ret = -EINTR;
reason = "signal backoff";
@@ -1528,14 +1547,19 @@ static int __ref __offline_pages(unsigned long start_pfn,
cond_resched();
lru_add_drain_all();
- pfn = scan_movable_pages(pfn, end_pfn);
- if (pfn) {
+ ret = scan_movable_pages(pfn, end_pfn, &pfn);
+ if (!ret) {
/*
* TODO: fatal migration failures should bail
* out
*/
do_migrate_range(pfn, end_pfn);
}
+ } while (!ret);
+
+ if (ret != -ENOENT) {
+ reason = "unmovable page";
+ goto failed_removal_isolated;
}
/*
@@ -8363,6 +8363,19 @@ struct page *has_unmovable_pages(struct zone *zone, struct page *page,
if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
continue;
+ /*
+ * We treat all PageOffline() pages as movable when offlining
+ * to give drivers a chance to decrement their reference count
+ * in MEM_GOING_OFFLINE in order to indicate that these pages
+ * can be offlined as there are no direct references anymore.
+ * For actually unmovable PageOffline() where the driver does
+ * not support this, we will fail later when trying to actually
+ * move these pages that still have a reference count > 0.
+ * (false negatives in this function only)
+ */
+ if ((flags & MEMORY_OFFLINE) && PageOffline(page))
+ continue;
+
if (__PageMovable(page) || PageLRU(page))
continue;
@@ -8783,6 +8796,17 @@ __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
offlined_pages++;
continue;
}
+ /*
+ * At this point all remaining PageOffline() pages have a
+ * reference count of 0 and can simply be skipped.
+ */
+ if (PageOffline(page)) {
+ BUG_ON(page_count(page));
+ BUG_ON(PageBuddy(page));
+ pfn++;
+ offlined_pages++;
+ continue;
+ }
BUG_ON(page_count(page));
BUG_ON(!PageBuddy(page));
@@ -151,6 +151,7 @@ __first_valid_page(unsigned long pfn, unsigned long nr_pages)
* a bit mask)
* MEMORY_OFFLINE - isolate to offline (!allocate) memory
* e.g., skip over PageHWPoison() pages
+ * and PageOffline() pages.
* REPORT_FAILURE - report details about the failure to
* isolate the range
*
@@ -259,6 +260,14 @@ __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
/* A HWPoisoned page cannot be also PageBuddy */
pfn++;
+ else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
+ !page_count(page))
+ /*
+ * The responsible driver agreed to skip PageOffline()
+ * pages when offlining memory by dropping its
+ * reference in MEM_GOING_OFFLINE.
+ */
+ pfn++;
else
break;
}