@@ -47,6 +47,15 @@ static phys_addr_t hyp_idmap_vector;
#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
#define kvm_pud_huge(_x) pud_huge(_x)
+static bool kvm_get_logging_state(struct kvm_memory_slot *memslot)
+{
+#ifdef CONFIG_ARM
+ return !!memslot->dirty_bitmap;
+#else
+ return false;
+#endif
+}
+
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
{
/*
@@ -626,7 +635,8 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
- phys_addr_t addr, const pte_t *new_pte, bool iomap)
+ phys_addr_t addr, const pte_t *new_pte, bool iomap,
+ bool logging_active)
{
pmd_t *pmd;
pte_t *pte, old_pte;
@@ -641,6 +651,18 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
return 0;
}
+ /*
+ * While dirty memory logging, clear PMD entry for huge page and split
+ * into smaller pages, to track dirty memory at page granularity.
+ */
+ if (logging_active && kvm_pmd_huge(*pmd)) {
+ phys_addr_t ipa = pmd_pfn(*pmd) << PAGE_SHIFT;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, ipa);
+ put_page(virt_to_page(pmd));
+ }
+
/* Create stage-2 page mappings - Level 2 */
if (pmd_none(*pmd)) {
if (!cache)
@@ -693,7 +715,7 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
- ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
+ ret = stage2_set_pte(kvm, &cache, addr, &pte, true, false);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
@@ -910,6 +932,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct vm_area_struct *vma;
pfn_t pfn;
pgprot_t mem_type = PAGE_S2;
+ bool logging_active = kvm_get_logging_state(memslot);
write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
if (fault_status == FSC_PERM && !write_fault) {
@@ -920,7 +943,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
/* Let's check if we will get back a huge page backed by hugetlbfs */
down_read(¤t->mm->mmap_sem);
vma = find_vma_intersection(current->mm, hva, hva + 1);
- if (is_vm_hugetlb_page(vma)) {
+ if (is_vm_hugetlb_page(vma) && !logging_active) {
hugetlb = true;
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
} else {
@@ -966,7 +989,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq))
goto out_unlock;
- if (!hugetlb && !force_pte)
+ if (!hugetlb && !force_pte && !logging_active)
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
if (hugetlb) {
@@ -986,10 +1009,12 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
}
coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
- mem_type == PAGE_S2_DEVICE);
+ mem_type == PAGE_S2_DEVICE,
+ logging_active);
}
-
+ if (write_fault)
+ mark_page_dirty(kvm, gfn);
out_unlock:
spin_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
@@ -1139,7 +1164,15 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
pte_t *pte = (pte_t *)data;
- stage2_set_pte(kvm, NULL, gpa, pte, false);
+ /*
+ * We can always call stage2_set_pte with logging_active == false,
+ * because MMU notifiers will have unmapped a huge PMD before calling
+ * ->change_pte() (which in turn calls kvm_set_spte_hva()) and therefore
+ * stage2_set_pte() never needs to clear out a huge PMD through this
+ * calling path.
+ */
+
+ stage2_set_pte(kvm, NULL, gpa, pte, false, false);
}