Message ID | 1415320848-13813-8-git-send-email-m.smarduch@samsung.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
On 07/11/14 00:40, Mario Smarduch wrote: > This patch adds support for handling 2nd stage page faults during migration, > it disables faulting in huge pages, and dissolves huge pages to page tables. > In case migration is canceled huge pages are used again. > > Reviewed-by: Christoffer Dall <christoffer.dall at linaro.org> > Signed-off-by: Mario Smarduch <m.smarduch@samsung.com> > --- > arch/arm/kvm/mmu.c | 47 ++++++++++++++++++++++++++++++++++++++++------- > 1 file changed, 40 insertions(+), 7 deletions(-) > > diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c > index 2f5131e..d511fc0 100644 > --- a/arch/arm/kvm/mmu.c > +++ b/arch/arm/kvm/mmu.c > @@ -47,6 +47,15 @@ static phys_addr_t hyp_idmap_vector; > #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x)) > #define kvm_pud_huge(_x) pud_huge(_x) > > +static bool kvm_get_logging_state(struct kvm_memory_slot *memslot) > +{ > +#ifdef CONFIG_ARM > + return !!memslot->dirty_bitmap; > +#else > + return false; > +#endif > +} > + > static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) > { > /* > @@ -626,7 +635,8 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache > } > > static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, > - phys_addr_t addr, const pte_t *new_pte, bool iomap) > + phys_addr_t addr, const pte_t *new_pte, bool iomap, > + bool logging_active) Yuk. Yet another parameter. Can't we have a set of flags instead, indicating both iomap and logging in one go? That would make things more readable (at least for me). > { > pmd_t *pmd; > pte_t *pte, old_pte; > @@ -641,6 +651,18 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, > return 0; > } > > + /* > + * While dirty memory logging, clear PMD entry for huge page and split > + * into smaller pages, to track dirty memory at page granularity. > + */ > + if (logging_active && kvm_pmd_huge(*pmd)) { > + phys_addr_t ipa = pmd_pfn(*pmd) << PAGE_SHIFT; > + > + pmd_clear(pmd); > + kvm_tlb_flush_vmid_ipa(kvm, ipa); > + put_page(virt_to_page(pmd)); > + } > + If we have huge PUDs (like on arn64 with 4k Pages and 4 levels of translation), would we need something similar? If that's the case, a comment would be very welcome. > /* Create stage-2 page mappings - Level 2 */ > if (pmd_none(*pmd)) { > if (!cache) > @@ -693,7 +715,7 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, > if (ret) > goto out; > spin_lock(&kvm->mmu_lock); > - ret = stage2_set_pte(kvm, &cache, addr, &pte, true); > + ret = stage2_set_pte(kvm, &cache, addr, &pte, true, false); > spin_unlock(&kvm->mmu_lock); > if (ret) > goto out; > @@ -910,6 +932,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, > struct vm_area_struct *vma; > pfn_t pfn; > pgprot_t mem_type = PAGE_S2; > + bool logging_active = kvm_get_logging_state(memslot); > > write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); > if (fault_status == FSC_PERM && !write_fault) { > @@ -920,7 +943,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, > /* Let's check if we will get back a huge page backed by hugetlbfs */ > down_read(¤t->mm->mmap_sem); > vma = find_vma_intersection(current->mm, hva, hva + 1); > - if (is_vm_hugetlb_page(vma)) { > + if (is_vm_hugetlb_page(vma) && !logging_active) { > hugetlb = true; > gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; > } else { > @@ -966,7 +989,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, > spin_lock(&kvm->mmu_lock); > if (mmu_notifier_retry(kvm, mmu_seq)) > goto out_unlock; > - if (!hugetlb && !force_pte) > + if (!hugetlb && !force_pte && !logging_active) > hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); > > if (hugetlb) { > @@ -986,10 +1009,12 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, > } > coherent_cache_guest_page(vcpu, hva, PAGE_SIZE); > ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, > - mem_type == PAGE_S2_DEVICE); > + mem_type == PAGE_S2_DEVICE, > + logging_active); > } > > - > + if (write_fault) > + mark_page_dirty(kvm, gfn); > out_unlock: > spin_unlock(&kvm->mmu_lock); > kvm_release_pfn_clean(pfn); > @@ -1139,7 +1164,15 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data) > { > pte_t *pte = (pte_t *)data; > > - stage2_set_pte(kvm, NULL, gpa, pte, false); > + /* > + * We can always call stage2_set_pte with logging_active == false, > + * because MMU notifiers will have unmapped a huge PMD before calling > + * ->change_pte() (which in turn calls kvm_set_spte_hva()) and therefore > + * stage2_set_pte() never needs to clear out a huge PMD through this > + * calling path. > + */ > + > + stage2_set_pte(kvm, NULL, gpa, pte, false, false); > } > > > Thanks, M.
On 11/07/2014 02:33 AM, Marc Zyngier wrote: > On 07/11/14 00:40, Mario Smarduch wrote: >> This patch adds support for handling 2nd stage page faults during migration, >> it disables faulting in huge pages, and dissolves huge pages to page tables. >> In case migration is canceled huge pages are used again. >> >> Reviewed-by: Christoffer Dall <christoffer.dall at linaro.org> >> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com> >> --- >> arch/arm/kvm/mmu.c | 47 ++++++++++++++++++++++++++++++++++++++++------- >> 1 file changed, 40 insertions(+), 7 deletions(-) >> >> diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c >> index 2f5131e..d511fc0 100644 >> --- a/arch/arm/kvm/mmu.c >> +++ b/arch/arm/kvm/mmu.c >> @@ -47,6 +47,15 @@ static phys_addr_t hyp_idmap_vector; >> #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x)) >> #define kvm_pud_huge(_x) pud_huge(_x) >> >> +static bool kvm_get_logging_state(struct kvm_memory_slot *memslot) >> +{ >> +#ifdef CONFIG_ARM >> + return !!memslot->dirty_bitmap; >> +#else >> + return false; >> +#endif >> +} >> + >> static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) >> { >> /* >> @@ -626,7 +635,8 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache >> } >> >> static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, >> - phys_addr_t addr, const pte_t *new_pte, bool iomap) >> + phys_addr_t addr, const pte_t *new_pte, bool iomap, >> + bool logging_active) > > Yuk. Yet another parameter. Can't we have a set of flags instead, > indicating both iomap and logging in one go? That would make things more > readable (at least for me). Sure that could be changed, I didn't like the idea adding another line myself, needed some suggestions. > >> { >> pmd_t *pmd; >> pte_t *pte, old_pte; >> @@ -641,6 +651,18 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, >> return 0; >> } >> >> + /* >> + * While dirty memory logging, clear PMD entry for huge page and split >> + * into smaller pages, to track dirty memory at page granularity. >> + */ >> + if (logging_active && kvm_pmd_huge(*pmd)) { >> + phys_addr_t ipa = pmd_pfn(*pmd) << PAGE_SHIFT; >> + >> + pmd_clear(pmd); >> + kvm_tlb_flush_vmid_ipa(kvm, ipa); >> + put_page(virt_to_page(pmd)); >> + } >> + > > If we have huge PUDs (like on arn64 with 4k Pages and 4 levels of > translation), would we need something similar? If that's the case, a > comment would be very welcome. I'm not sure what we do if we encounter a huge pud, break that up into small pages? I was thinking if huge puds are enabled then disable page logging. I don't know what kind of comment to put in here now other then it's not supported > >> /* Create stage-2 page mappings - Level 2 */ >> if (pmd_none(*pmd)) { >> if (!cache) >> @@ -693,7 +715,7 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, >> if (ret) >> goto out; >> spin_lock(&kvm->mmu_lock); >> - ret = stage2_set_pte(kvm, &cache, addr, &pte, true); >> + ret = stage2_set_pte(kvm, &cache, addr, &pte, true, false); >> spin_unlock(&kvm->mmu_lock); >> if (ret) >> goto out; >> @@ -910,6 +932,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, >> struct vm_area_struct *vma; >> pfn_t pfn; >> pgprot_t mem_type = PAGE_S2; >> + bool logging_active = kvm_get_logging_state(memslot); >> >> write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); >> if (fault_status == FSC_PERM && !write_fault) { >> @@ -920,7 +943,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, >> /* Let's check if we will get back a huge page backed by hugetlbfs */ >> down_read(¤t->mm->mmap_sem); >> vma = find_vma_intersection(current->mm, hva, hva + 1); >> - if (is_vm_hugetlb_page(vma)) { >> + if (is_vm_hugetlb_page(vma) && !logging_active) { >> hugetlb = true; >> gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; >> } else { >> @@ -966,7 +989,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, >> spin_lock(&kvm->mmu_lock); >> if (mmu_notifier_retry(kvm, mmu_seq)) >> goto out_unlock; >> - if (!hugetlb && !force_pte) >> + if (!hugetlb && !force_pte && !logging_active) >> hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); >> >> if (hugetlb) { >> @@ -986,10 +1009,12 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, >> } >> coherent_cache_guest_page(vcpu, hva, PAGE_SIZE); >> ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, >> - mem_type == PAGE_S2_DEVICE); >> + mem_type == PAGE_S2_DEVICE, >> + logging_active); >> } >> >> - >> + if (write_fault) >> + mark_page_dirty(kvm, gfn); >> out_unlock: >> spin_unlock(&kvm->mmu_lock); >> kvm_release_pfn_clean(pfn); >> @@ -1139,7 +1164,15 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data) >> { >> pte_t *pte = (pte_t *)data; >> >> - stage2_set_pte(kvm, NULL, gpa, pte, false); >> + /* >> + * We can always call stage2_set_pte with logging_active == false, >> + * because MMU notifiers will have unmapped a huge PMD before calling >> + * ->change_pte() (which in turn calls kvm_set_spte_hva()) and therefore >> + * stage2_set_pte() never needs to clear out a huge PMD through this >> + * calling path. >> + */ >> + >> + stage2_set_pte(kvm, NULL, gpa, pte, false, false); >> } >> >> >> > > Thanks, > > M. >
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 2f5131e..d511fc0 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -47,6 +47,15 @@ static phys_addr_t hyp_idmap_vector; #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x)) #define kvm_pud_huge(_x) pud_huge(_x) +static bool kvm_get_logging_state(struct kvm_memory_slot *memslot) +{ +#ifdef CONFIG_ARM + return !!memslot->dirty_bitmap; +#else + return false; +#endif +} + static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) { /* @@ -626,7 +635,8 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache } static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, - phys_addr_t addr, const pte_t *new_pte, bool iomap) + phys_addr_t addr, const pte_t *new_pte, bool iomap, + bool logging_active) { pmd_t *pmd; pte_t *pte, old_pte; @@ -641,6 +651,18 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, return 0; } + /* + * While dirty memory logging, clear PMD entry for huge page and split + * into smaller pages, to track dirty memory at page granularity. + */ + if (logging_active && kvm_pmd_huge(*pmd)) { + phys_addr_t ipa = pmd_pfn(*pmd) << PAGE_SHIFT; + + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, ipa); + put_page(virt_to_page(pmd)); + } + /* Create stage-2 page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) @@ -693,7 +715,7 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, if (ret) goto out; spin_lock(&kvm->mmu_lock); - ret = stage2_set_pte(kvm, &cache, addr, &pte, true); + ret = stage2_set_pte(kvm, &cache, addr, &pte, true, false); spin_unlock(&kvm->mmu_lock); if (ret) goto out; @@ -910,6 +932,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, struct vm_area_struct *vma; pfn_t pfn; pgprot_t mem_type = PAGE_S2; + bool logging_active = kvm_get_logging_state(memslot); write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); if (fault_status == FSC_PERM && !write_fault) { @@ -920,7 +943,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, /* Let's check if we will get back a huge page backed by hugetlbfs */ down_read(¤t->mm->mmap_sem); vma = find_vma_intersection(current->mm, hva, hva + 1); - if (is_vm_hugetlb_page(vma)) { + if (is_vm_hugetlb_page(vma) && !logging_active) { hugetlb = true; gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; } else { @@ -966,7 +989,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, spin_lock(&kvm->mmu_lock); if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock; - if (!hugetlb && !force_pte) + if (!hugetlb && !force_pte && !logging_active) hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); if (hugetlb) { @@ -986,10 +1009,12 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, } coherent_cache_guest_page(vcpu, hva, PAGE_SIZE); ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, - mem_type == PAGE_S2_DEVICE); + mem_type == PAGE_S2_DEVICE, + logging_active); } - + if (write_fault) + mark_page_dirty(kvm, gfn); out_unlock: spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn); @@ -1139,7 +1164,15 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data) { pte_t *pte = (pte_t *)data; - stage2_set_pte(kvm, NULL, gpa, pte, false); + /* + * We can always call stage2_set_pte with logging_active == false, + * because MMU notifiers will have unmapped a huge PMD before calling + * ->change_pte() (which in turn calls kvm_set_spte_hva()) and therefore + * stage2_set_pte() never needs to clear out a huge PMD through this + * calling path. + */ + + stage2_set_pte(kvm, NULL, gpa, pte, false, false); }