Message ID | 1539839345-14021-3-git-send-email-jianxin.pan@amlogic.com (mailing list archive) |
---|---|
State | Superseded, archived |
Headers | show |
Series | mtd: rawnand: meson: add Amlogic NAND driver support | expand |
On Thu, 18 Oct 2018 13:09:05 +0800 Jianxin Pan <jianxin.pan@amlogic.com> wrote: > +static int meson_nfc_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, bool check_only) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct meson_nfc *nfc = nand_get_controller_data(chip); > + const struct nand_op_instr *instr = NULL; > + int ret = 0, cmd; > + unsigned int op_id; > + int i; > + > + for (op_id = 0; op_id < op->ninstrs; op_id++) { > + instr = &op->instrs[op_id]; > + switch (instr->type) { > + case NAND_OP_CMD_INSTR: > + if (instr->ctx.cmd.opcode == NAND_CMD_STATUS) > + meson_nfc_cmd_idle(nfc, nfc->timing.twb); Hm, I don't want drivers to base their decisions on the opcode value. There's a ->delay_ns field in the instruction object, can't you use that one instead? Also, I don't understand why this is only needed for the STATUS command. It should normally be applied to all instructions. > + cmd = nfc->param.chip_select | NFC_CMD_CLE; > + cmd |= instr->ctx.cmd.opcode & 0xff; > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + if (instr->ctx.cmd.opcode == NAND_CMD_STATUS) > + meson_nfc_cmd_idle(nfc, nfc->timing.twhr); > + break; > + > + case NAND_OP_ADDR_INSTR: > + for (i = 0; i < instr->ctx.addr.naddrs; i++) { > + cmd = nfc->param.chip_select | NFC_CMD_ALE; > + cmd |= instr->ctx.addr.addrs[i] & 0xff; > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + } > + break; > + > + case NAND_OP_DATA_IN_INSTR: > + meson_nfc_read_buf(mtd, instr->ctx.data.buf.in, > + instr->ctx.data.len); > + break; > + > + case NAND_OP_DATA_OUT_INSTR: > + meson_nfc_write_buf(mtd, instr->ctx.data.buf.out, > + instr->ctx.data.len); > + break; > + > + case NAND_OP_WAITRDY_INSTR: > + meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms); > + break; > + } > + } > + return ret; > +}
On Thu, 18 Oct 2018 13:09:05 +0800 Jianxin Pan <jianxin.pan@amlogic.com> wrote: > From: Liang Yang <liang.yang@amlogic.com> > > Add initial support for the Amlogic NAND flash controller which found > in the Meson-GXBB/GXL/AXG SoCs. > > Signed-off-by: Liang Yang <liang.yang@amlogic.com> > Signed-off-by: Yixun Lan <yixun.lan@amlogic.com> > Signed-off-by: Jianxin Pan <jianxin.pan@amlogic.com> > --- > drivers/mtd/nand/raw/Kconfig | 10 + > drivers/mtd/nand/raw/Makefile | 1 + > drivers/mtd/nand/raw/meson_nand.c | 1370 +++++++++++++++++++++++++++++++++++++ > 3 files changed, 1381 insertions(+) > create mode 100644 drivers/mtd/nand/raw/meson_nand.c > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index c7efc31..223b041 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -541,4 +541,14 @@ config MTD_NAND_TEGRA > is supported. Extra OOB bytes when using HW ECC are currently > not supported. > > +config MTD_NAND_MESON > + tristate "Support for NAND controller on Amlogic's Meson SoCs" > + depends on ARCH_MESON || COMPILE_TEST > + depends on COMMON_CLK_AMLOGIC > + select COMMON_CLK_REGMAP_MESON > + select MFD_SYSCON > + help > + Enables support for NAND controller on Amlogic's Meson SoCs. > + This controller is found on Meson GXBB, GXL, AXG SoCs. > + > endif # MTD_NAND > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index 57159b3..a2cc2fe 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ > obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o > obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o > obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o > +obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o > > nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o > nand-objs += nand_onfi.o > diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c > new file mode 100644 > index 0000000..bcaac53 > --- /dev/null > +++ b/drivers/mtd/nand/raw/meson_nand.c > @@ -0,0 +1,1370 @@ > +// SPDX-License-Identifier: (GPL-2.0+ OR MIT) > +/* > + * Amlogic Meson Nand Flash Controller Driver > + * > + * Copyright (c) 2018 Amlogic, inc. > + * Author: Liang Yang <liang.yang@amlogic.com> > + */ > + > +#include <linux/platform_device.h> > +#include <linux/dma-mapping.h> > +#include <linux/interrupt.h> > +#include <linux/clk.h> > +#include <linux/mtd/rawnand.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mfd/syscon.h> > +#include <linux/regmap.h> > +#include <linux/slab.h> > +#include <linux/module.h> > +#include <linux/iopoll.h> > +#include <linux/of.h> > +#include <linux/of_device.h> > + > +#define NFC_REG_CMD 0x00 > +#define NFC_CMD_DRD (0x8 << 14) > +#define NFC_CMD_IDLE (0xc << 14) > +#define NFC_CMD_DWR (0x4 << 14) > +#define NFC_CMD_CLE (0x5 << 14) > +#define NFC_CMD_ALE (0x6 << 14) > +#define NFC_CMD_ADL ((0 << 16) | (3 << 20)) > +#define NFC_CMD_ADH ((1 << 16) | (3 << 20)) > +#define NFC_CMD_AIL ((2 << 16) | (3 << 20)) > +#define NFC_CMD_AIH ((3 << 16) | (3 << 20)) > +#define NFC_CMD_SEED ((8 << 16) | (3 << 20)) > +#define NFC_CMD_M2N ((0 << 17) | (2 << 20)) > +#define NFC_CMD_N2M ((1 << 17) | (2 << 20)) > +#define NFC_CMD_RB BIT(20) > +#define NFC_CMD_IO6 ((0xb << 10) | (1 << 18)) > + > +#define NFC_REG_CFG 0x04 > +#define NFC_REG_DADR 0x08 > +#define NFC_REG_IADR 0x0c > +#define NFC_REG_BUF 0x10 > +#define NFC_REG_INFO 0x14 > +#define NFC_REG_DC 0x18 > +#define NFC_REG_ADR 0x1c > +#define NFC_REG_DL 0x20 > +#define NFC_REG_DH 0x24 > +#define NFC_REG_CADR 0x28 > +#define NFC_REG_SADR 0x2c > +#define NFC_REG_PINS 0x30 > +#define NFC_REG_VER 0x38 > + > +#define NFC_RB_IRQ_EN BIT(21) > +#define NFC_INT_MASK (3 << 20) > + > +#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ > + ( \ > + (cmd_dir) | \ > + ((ran) << 19) | \ > + ((bch) << 14) | \ > + ((short_mode) << 13) | \ > + (((page_size) & 0x7f) << 6) | \ > + ((pages) & 0x3f) \ > + ) > + > +#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) > +#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) > +#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) > +#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) > + > +#define RB_STA(x) (1 << (26 + (x))) > +#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) > + > +#define ECC_CHECK_RETURN_FF (-1) > + > +#define NAND_CE0 (0xe << 10) > +#define NAND_CE1 (0xd << 10) > + > +#define DMA_BUSY_TIMEOUT 0x100000 > +#define CMD_FIFO_EMPTY_TIMEOUT 1000 > + > +#define MAX_CE_NUM 2 > + > +/* eMMC clock register, misc control */ > +#define SD_EMMC_CLOCK 0x00 > +#define CLK_ALWAYS_ON BIT(28) > +#define CLK_SELECT_NAND BIT(31) > +#define CLK_DIV_MASK GENMASK(5, 0) > + > +#define NFC_CLK_CYCLE 6 > + > +/* nand flash controller delay 3 ns */ > +#define NFC_DEFAULT_DELAY 3000 > + > +#define MAX_ECC_INDEX 10 > + > +#define MUX_CLK_NUM_PARENTS 2 > + > +#define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) > +#define MAX_CYCLE_ROW_ADDRS 3 > +#define MAX_CYCLE_COLUMN_ADDRS 2 > +#define DIRREAD 1 > +#define DIRWRITE 0 > + > +#define ECC_PARITY_BCH8_512B 14 > + > +struct meson_nfc_info_format { > + u16 info_bytes; > + > + /* bit[5:0] are valid */ > + u8 zero_cnt; > + struct ecc_sta { > + u8 eccerr_cnt : 6; > + u8 notused : 1; > + u8 completed : 1; > + } ecc; It's usually a bad idea to use bitfields for things like HW regs/descriptors fields because it's hard to tell where the bits are actually placed (not even sure the C standard defines how this should be done). > + u32 reserved; > +}; How about defining that the HW returns an array of __le64 instead and then define the following macros which you can use after converting in the CPU endianness #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * (1 + y)) & GENMASK(7, 0)) #define ECC_COMPLETE BIT(31) #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) (I'm not entirely sure the field positions are correct, but I'll let you check that). > + > +#define PER_INFO_BYTE (sizeof(struct meson_nfc_info_format)) > + > +struct meson_nfc_nand_chip { > + struct list_head node; > + struct nand_chip nand; > + bool is_scramble; I think I already mentioned the NAND_NEED_SCRAMBLING flag []. Please drop this field and test (chip->flags & NAND_NEED_SCRAMBLING) instead. > + int bch_mode; > + int nsels; > + u8 sels[0]; > +}; > + > +struct meson_nand_ecc { > + int bch; > + int strength; > +}; > + > +struct meson_nfc_data { > + const struct nand_ecc_caps *ecc_caps; > +}; > + > +struct meson_nfc_param { > + int chip_select; > + int rb_select; > +}; > + > +struct nand_rw_cmd { > + int cmd0; > + int col[MAX_CYCLE_COLUMN_ADDRS]; > + int row[MAX_CYCLE_ROW_ADDRS]; > + int cmd1; > +}; > + > +struct nand_timing { > + int twb; > + int tadl; > + int twhr; > +}; > + > +struct meson_nfc { > + struct nand_controller controller; > + struct clk *core_clk; > + struct clk *device_clk; > + struct clk *phase_tx; > + struct clk *phase_rx; > + > + struct device *dev; > + void __iomem *reg_base; > + struct regmap *reg_clk; > + struct completion completion; > + struct list_head chips; > + const struct meson_nfc_data *data; > + struct meson_nfc_param param; > + struct nand_timing timing; > + union { > + int cmd[32]; > + struct nand_rw_cmd rw; > + } cmdfifo; > + > + dma_addr_t data_dma; > + dma_addr_t info_dma; > + > + unsigned long assigned_cs; > + > + u8 *data_buf; > + u8 *info_buf; > +}; > + > +enum { > + NFC_ECC_BCH8_1K = 2, > + NFC_ECC_BCH24_1K, > + NFC_ECC_BCH30_1K, > + NFC_ECC_BCH40_1K, > + NFC_ECC_BCH50_1K, > + NFC_ECC_BCH60_1K, > +}; > + > +#define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)} > + > +static int meson_nand_calc_ecc_bytes(int step_size, int strength) > +{ > + int ecc_bytes; > + > + if (step_size == 512 && strength == 8) > + return ECC_PARITY_BCH8_512B; > + > + ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); > + if (ecc_bytes % 2) > + ecc_bytes++; Just a tiny detail, but this can be replaced by ALIGN(ecc_bytes, 2). > + > + return ecc_bytes; > +} > + > +NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, > + meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); > +NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps, > + meson_nand_calc_ecc_bytes, 1024, 8); > + > +static inline > +struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) > +{ > + return container_of(nand, struct meson_nfc_nand_chip, nand); > +} > + > +static void meson_nfc_select_chip(struct nand_chip *nand, int chip) > +{ > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + > + if (chip < 0 || chip > MAX_CE_NUM) You can add a WARN_ON_ONCE() around chip > MAX_CE_NUM, because this should never happen. > + return; > + > + nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; > + nfc->param.rb_select = nfc->param.chip_select; > +} > + > +static inline void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) > +{ > + writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), > + nfc->reg_base + NFC_REG_CMD); > +} > + > +static inline void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) > +{ > + writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), > + nfc->reg_base + NFC_REG_CMD); > +} > + > +static void meson_nfc_cmd_access(struct meson_nfc *nfc, > + struct mtd_info *mtd, int raw, bool dir) Just pass a nand_chip or a meson_nfc_nand_chip object here, nfc and mtd can be extracted from there. > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + u32 cmd, pagesize, pages; > + int bch = meson_chip->bch_mode; > + int len = mtd->writesize; > + int scramble = meson_chip->is_scramble ? 1 : 0; > + > + pagesize = nand->ecc.size; > + > + if (raw) { > + bch = NAND_ECC_NONE; You set bch to NAND_ECC_NONE but never use the variable afterwards, is that normal? > + len = mtd->writesize + mtd->oobsize; > + cmd = (len & 0x3fff) | (scramble << 19) | DMA_DIR(dir); Please use a macro to describe bit 19: #define NFC_CMD_SCRAMBLER_ENABLE BIT(19) > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + return; > + } > + > + pages = len / nand->ecc.size; > + > + cmd = CMDRWGEN(DMA_DIR(dir), scramble, bch, 0, pagesize, pages); > + > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > +} > + > +static inline void meson_nfc_drain_cmd(struct meson_nfc *nfc) > +{ > + /* > + * Insert two commands to make sure all valid commands are finished. > + * > + * The Nand flash controller is designed as two stages pipleline - > + * a) fetch and b) excute. > + * There might be cases when the driver see command queue is empty, > + * but the Nand flash controller still has two commands buffered, > + * one is fetched into NFC request queue (ready to run), and another > + * is actively executing. So pushing 2 "IDLE" commands guarantees that > + * the pipeline is emptied. > + */ > + meson_nfc_cmd_idle(nfc, 0); > + meson_nfc_cmd_idle(nfc, 0); > +} > + > +static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, > + unsigned int timeout_ms) > +{ > + u32 cmd_size = 0; > + int ret; > + > + /* wait cmd fifo is empty */ > + ret = readl_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, > + !((cmd_size >> 22) & 0x1f), Define a macro to extract the cmd_size: #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) > + 10, timeout_ms * 1000); > + if (ret) > + dev_err(nfc->dev, "wait for empty cmd FIFO time out\n"); > + > + return ret; > +} > + > +static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) > +{ > + meson_nfc_drain_cmd(nfc); > + > + return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); > +} > + > +static inline > +struct meson_nfc_info_format *nfc_info_ptr(struct meson_nfc *nfc, > + int index) > +{ > + return (struct meson_nfc_info_format *)&nfc->info_buf[index * 8]; As said previously, I think ->info_buf should be an array of __le64, and all you should do here is return le64_to_cpu(nfc->info_buf[index]); Then you can use the macros defined above to extract the results you need. > +} > + > +static u8 *meson_nfc_oob_ptr(struct meson_nfc *nfc, > + struct mtd_info *mtd, int i) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + int len; > + > + len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; > + > + return nfc->data_buf + len; > +} > + > +static u8 *meson_nfc_data_ptr(struct meson_nfc *nfc, > + struct mtd_info *mtd, int i) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + int len; > + int temp; > + > + temp = nand->ecc.size + nand->ecc.bytes; > + len = (temp + 2) * i; > + > + return nfc->data_buf + len; > +} > + > +static void meson_nfc_prase_data_oob(struct meson_nfc *nfc, What does prase mean? Maybe _set_ and _get_ would be better that _prase_ and _format_. > + struct mtd_info *mtd, u8 *buf, u8 *oobbuf) As said previously, please stop passing mtd objects around. Same goes for nfc if you already have to pass a nand_chip object. > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + int i, oob_len = 0; > + u8 *dsrc, *osrc; > + > + for (i = 0; i < mtd->writesize / nand->ecc.size; i++) { You have ecc->steps for that, no need to do the division everytime. > + if (buf) { > + dsrc = meson_nfc_data_ptr(nfc, mtd, i); > + memcpy(buf, dsrc, nand->ecc.size); > + buf += nand->ecc.size; > + } > + oob_len = nand->ecc.bytes + 2; Looks like oob_len does not change, so you can move the oob_len assignment outside of this loop. > + osrc = meson_nfc_oob_ptr(nfc, mtd, i); > + memcpy(oobbuf, osrc, oob_len); > + oobbuf += oob_len; > + } > +} > + > +static void meson_nfc_format_data_oob(struct meson_nfc *nfc, > + struct mtd_info *mtd, > + const u8 *buf, u8 *oobbuf) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + int i, oob_len = 0; > + u8 *dsrc, *osrc; > + > + for (i = 0; i < mtd->writesize / nand->ecc.size; i++) { > + if (buf) { > + dsrc = meson_nfc_data_ptr(nfc, mtd, i); > + memcpy(dsrc, buf, nand->ecc.size); > + buf += nand->ecc.size; > + } > + oob_len = nand->ecc.bytes + 2; > + osrc = meson_nfc_oob_ptr(nfc, mtd, i); > + memcpy(osrc, oobbuf, oob_len); > + oobbuf += oob_len; > + } > +} > + > +static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms) > +{ > + u32 cmd, cfg; > + int ret = 0; > + > + meson_nfc_cmd_idle(nfc, nfc->timing.twb); > + meson_nfc_drain_cmd(nfc); > + meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); > + > + cfg = readl(nfc->reg_base + NFC_REG_CFG); > + cfg |= (1 << 21); > + writel(cfg, nfc->reg_base + NFC_REG_CFG); > + > + init_completion(&nfc->completion); > + > + cmd = NFC_CMD_RB | (0x1 << 14) | nfc->param.chip_select | 0x18; Please define macros for all those magic values (0x18 and 1 << 14) > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + ret = wait_for_completion_timeout(&nfc->completion, > + msecs_to_jiffies(timeout_ms)); > + if (ret == 0) { > + dev_err(nfc->dev, "wait nand irq timeout\n"); > + ret = -1; -ETIMEDOUT; > + } > + return ret; > +} > + > +static void meson_nfc_set_user_byte(struct mtd_info *mtd, > + struct nand_chip *chip, u8 *oob_buf) > +{ > + struct meson_nfc *nfc = nand_get_controller_data(chip); > + struct meson_nfc_info_format *info; > + int i, count; > + > + for (i = 0, count = 0; i < chip->ecc.steps; i++, count += 2) { > + info = nfc_info_ptr(nfc, i); > + info->info_bytes = > + oob_buf[count] | (oob_buf[count + 1] << 8); Use a macro to set/get protected OOB bytes. > + } > +} > +
On Thu, 18 Oct 2018 13:09:05 +0800 Jianxin Pan <jianxin.pan@amlogic.com> wrote: > +static int meson_nand_bch_mode(struct nand_chip *nand) > +{ > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + struct meson_nand_ecc meson_ecc[] = { > + MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8), > + MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24), > + MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30), > + MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40), > + MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50), > + MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60), > + }; > + int i, ret = 0; > + > + if (nand->ecc.strength > 60 || nand->ecc.strength < 8) > + return -EINVAL; > + > + for (i = 0; i < sizeof(meson_ecc); i++) { > + if (meson_ecc[i].strength == nand->ecc.strength) { > + meson_chip->bch_mode = meson_ecc[i].bch; > + break; return 0; > + } > + } > + > + return ret; return -EINVAL; > +}
On Thu, 18 Oct 2018 13:09:05 +0800 Jianxin Pan <jianxin.pan@amlogic.com> wrote: > +static int meson_nfc_calc_set_timing(struct meson_nfc *nfc, > + const struct nand_sdr_timings *timings) > +{ > + struct nand_timing *timing = &nfc->timing; > + int div, bt_min, bt_max, bus_timing; > + int ret; > + > + div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); > + ret = clk_set_rate(nfc->device_clk, 1000000000 / div); > + if (ret) { > + dev_err(nfc->dev, "failed to set nand clock rate\n"); > + return ret; > + } > + > + timing->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), > + div * NFC_CLK_CYCLE); > + timing->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), > + div * NFC_CLK_CYCLE); > + timing->twhr = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWHR_min), > + div * NFC_CLK_CYCLE); > + > + bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; > + bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min > + + timings->tRC_min / 2) / div; > + > + bt_min = DIV_ROUND_UP(bt_min, 1000); > + bt_max = DIV_ROUND_UP(bt_max, 1000); > + > + if (bt_max < bt_min) > + return -EINVAL; > + > + bus_timing = (bt_min + bt_max) / 2 + 1; > + > + writel((1 << 21), nfc->reg_base + NFC_REG_CFG); > + writel((NFC_CLK_CYCLE - 1) | (bus_timing << 5), > + nfc->reg_base + NFC_REG_CFG); > + > + writel((1 << 31), nfc->reg_base + NFC_REG_CMD); > + > + return 0; > +} > + > +static int > +meson_nfc_setup_data_interface(struct nand_chip *nand, int csline, > + const struct nand_data_interface *conf) > +{ > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + const struct nand_sdr_timings *timings; > + > + timings = nand_get_sdr_timings(conf); > + if (IS_ERR(timings)) > + return -ENOTSUPP; > + > + if (csline == NAND_DATA_IFACE_CHECK_ONLY) > + return 0; Hm, before saying you supporting the requested timing, you should make sure they are actually supported. I'd recommend splitting this in 2 steps: 1/ calc timings 2/ store the timings in the chip priv struct so that they can be applied next time ->select_chip() is called. > + > + meson_nfc_calc_set_timing(nfc, timings); You should not set the timing from ->setup_data_interface(), just calculate them, make sure they are supported and store the state in the private chip struct. Applying those timings should be done in ->select_chip(), so that you can support 2 chips with different timings. > + return 0; > +}
On Thu, 18 Oct 2018 13:09:05 +0800 Jianxin Pan <jianxin.pan@amlogic.com> wrote: > +static int meson_nfc_buffer_init(struct mtd_info *mtd) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + static int max_page_bytes, max_info_bytes; > + int page_bytes, info_bytes; > + int nsectors; > + > + nsectors = mtd->writesize / nand->ecc.size; > + page_bytes = mtd->writesize + mtd->oobsize; > + info_bytes = nsectors * PER_INFO_BYTE; > + > + if (nfc->data_buf && nfc->info_buf) { > + if (max_page_bytes < page_bytes) > + meson_nfc_free_buffer(nfc); > + else > + return 0; > + } > + > + max_page_bytes = max_t(int, max_page_bytes, page_bytes); > + max_info_bytes = max_t(int, max_info_bytes, info_bytes); > + > + nfc->data_buf = kmalloc(max_page_bytes, GFP_KERNEL); Is there a good reason for not using chip->data_buf and allocating a new buffer here? > + if (!nfc->data_buf) > + return -ENOMEM; > + > + nfc->info_buf = kmalloc(max_info_bytes, GFP_KERNEL); > + if (!nfc->info_buf) { > + kfree(nfc->data_buf); > + return -ENOMEM; > + } I'd recommend moving this info_buf in the priv chip struct, otherwise you'll have to protect nfc->info_buf with a lock to prevent an already register chip from using this pointer while you're reallocating the buffer. Also, I think you have a memleak here. > + > + return 0; > +}
On 2018/10/19 3:33, Boris Brezillon wrote: > On Thu, 18 Oct 2018 13:09:05 +0800 > Jianxin Pan <jianxin.pan@amlogic.com> wrote: > >> From: Liang Yang <liang.yang@amlogic.com> >> >> Add initial support for the Amlogic NAND flash controller which found >> in the Meson-GXBB/GXL/AXG SoCs. >> >> Signed-off-by: Liang Yang <liang.yang@amlogic.com> >> Signed-off-by: Yixun Lan <yixun.lan@amlogic.com> >> Signed-off-by: Jianxin Pan <jianxin.pan@amlogic.com> >> --- >> drivers/mtd/nand/raw/Kconfig | 10 + >> drivers/mtd/nand/raw/Makefile | 1 + >> drivers/mtd/nand/raw/meson_nand.c | 1370 +++++++++++++++++++++++++++++++++++++ >> 3 files changed, 1381 insertions(+) >> create mode 100644 drivers/mtd/nand/raw/meson_nand.c >> >> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig >> index c7efc31..223b041 100644 >> --- a/drivers/mtd/nand/raw/Kconfig >> +++ b/drivers/mtd/nand/raw/Kconfig >> @@ -541,4 +541,14 @@ config MTD_NAND_TEGRA >> is supported. Extra OOB bytes when using HW ECC are currently >> not supported. >> >> +config MTD_NAND_MESON >> + tristate "Support for NAND controller on Amlogic's Meson SoCs" >> + depends on ARCH_MESON || COMPILE_TEST >> + depends on COMMON_CLK_AMLOGIC >> + select COMMON_CLK_REGMAP_MESON >> + select MFD_SYSCON >> + help >> + Enables support for NAND controller on Amlogic's Meson SoCs. >> + This controller is found on Meson GXBB, GXL, AXG SoCs. >> + >> endif # MTD_NAND >> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile >> index 57159b3..a2cc2fe 100644 >> --- a/drivers/mtd/nand/raw/Makefile >> +++ b/drivers/mtd/nand/raw/Makefile >> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ >> obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o >> obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o >> obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o >> +obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o >> >> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o >> nand-objs += nand_onfi.o >> diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c >> new file mode 100644 >> index 0000000..bcaac53 >> --- /dev/null >> +++ b/drivers/mtd/nand/raw/meson_nand.c >> @@ -0,0 +1,1370 @@ >> +// SPDX-License-Identifier: (GPL-2.0+ OR MIT) >> +/* >> + * Amlogic Meson Nand Flash Controller Driver >> + * >> + * Copyright (c) 2018 Amlogic, inc. >> + * Author: Liang Yang <liang.yang@amlogic.com> >> + */ >> + >> +#include <linux/platform_device.h> >> +#include <linux/dma-mapping.h> >> +#include <linux/interrupt.h> >> +#include <linux/clk.h> >> +#include <linux/mtd/rawnand.h> >> +#include <linux/mtd/mtd.h> >> +#include <linux/mfd/syscon.h> >> +#include <linux/regmap.h> >> +#include <linux/slab.h> >> +#include <linux/module.h> >> +#include <linux/iopoll.h> >> +#include <linux/of.h> >> +#include <linux/of_device.h> >> + >> +#define NFC_REG_CMD 0x00 >> +#define NFC_CMD_DRD (0x8 << 14) >> +#define NFC_CMD_IDLE (0xc << 14) >> +#define NFC_CMD_DWR (0x4 << 14) >> +#define NFC_CMD_CLE (0x5 << 14) >> +#define NFC_CMD_ALE (0x6 << 14) >> +#define NFC_CMD_ADL ((0 << 16) | (3 << 20)) >> +#define NFC_CMD_ADH ((1 << 16) | (3 << 20)) >> +#define NFC_CMD_AIL ((2 << 16) | (3 << 20)) >> +#define NFC_CMD_AIH ((3 << 16) | (3 << 20)) >> +#define NFC_CMD_SEED ((8 << 16) | (3 << 20)) >> +#define NFC_CMD_M2N ((0 << 17) | (2 << 20)) >> +#define NFC_CMD_N2M ((1 << 17) | (2 << 20)) >> +#define NFC_CMD_RB BIT(20) >> +#define NFC_CMD_IO6 ((0xb << 10) | (1 << 18)) >> + >> +#define NFC_REG_CFG 0x04 >> +#define NFC_REG_DADR 0x08 >> +#define NFC_REG_IADR 0x0c >> +#define NFC_REG_BUF 0x10 >> +#define NFC_REG_INFO 0x14 >> +#define NFC_REG_DC 0x18 >> +#define NFC_REG_ADR 0x1c >> +#define NFC_REG_DL 0x20 >> +#define NFC_REG_DH 0x24 >> +#define NFC_REG_CADR 0x28 >> +#define NFC_REG_SADR 0x2c >> +#define NFC_REG_PINS 0x30 >> +#define NFC_REG_VER 0x38 >> + >> +#define NFC_RB_IRQ_EN BIT(21) >> +#define NFC_INT_MASK (3 << 20) >> + >> +#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ >> + ( \ >> + (cmd_dir) | \ >> + ((ran) << 19) | \ >> + ((bch) << 14) | \ >> + ((short_mode) << 13) | \ >> + (((page_size) & 0x7f) << 6) | \ >> + ((pages) & 0x3f) \ >> + ) >> + >> +#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) >> +#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) >> +#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) >> +#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) >> + >> +#define RB_STA(x) (1 << (26 + (x))) >> +#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) >> + >> +#define ECC_CHECK_RETURN_FF (-1) >> + >> +#define NAND_CE0 (0xe << 10) >> +#define NAND_CE1 (0xd << 10) >> + >> +#define DMA_BUSY_TIMEOUT 0x100000 >> +#define CMD_FIFO_EMPTY_TIMEOUT 1000 >> + >> +#define MAX_CE_NUM 2 >> + >> +/* eMMC clock register, misc control */ >> +#define SD_EMMC_CLOCK 0x00 >> +#define CLK_ALWAYS_ON BIT(28) >> +#define CLK_SELECT_NAND BIT(31) >> +#define CLK_DIV_MASK GENMASK(5, 0) >> + >> +#define NFC_CLK_CYCLE 6 >> + >> +/* nand flash controller delay 3 ns */ >> +#define NFC_DEFAULT_DELAY 3000 >> + >> +#define MAX_ECC_INDEX 10 >> + >> +#define MUX_CLK_NUM_PARENTS 2 >> + >> +#define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) >> +#define MAX_CYCLE_ROW_ADDRS 3 >> +#define MAX_CYCLE_COLUMN_ADDRS 2 >> +#define DIRREAD 1 >> +#define DIRWRITE 0 >> + >> +#define ECC_PARITY_BCH8_512B 14 >> + >> +struct meson_nfc_info_format { >> + u16 info_bytes; >> + >> + /* bit[5:0] are valid */ >> + u8 zero_cnt; >> + struct ecc_sta { >> + u8 eccerr_cnt : 6; >> + u8 notused : 1; >> + u8 completed : 1; >> + } ecc; > > It's usually a bad idea to use bitfields for things like HW > regs/descriptors fields because it's hard to tell where the bits are > actually placed (not even sure the C standard defines how this should be > done). > ok. >> + u32 reserved; >> +}; > > How about defining that the HW returns an array of __le64 instead and then > define the following macros which you can use after converting in the > CPU endianness > > #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * (1 + y)) & GENMASK(7, 0)) > #define ECC_COMPLETE BIT(31) > #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) > > (I'm not entirely sure the field positions are correct, but I'll let you > check that). > ok. i think it should be: #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * y) & GENMASK(7, 0)) if x represents the u64 and y represents the index of the u64. >> + >> +#define PER_INFO_BYTE (sizeof(struct meson_nfc_info_format)) >> + >> +struct meson_nfc_nand_chip { >> + struct list_head node; >> + struct nand_chip nand; >> + bool is_scramble; > > I think I already mentioned the NAND_NEED_SCRAMBLING flag []. Please > drop this field and test (chip->flags & NAND_NEED_SCRAMBLING) instead. > em, i use NAND_NEED_SCRAMBLING and is_scramble is set: static int meson_nand_attach_chip(struct nand_chip *nand) { ...... meson_chip->is_scramble = (nand->options & NAND_NEED_SCRAMBLING) ? 1 : 0; ...... } >> + int bch_mode; >> + int nsels; >> + u8 sels[0]; >> +}; >> + >> +struct meson_nand_ecc { >> + int bch; >> + int strength; >> +}; >> + >> +struct meson_nfc_data { >> + const struct nand_ecc_caps *ecc_caps; >> +}; >> + >> +struct meson_nfc_param { >> + int chip_select; >> + int rb_select; >> +}; >> + >> +struct nand_rw_cmd { >> + int cmd0; >> + int col[MAX_CYCLE_COLUMN_ADDRS]; >> + int row[MAX_CYCLE_ROW_ADDRS]; >> + int cmd1; >> +}; >> + >> +struct nand_timing { >> + int twb; >> + int tadl; >> + int twhr; >> +}; >> + >> +struct meson_nfc { >> + struct nand_controller controller; >> + struct clk *core_clk; >> + struct clk *device_clk; >> + struct clk *phase_tx; >> + struct clk *phase_rx; >> + >> + struct device *dev; >> + void __iomem *reg_base; >> + struct regmap *reg_clk; >> + struct completion completion; >> + struct list_head chips; >> + const struct meson_nfc_data *data; >> + struct meson_nfc_param param; >> + struct nand_timing timing; >> + union { >> + int cmd[32]; >> + struct nand_rw_cmd rw; >> + } cmdfifo; >> + >> + dma_addr_t data_dma; >> + dma_addr_t info_dma; >> + >> + unsigned long assigned_cs; >> + >> + u8 *data_buf; >> + u8 *info_buf; >> +}; >> + >> +enum { >> + NFC_ECC_BCH8_1K = 2, >> + NFC_ECC_BCH24_1K, >> + NFC_ECC_BCH30_1K, >> + NFC_ECC_BCH40_1K, >> + NFC_ECC_BCH50_1K, >> + NFC_ECC_BCH60_1K, >> +}; >> + >> +#define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)} >> + >> +static int meson_nand_calc_ecc_bytes(int step_size, int strength) >> +{ >> + int ecc_bytes; >> + >> + if (step_size == 512 && strength == 8) >> + return ECC_PARITY_BCH8_512B; >> + >> + ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); >> + if (ecc_bytes % 2) >> + ecc_bytes++; > > Just a tiny detail, but this can be replaced by ALIGN(ecc_bytes, 2). > ok >> + >> + return ecc_bytes; >> +} >> + >> +NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, >> + meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); >> +NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps, >> + meson_nand_calc_ecc_bytes, 1024, 8); >> + >> +static inline >> +struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) >> +{ >> + return container_of(nand, struct meson_nfc_nand_chip, nand); >> +} >> + >> +static void meson_nfc_select_chip(struct nand_chip *nand, int chip) >> +{ >> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); >> + struct meson_nfc *nfc = nand_get_controller_data(nand); >> + >> + if (chip < 0 || chip > MAX_CE_NUM) > > You can add a WARN_ON_ONCE() around chip > MAX_CE_NUM, because this should > never happen. > ok >> + return; >> + >> + nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; >> + nfc->param.rb_select = nfc->param.chip_select; >> +} >> + >> +static inline void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) >> +{ >> + writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), >> + nfc->reg_base + NFC_REG_CMD); >> +} >> + >> +static inline void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) >> +{ >> + writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), >> + nfc->reg_base + NFC_REG_CMD); >> +} >> + >> +static void meson_nfc_cmd_access(struct meson_nfc *nfc, >> + struct mtd_info *mtd, int raw, bool dir) > > Just pass a nand_chip or a meson_nfc_nand_chip object here, nfc and mtd > can be extracted from there. > ok >> +{ >> + struct nand_chip *nand = mtd_to_nand(mtd); >> + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); >> + u32 cmd, pagesize, pages; >> + int bch = meson_chip->bch_mode; >> + int len = mtd->writesize; >> + int scramble = meson_chip->is_scramble ? 1 : 0; >> + >> + pagesize = nand->ecc.size; >> + >> + if (raw) { >> + bch = NAND_ECC_NONE; > > You set bch to NAND_ECC_NONE but never use the variable afterwards, is > that normal? > ok, i will fix it. it is not used. >> + len = mtd->writesize + mtd->oobsize; >> + cmd = (len & 0x3fff) | (scramble << 19) | DMA_DIR(dir); > > Please use a macro to describe bit 19: > > #define NFC_CMD_SCRAMBLER_ENABLE BIT(19) > ok >> + writel(cmd, nfc->reg_base + NFC_REG_CMD); >> + return; >> + } >> + >> + pages = len / nand->ecc.size; >> + >> + cmd = CMDRWGEN(DMA_DIR(dir), scramble, bch, 0, pagesize, pages); >> + >> + writel(cmd, nfc->reg_base + NFC_REG_CMD); >> +} >> + >> +static inline void meson_nfc_drain_cmd(struct meson_nfc *nfc) >> +{ >> + /* >> + * Insert two commands to make sure all valid commands are finished. >> + * >> + * The Nand flash controller is designed as two stages pipleline - >> + * a) fetch and b) excute. >> + * There might be cases when the driver see command queue is empty, >> + * but the Nand flash controller still has two commands buffered, >> + * one is fetched into NFC request queue (ready to run), and another >> + * is actively executing. So pushing 2 "IDLE" commands guarantees that >> + * the pipeline is emptied. >> + */ >> + meson_nfc_cmd_idle(nfc, 0); >> + meson_nfc_cmd_idle(nfc, 0); >> +} >> + >> +static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, >> + unsigned int timeout_ms) >> +{ >> + u32 cmd_size = 0; >> + int ret; >> + >> + /* wait cmd fifo is empty */ >> + ret = readl_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, >> + !((cmd_size >> 22) & 0x1f), > > Define a macro to extract the cmd_size: > > #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) > ok >> + 10, timeout_ms * 1000); >> + if (ret) >> + dev_err(nfc->dev, "wait for empty cmd FIFO time out\n"); >> + >> + return ret; >> +} >> + >> +static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) >> +{ >> + meson_nfc_drain_cmd(nfc); >> + >> + return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); >> +} >> + >> +static inline >> +struct meson_nfc_info_format *nfc_info_ptr(struct meson_nfc *nfc, >> + int index) >> +{ >> + return (struct meson_nfc_info_format *)&nfc->info_buf[index * 8]; > > As said previously, I think ->info_buf should be an array of __le64, and > all you should do here is > > return le64_to_cpu(nfc->info_buf[index]); > > Then you can use the macros defined above to extract the results you > need. > ok >> +} >> + >> +static u8 *meson_nfc_oob_ptr(struct meson_nfc *nfc, >> + struct mtd_info *mtd, int i) >> +{ >> + struct nand_chip *nand = mtd_to_nand(mtd); >> + int len; >> + >> + len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; >> + >> + return nfc->data_buf + len; >> +} >> + >> +static u8 *meson_nfc_data_ptr(struct meson_nfc *nfc, >> + struct mtd_info *mtd, int i) >> +{ >> + struct nand_chip *nand = mtd_to_nand(mtd); >> + int len; >> + int temp; >> + >> + temp = nand->ecc.size + nand->ecc.bytes; >> + len = (temp + 2) * i; >> + >> + return nfc->data_buf + len; >> +} >> + >> +static void meson_nfc_prase_data_oob(struct meson_nfc *nfc, > > What does prase mean? Maybe _set_ and _get_ would be better that _prase_ > and _format_. > >> + struct mtd_info *mtd, u8 *buf, u8 *oobbuf) > > As said previously, please stop passing mtd objects around. Same goes > for nfc if you already have to pass a nand_chip object. > ok >> +{ >> + struct nand_chip *nand = mtd_to_nand(mtd); >> + int i, oob_len = 0; >> + u8 *dsrc, *osrc; >> + >> + for (i = 0; i < mtd->writesize / nand->ecc.size; i++) { > > You have ecc->steps for that, no need to do the division everytime. > ok, it will fix it. >> + if (buf) { >> + dsrc = meson_nfc_data_ptr(nfc, mtd, i); >> + memcpy(buf, dsrc, nand->ecc.size); >> + buf += nand->ecc.size; >> + } >> + oob_len = nand->ecc.bytes + 2; > > Looks like oob_len does not change, so you can move the oob_len > assignment outside of this loop. > em.i will fix it. >> + osrc = meson_nfc_oob_ptr(nfc, mtd, i); >> + memcpy(oobbuf, osrc, oob_len); >> + oobbuf += oob_len; >> + } >> +} >> + >> +static void meson_nfc_format_data_oob(struct meson_nfc *nfc, >> + struct mtd_info *mtd, >> + const u8 *buf, u8 *oobbuf) >> +{ >> + struct nand_chip *nand = mtd_to_nand(mtd); >> + int i, oob_len = 0; >> + u8 *dsrc, *osrc; >> + >> + for (i = 0; i < mtd->writesize / nand->ecc.size; i++) { >> + if (buf) { >> + dsrc = meson_nfc_data_ptr(nfc, mtd, i); >> + memcpy(dsrc, buf, nand->ecc.size); >> + buf += nand->ecc.size; >> + } >> + oob_len = nand->ecc.bytes + 2; >> + osrc = meson_nfc_oob_ptr(nfc, mtd, i); >> + memcpy(osrc, oobbuf, oob_len); >> + oobbuf += oob_len; >> + } >> +} >> + >> +static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms) >> +{ >> + u32 cmd, cfg; >> + int ret = 0; >> + >> + meson_nfc_cmd_idle(nfc, nfc->timing.twb); >> + meson_nfc_drain_cmd(nfc); >> + meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); >> + >> + cfg = readl(nfc->reg_base + NFC_REG_CFG); >> + cfg |= (1 << 21); >> + writel(cfg, nfc->reg_base + NFC_REG_CFG); >> + >> + init_completion(&nfc->completion); >> + >> + cmd = NFC_CMD_RB | (0x1 << 14) | nfc->param.chip_select | 0x18; > > Please define macros for all those magic values (0x18 and 1 << 14) > ok >> + writel(cmd, nfc->reg_base + NFC_REG_CMD); >> + >> + ret = wait_for_completion_timeout(&nfc->completion, >> + msecs_to_jiffies(timeout_ms)); >> + if (ret == 0) { >> + dev_err(nfc->dev, "wait nand irq timeout\n"); >> + ret = -1; > > -ETIMEDOUT; > >> + } >> + return ret; >> +} >> + >> +static void meson_nfc_set_user_byte(struct mtd_info *mtd, >> + struct nand_chip *chip, u8 *oob_buf) >> +{ >> + struct meson_nfc *nfc = nand_get_controller_data(chip); >> + struct meson_nfc_info_format *info; >> + int i, count; >> + >> + for (i = 0, count = 0; i < chip->ecc.steps; i++, count += 2) { >> + info = nfc_info_ptr(nfc, i); >> + info->info_bytes = >> + oob_buf[count] | (oob_buf[count + 1] << 8); > > Use a macro to set/get protected OOB bytes. > ok >> + } >> +} >> + > > . >
On 2018/10/18 22:24, Boris Brezillon wrote: > On Thu, 18 Oct 2018 13:09:05 +0800 > Jianxin Pan <jianxin.pan@amlogic.com> wrote: > >> +static int meson_nfc_exec_op(struct nand_chip *chip, >> + const struct nand_operation *op, bool check_only) >> +{ >> + struct mtd_info *mtd = nand_to_mtd(chip); >> + struct meson_nfc *nfc = nand_get_controller_data(chip); >> + const struct nand_op_instr *instr = NULL; >> + int ret = 0, cmd; >> + unsigned int op_id; >> + int i; >> + >> + for (op_id = 0; op_id < op->ninstrs; op_id++) { >> + instr = &op->instrs[op_id]; >> + switch (instr->type) { >> + case NAND_OP_CMD_INSTR: >> + if (instr->ctx.cmd.opcode == NAND_CMD_STATUS) >> + meson_nfc_cmd_idle(nfc, nfc->timing.twb); > > Hm, I don't want drivers to base their decisions on the opcode value. > There's a ->delay_ns field in the instruction object, can't you use > that one instead? Also, I don't understand why this is only needed for > the STATUS command. It should normally be applied to all instructions. > em, it should be applied to all instructions. i will fix it and use instr->delay_ns instead. >> + cmd = nfc->param.chip_select | NFC_CMD_CLE; >> + cmd |= instr->ctx.cmd.opcode & 0xff; >> + writel(cmd, nfc->reg_base + NFC_REG_CMD); >> + if (instr->ctx.cmd.opcode == NAND_CMD_STATUS) >> + meson_nfc_cmd_idle(nfc, nfc->timing.twhr); >> + break; >> + >> + case NAND_OP_ADDR_INSTR: >> + for (i = 0; i < instr->ctx.addr.naddrs; i++) { >> + cmd = nfc->param.chip_select | NFC_CMD_ALE; >> + cmd |= instr->ctx.addr.addrs[i] & 0xff; >> + writel(cmd, nfc->reg_base + NFC_REG_CMD); >> + } >> + break; >> + >> + case NAND_OP_DATA_IN_INSTR: >> + meson_nfc_read_buf(mtd, instr->ctx.data.buf.in, >> + instr->ctx.data.len); >> + break; >> + >> + case NAND_OP_DATA_OUT_INSTR: >> + meson_nfc_write_buf(mtd, instr->ctx.data.buf.out, >> + instr->ctx.data.len); >> + break; >> + >> + case NAND_OP_WAITRDY_INSTR: >> + meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms); >> + break; >> + } >> + } >> + return ret; >> +} > > . >
On 2018/10/19 4:39, Boris Brezillon wrote: > On Thu, 18 Oct 2018 13:09:05 +0800 > Jianxin Pan <jianxin.pan@amlogic.com> wrote: > >> +static int meson_nfc_calc_set_timing(struct meson_nfc *nfc, >> + const struct nand_sdr_timings *timings) >> +{ >> + struct nand_timing *timing = &nfc->timing; >> + int div, bt_min, bt_max, bus_timing; >> + int ret; >> + >> + div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); >> + ret = clk_set_rate(nfc->device_clk, 1000000000 / div); >> + if (ret) { >> + dev_err(nfc->dev, "failed to set nand clock rate\n"); >> + return ret; >> + } >> + >> + timing->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), >> + div * NFC_CLK_CYCLE); >> + timing->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), >> + div * NFC_CLK_CYCLE); >> + timing->twhr = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWHR_min), >> + div * NFC_CLK_CYCLE); >> + >> + bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; >> + bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min >> + + timings->tRC_min / 2) / div; >> + >> + bt_min = DIV_ROUND_UP(bt_min, 1000); >> + bt_max = DIV_ROUND_UP(bt_max, 1000); >> + >> + if (bt_max < bt_min) >> + return -EINVAL; >> + >> + bus_timing = (bt_min + bt_max) / 2 + 1; >> + >> + writel((1 << 21), nfc->reg_base + NFC_REG_CFG); >> + writel((NFC_CLK_CYCLE - 1) | (bus_timing << 5), >> + nfc->reg_base + NFC_REG_CFG); >> + >> + writel((1 << 31), nfc->reg_base + NFC_REG_CMD); >> + >> + return 0; >> +} >> + >> +static int >> +meson_nfc_setup_data_interface(struct nand_chip *nand, int csline, >> + const struct nand_data_interface *conf) >> +{ >> + struct meson_nfc *nfc = nand_get_controller_data(nand); >> + const struct nand_sdr_timings *timings; >> + >> + timings = nand_get_sdr_timings(conf); >> + if (IS_ERR(timings)) >> + return -ENOTSUPP; >> + >> + if (csline == NAND_DATA_IFACE_CHECK_ONLY) >> + return 0; > > Hm, before saying you supporting the requested timing, you should make > sure they are actually supported. I'd recommend splitting this in 2 > steps: > > 1/ calc timings > 2/ store the timings in the chip priv struct so that they can be > applied next time ->select_chip() is called. > ok, i will try to split. >> + >> + meson_nfc_calc_set_timing(nfc, timings); > > You should not set the timing from ->setup_data_interface(), just > calculate them, make sure they are supported and store the state in the > private chip struct. Applying those timings should be done in > ->select_chip(), so that you can support 2 chips with different timings. > em, i will fix it. >> + return 0; >> +} > > . >
On Fri, 19 Oct 2018 15:29:05 +0800 Liang Yang <liang.yang@amlogic.com> wrote: > > How about defining that the HW returns an array of __le64 instead and then > > define the following macros which you can use after converting in the > > CPU endianness > > > > #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * (1 + y)) & GENMASK(7, 0)) > > #define ECC_COMPLETE BIT(31) > > #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) > > > > (I'm not entirely sure the field positions are correct, but I'll let you > > check that). > > > ok. i think it should be: > > #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * y) & > GENMASK(7, 0)) > > if x represents the u64 and y represents the index of the u64. Absolutely. > > > > >> + > >> +#define PER_INFO_BYTE (sizeof(struct meson_nfc_info_format)) > >> + > >> +struct meson_nfc_nand_chip { > >> + struct list_head node; > >> + struct nand_chip nand; > >> + bool is_scramble; > > > > I think I already mentioned the NAND_NEED_SCRAMBLING flag []. Please > > drop this field and test (chip->flags & NAND_NEED_SCRAMBLING) instead. > > > em, i use NAND_NEED_SCRAMBLING and is_scramble is set: > static int meson_nand_attach_chip(struct nand_chip *nand) > { > ...... > meson_chip->is_scramble = > (nand->options & NAND_NEED_SCRAMBLING) ? 1 : 0; > ...... > } Why do you need to add a new field then? Just test nand->options & NAND_NEED_SCRAMBLING directly or provide a helper function that does that.
On 2018/10/19 4:50, Boris Brezillon wrote: > On Thu, 18 Oct 2018 13:09:05 +0800 > Jianxin Pan <jianxin.pan@amlogic.com> wrote: > >> +static int meson_nfc_buffer_init(struct mtd_info *mtd) >> +{ >> + struct nand_chip *nand = mtd_to_nand(mtd); >> + struct meson_nfc *nfc = nand_get_controller_data(nand); >> + static int max_page_bytes, max_info_bytes; >> + int page_bytes, info_bytes; >> + int nsectors; >> + >> + nsectors = mtd->writesize / nand->ecc.size; >> + page_bytes = mtd->writesize + mtd->oobsize; >> + info_bytes = nsectors * PER_INFO_BYTE; >> + >> + if (nfc->data_buf && nfc->info_buf) { >> + if (max_page_bytes < page_bytes) >> + meson_nfc_free_buffer(nfc); >> + else >> + return 0; >> + } >> + >> + max_page_bytes = max_t(int, max_page_bytes, page_bytes); >> + max_info_bytes = max_t(int, max_info_bytes, info_bytes); >> + >> + nfc->data_buf = kmalloc(max_page_bytes, GFP_KERNEL); > > Is there a good reason for not using chip->data_buf and allocating a > new buffer here? > when calling read_oob or write_oob, i need a mid-buffer which is used in meson_nfc_prase_data_oob(). i.e. after reading a page data into nfc->data_buf, I will format it and transfer to chip->data_buf. >> + if (!nfc->data_buf) >> + return -ENOMEM; >> + >> + nfc->info_buf = kmalloc(max_info_bytes, GFP_KERNEL); >> + if (!nfc->info_buf) { >> + kfree(nfc->data_buf); >> + return -ENOMEM; >> + } > > I'd recommend moving this info_buf in the priv chip struct, otherwise > you'll have to protect nfc->info_buf with a lock to prevent an already > register chip from using this pointer while you're reallocating the > buffer. Also, I think you have a memleak here. > ok, i will move it in the chip struct . but how memleak happens even i have called meson_nfc_free_buffer before and free data_buf if info_buf alloc faied. >> + >> + return 0; >> +} > > . >
On 2018/10/19 16:10, Boris Brezillon wrote: > On Fri, 19 Oct 2018 15:29:05 +0800 > Liang Yang <liang.yang@amlogic.com> wrote: > >>> How about defining that the HW returns an array of __le64 instead and then >>> define the following macros which you can use after converting in the >>> CPU endianness >>> >>> #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * (1 + y)) & GENMASK(7, 0)) >>> #define ECC_COMPLETE BIT(31) >>> #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) >>> >>> (I'm not entirely sure the field positions are correct, but I'll let you >>> check that). >>> >> ok. i think it should be: >> >> #define ECC_GET_PROTECTED_OOB_BYTE(x, y) (((x) >> (8 * y) & >> GENMASK(7, 0)) >> >> if x represents the u64 and y represents the index of the u64. > > Absolutely. > >> >> >> >>>> + >>>> +#define PER_INFO_BYTE (sizeof(struct meson_nfc_info_format)) >>>> + >>>> +struct meson_nfc_nand_chip { >>>> + struct list_head node; >>>> + struct nand_chip nand; >>>> + bool is_scramble; >>> >>> I think I already mentioned the NAND_NEED_SCRAMBLING flag []. Please >>> drop this field and test (chip->flags & NAND_NEED_SCRAMBLING) instead. >>> >> em, i use NAND_NEED_SCRAMBLING and is_scramble is set: >> static int meson_nand_attach_chip(struct nand_chip *nand) >> { >> ...... >> meson_chip->is_scramble = >> (nand->options & NAND_NEED_SCRAMBLING) ? 1 : 0; >> ...... >> } > > Why do you need to add a new field then? Just test > nand->options & NAND_NEED_SCRAMBLING directly or provide a helper > function that does that. > ok, i will fix it. > . >
On Fri, 19 Oct 2018 16:29:40 +0800 Liang Yang <liang.yang@amlogic.com> wrote: > On 2018/10/19 4:50, Boris Brezillon wrote: > > On Thu, 18 Oct 2018 13:09:05 +0800 > > Jianxin Pan <jianxin.pan@amlogic.com> wrote: > > > >> +static int meson_nfc_buffer_init(struct mtd_info *mtd) > >> +{ > >> + struct nand_chip *nand = mtd_to_nand(mtd); > >> + struct meson_nfc *nfc = nand_get_controller_data(nand); > >> + static int max_page_bytes, max_info_bytes; > >> + int page_bytes, info_bytes; > >> + int nsectors; > >> + > >> + nsectors = mtd->writesize / nand->ecc.size; > >> + page_bytes = mtd->writesize + mtd->oobsize; > >> + info_bytes = nsectors * PER_INFO_BYTE; > >> + > >> + if (nfc->data_buf && nfc->info_buf) { > >> + if (max_page_bytes < page_bytes) > >> + meson_nfc_free_buffer(nfc); > >> + else > >> + return 0; > >> + } > >> + > >> + max_page_bytes = max_t(int, max_page_bytes, page_bytes); > >> + max_info_bytes = max_t(int, max_info_bytes, info_bytes); > >> + > >> + nfc->data_buf = kmalloc(max_page_bytes, GFP_KERNEL); > > > > Is there a good reason for not using chip->data_buf and allocating a > > new buffer here? > > > when calling read_oob or write_oob, i need a mid-buffer which is used in > meson_nfc_prase_data_oob(). i.e. after reading a page data into > nfc->data_buf, I will format it and transfer to chip->data_buf. > > > >> + if (!nfc->data_buf) > >> + return -ENOMEM; > >> + > >> + nfc->info_buf = kmalloc(max_info_bytes, GFP_KERNEL); > >> + if (!nfc->info_buf) { > >> + kfree(nfc->data_buf); > >> + return -ENOMEM; > >> + } > > > > I'd recommend moving this info_buf in the priv chip struct, otherwise > > you'll have to protect nfc->info_buf with a lock to prevent an already > > register chip from using this pointer while you're reallocating the > > buffer. Also, I think you have a memleak here. > > > ok, i will move it in the chip struct . > > but how memleak happens even i have called meson_nfc_free_buffer before > and free data_buf if info_buf alloc faied. You're right, I missed the call to meson_nfc_free_buffer() when max_page_bytes < page_bytes. Still, this part is racy, just like the nfc->data_buf replacement is if you have several NAND chips. I'd recommend moving those bufs to the priv chip struct. > > >> + > >> + return 0; > >> +} > > > > . > >
On 2018/10/19 16:42, Boris Brezillon wrote: > On Fri, 19 Oct 2018 16:29:40 +0800 > Liang Yang <liang.yang@amlogic.com> wrote: > >> On 2018/10/19 4:50, Boris Brezillon wrote: >>> On Thu, 18 Oct 2018 13:09:05 +0800 >>> Jianxin Pan <jianxin.pan@amlogic.com> wrote: >>> >>>> +static int meson_nfc_buffer_init(struct mtd_info *mtd) >>>> +{ >>>> + struct nand_chip *nand = mtd_to_nand(mtd); >>>> + struct meson_nfc *nfc = nand_get_controller_data(nand); >>>> + static int max_page_bytes, max_info_bytes; >>>> + int page_bytes, info_bytes; >>>> + int nsectors; >>>> + >>>> + nsectors = mtd->writesize / nand->ecc.size; >>>> + page_bytes = mtd->writesize + mtd->oobsize; >>>> + info_bytes = nsectors * PER_INFO_BYTE; >>>> + >>>> + if (nfc->data_buf && nfc->info_buf) { >>>> + if (max_page_bytes < page_bytes) >>>> + meson_nfc_free_buffer(nfc); >>>> + else >>>> + return 0; >>>> + } >>>> + >>>> + max_page_bytes = max_t(int, max_page_bytes, page_bytes); >>>> + max_info_bytes = max_t(int, max_info_bytes, info_bytes); >>>> + >>>> + nfc->data_buf = kmalloc(max_page_bytes, GFP_KERNEL); >>> >>> Is there a good reason for not using chip->data_buf and allocating a >>> new buffer here? >>> >> when calling read_oob or write_oob, i need a mid-buffer which is used in >> meson_nfc_prase_data_oob(). i.e. after reading a page data into >> nfc->data_buf, I will format it and transfer to chip->data_buf. >> >> >>>> + if (!nfc->data_buf) >>>> + return -ENOMEM; >>>> + >>>> + nfc->info_buf = kmalloc(max_info_bytes, GFP_KERNEL); >>>> + if (!nfc->info_buf) { >>>> + kfree(nfc->data_buf); >>>> + return -ENOMEM; >>>> + } >>> >>> I'd recommend moving this info_buf in the priv chip struct, otherwise >>> you'll have to protect nfc->info_buf with a lock to prevent an already >>> register chip from using this pointer while you're reallocating the >>> buffer. Also, I think you have a memleak here. >>> >> ok, i will move it in the chip struct . >> >> but how memleak happens even i have called meson_nfc_free_buffer before >> and free data_buf if info_buf alloc faied. > > You're right, I missed the call to meson_nfc_free_buffer() when > max_page_bytes < page_bytes. Still, this part is racy, just like the > nfc->data_buf replacement is if you have several NAND chips. I'd > recommend moving those bufs to the priv chip struct. > ok. i will move data_duf and info_buf to priv chip struct. >> >>>> + >>>> + return 0; >>>> +} >>> >>> . >>> > > . >
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index c7efc31..223b041 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -541,4 +541,14 @@ config MTD_NAND_TEGRA is supported. Extra OOB bytes when using HW ECC are currently not supported. +config MTD_NAND_MESON + tristate "Support for NAND controller on Amlogic's Meson SoCs" + depends on ARCH_MESON || COMPILE_TEST + depends on COMMON_CLK_AMLOGIC + select COMMON_CLK_REGMAP_MESON + select MFD_SYSCON + help + Enables support for NAND controller on Amlogic's Meson SoCs. + This controller is found on Meson GXBB, GXL, AXG SoCs. + endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 57159b3..a2cc2fe 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o +obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c new file mode 100644 index 0000000..bcaac53 --- /dev/null +++ b/drivers/mtd/nand/raw/meson_nand.c @@ -0,0 +1,1370 @@ +// SPDX-License-Identifier: (GPL-2.0+ OR MIT) +/* + * Amlogic Meson Nand Flash Controller Driver + * + * Copyright (c) 2018 Amlogic, inc. + * Author: Liang Yang <liang.yang@amlogic.com> + */ + +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/clk.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/mtd.h> +#include <linux/mfd/syscon.h> +#include <linux/regmap.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/iopoll.h> +#include <linux/of.h> +#include <linux/of_device.h> + +#define NFC_REG_CMD 0x00 +#define NFC_CMD_DRD (0x8 << 14) +#define NFC_CMD_IDLE (0xc << 14) +#define NFC_CMD_DWR (0x4 << 14) +#define NFC_CMD_CLE (0x5 << 14) +#define NFC_CMD_ALE (0x6 << 14) +#define NFC_CMD_ADL ((0 << 16) | (3 << 20)) +#define NFC_CMD_ADH ((1 << 16) | (3 << 20)) +#define NFC_CMD_AIL ((2 << 16) | (3 << 20)) +#define NFC_CMD_AIH ((3 << 16) | (3 << 20)) +#define NFC_CMD_SEED ((8 << 16) | (3 << 20)) +#define NFC_CMD_M2N ((0 << 17) | (2 << 20)) +#define NFC_CMD_N2M ((1 << 17) | (2 << 20)) +#define NFC_CMD_RB BIT(20) +#define NFC_CMD_IO6 ((0xb << 10) | (1 << 18)) + +#define NFC_REG_CFG 0x04 +#define NFC_REG_DADR 0x08 +#define NFC_REG_IADR 0x0c +#define NFC_REG_BUF 0x10 +#define NFC_REG_INFO 0x14 +#define NFC_REG_DC 0x18 +#define NFC_REG_ADR 0x1c +#define NFC_REG_DL 0x20 +#define NFC_REG_DH 0x24 +#define NFC_REG_CADR 0x28 +#define NFC_REG_SADR 0x2c +#define NFC_REG_PINS 0x30 +#define NFC_REG_VER 0x38 + +#define NFC_RB_IRQ_EN BIT(21) +#define NFC_INT_MASK (3 << 20) + +#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ + ( \ + (cmd_dir) | \ + ((ran) << 19) | \ + ((bch) << 14) | \ + ((short_mode) << 13) | \ + (((page_size) & 0x7f) << 6) | \ + ((pages) & 0x3f) \ + ) + +#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) +#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) +#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) +#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) + +#define RB_STA(x) (1 << (26 + (x))) +#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) + +#define ECC_CHECK_RETURN_FF (-1) + +#define NAND_CE0 (0xe << 10) +#define NAND_CE1 (0xd << 10) + +#define DMA_BUSY_TIMEOUT 0x100000 +#define CMD_FIFO_EMPTY_TIMEOUT 1000 + +#define MAX_CE_NUM 2 + +/* eMMC clock register, misc control */ +#define SD_EMMC_CLOCK 0x00 +#define CLK_ALWAYS_ON BIT(28) +#define CLK_SELECT_NAND BIT(31) +#define CLK_DIV_MASK GENMASK(5, 0) + +#define NFC_CLK_CYCLE 6 + +/* nand flash controller delay 3 ns */ +#define NFC_DEFAULT_DELAY 3000 + +#define MAX_ECC_INDEX 10 + +#define MUX_CLK_NUM_PARENTS 2 + +#define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) +#define MAX_CYCLE_ROW_ADDRS 3 +#define MAX_CYCLE_COLUMN_ADDRS 2 +#define DIRREAD 1 +#define DIRWRITE 0 + +#define ECC_PARITY_BCH8_512B 14 + +struct meson_nfc_info_format { + u16 info_bytes; + + /* bit[5:0] are valid */ + u8 zero_cnt; + struct ecc_sta { + u8 eccerr_cnt : 6; + u8 notused : 1; + u8 completed : 1; + } ecc; + u32 reserved; +}; + +#define PER_INFO_BYTE (sizeof(struct meson_nfc_info_format)) + +struct meson_nfc_nand_chip { + struct list_head node; + struct nand_chip nand; + bool is_scramble; + int bch_mode; + int nsels; + u8 sels[0]; +}; + +struct meson_nand_ecc { + int bch; + int strength; +}; + +struct meson_nfc_data { + const struct nand_ecc_caps *ecc_caps; +}; + +struct meson_nfc_param { + int chip_select; + int rb_select; +}; + +struct nand_rw_cmd { + int cmd0; + int col[MAX_CYCLE_COLUMN_ADDRS]; + int row[MAX_CYCLE_ROW_ADDRS]; + int cmd1; +}; + +struct nand_timing { + int twb; + int tadl; + int twhr; +}; + +struct meson_nfc { + struct nand_controller controller; + struct clk *core_clk; + struct clk *device_clk; + struct clk *phase_tx; + struct clk *phase_rx; + + struct device *dev; + void __iomem *reg_base; + struct regmap *reg_clk; + struct completion completion; + struct list_head chips; + const struct meson_nfc_data *data; + struct meson_nfc_param param; + struct nand_timing timing; + union { + int cmd[32]; + struct nand_rw_cmd rw; + } cmdfifo; + + dma_addr_t data_dma; + dma_addr_t info_dma; + + unsigned long assigned_cs; + + u8 *data_buf; + u8 *info_buf; +}; + +enum { + NFC_ECC_BCH8_1K = 2, + NFC_ECC_BCH24_1K, + NFC_ECC_BCH30_1K, + NFC_ECC_BCH40_1K, + NFC_ECC_BCH50_1K, + NFC_ECC_BCH60_1K, +}; + +#define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)} + +static int meson_nand_calc_ecc_bytes(int step_size, int strength) +{ + int ecc_bytes; + + if (step_size == 512 && strength == 8) + return ECC_PARITY_BCH8_512B; + + ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); + if (ecc_bytes % 2) + ecc_bytes++; + + return ecc_bytes; +} + +NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, + meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); +NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps, + meson_nand_calc_ecc_bytes, 1024, 8); + +static inline +struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) +{ + return container_of(nand, struct meson_nfc_nand_chip, nand); +} + +static void meson_nfc_select_chip(struct nand_chip *nand, int chip) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct meson_nfc *nfc = nand_get_controller_data(nand); + + if (chip < 0 || chip > MAX_CE_NUM) + return; + + nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; + nfc->param.rb_select = nfc->param.chip_select; +} + +static inline void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) +{ + writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), + nfc->reg_base + NFC_REG_CMD); +} + +static inline void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) +{ + writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), + nfc->reg_base + NFC_REG_CMD); +} + +static void meson_nfc_cmd_access(struct meson_nfc *nfc, + struct mtd_info *mtd, int raw, bool dir) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + u32 cmd, pagesize, pages; + int bch = meson_chip->bch_mode; + int len = mtd->writesize; + int scramble = meson_chip->is_scramble ? 1 : 0; + + pagesize = nand->ecc.size; + + if (raw) { + bch = NAND_ECC_NONE; + len = mtd->writesize + mtd->oobsize; + cmd = (len & 0x3fff) | (scramble << 19) | DMA_DIR(dir); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + return; + } + + pages = len / nand->ecc.size; + + cmd = CMDRWGEN(DMA_DIR(dir), scramble, bch, 0, pagesize, pages); + + writel(cmd, nfc->reg_base + NFC_REG_CMD); +} + +static inline void meson_nfc_drain_cmd(struct meson_nfc *nfc) +{ + /* + * Insert two commands to make sure all valid commands are finished. + * + * The Nand flash controller is designed as two stages pipleline - + * a) fetch and b) excute. + * There might be cases when the driver see command queue is empty, + * but the Nand flash controller still has two commands buffered, + * one is fetched into NFC request queue (ready to run), and another + * is actively executing. So pushing 2 "IDLE" commands guarantees that + * the pipeline is emptied. + */ + meson_nfc_cmd_idle(nfc, 0); + meson_nfc_cmd_idle(nfc, 0); +} + +static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, + unsigned int timeout_ms) +{ + u32 cmd_size = 0; + int ret; + + /* wait cmd fifo is empty */ + ret = readl_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, + !((cmd_size >> 22) & 0x1f), + 10, timeout_ms * 1000); + if (ret) + dev_err(nfc->dev, "wait for empty cmd FIFO time out\n"); + + return ret; +} + +static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) +{ + meson_nfc_drain_cmd(nfc); + + return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); +} + +static inline +struct meson_nfc_info_format *nfc_info_ptr(struct meson_nfc *nfc, + int index) +{ + return (struct meson_nfc_info_format *)&nfc->info_buf[index * 8]; +} + +static u8 *meson_nfc_oob_ptr(struct meson_nfc *nfc, + struct mtd_info *mtd, int i) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + int len; + + len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; + + return nfc->data_buf + len; +} + +static u8 *meson_nfc_data_ptr(struct meson_nfc *nfc, + struct mtd_info *mtd, int i) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + int len; + int temp; + + temp = nand->ecc.size + nand->ecc.bytes; + len = (temp + 2) * i; + + return nfc->data_buf + len; +} + +static void meson_nfc_prase_data_oob(struct meson_nfc *nfc, + struct mtd_info *mtd, u8 *buf, u8 *oobbuf) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + int i, oob_len = 0; + u8 *dsrc, *osrc; + + for (i = 0; i < mtd->writesize / nand->ecc.size; i++) { + if (buf) { + dsrc = meson_nfc_data_ptr(nfc, mtd, i); + memcpy(buf, dsrc, nand->ecc.size); + buf += nand->ecc.size; + } + oob_len = nand->ecc.bytes + 2; + osrc = meson_nfc_oob_ptr(nfc, mtd, i); + memcpy(oobbuf, osrc, oob_len); + oobbuf += oob_len; + } +} + +static void meson_nfc_format_data_oob(struct meson_nfc *nfc, + struct mtd_info *mtd, + const u8 *buf, u8 *oobbuf) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + int i, oob_len = 0; + u8 *dsrc, *osrc; + + for (i = 0; i < mtd->writesize / nand->ecc.size; i++) { + if (buf) { + dsrc = meson_nfc_data_ptr(nfc, mtd, i); + memcpy(dsrc, buf, nand->ecc.size); + buf += nand->ecc.size; + } + oob_len = nand->ecc.bytes + 2; + osrc = meson_nfc_oob_ptr(nfc, mtd, i); + memcpy(osrc, oobbuf, oob_len); + oobbuf += oob_len; + } +} + +static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms) +{ + u32 cmd, cfg; + int ret = 0; + + meson_nfc_cmd_idle(nfc, nfc->timing.twb); + meson_nfc_drain_cmd(nfc); + meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); + + cfg = readl(nfc->reg_base + NFC_REG_CFG); + cfg |= (1 << 21); + writel(cfg, nfc->reg_base + NFC_REG_CFG); + + init_completion(&nfc->completion); + + cmd = NFC_CMD_RB | (0x1 << 14) | nfc->param.chip_select | 0x18; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + ret = wait_for_completion_timeout(&nfc->completion, + msecs_to_jiffies(timeout_ms)); + if (ret == 0) { + dev_err(nfc->dev, "wait nand irq timeout\n"); + ret = -1; + } + return ret; +} + +static void meson_nfc_set_user_byte(struct mtd_info *mtd, + struct nand_chip *chip, u8 *oob_buf) +{ + struct meson_nfc *nfc = nand_get_controller_data(chip); + struct meson_nfc_info_format *info; + int i, count; + + for (i = 0, count = 0; i < chip->ecc.steps; i++, count += 2) { + info = nfc_info_ptr(nfc, i); + info->info_bytes = + oob_buf[count] | (oob_buf[count + 1] << 8); + } +} + +static void meson_nfc_get_user_byte(struct mtd_info *mtd, + struct nand_chip *chip, u8 *oob_buf) +{ + struct meson_nfc *nfc = nand_get_controller_data(chip); + struct meson_nfc_info_format *info; + int i, count; + + for (i = 0, count = 0; i < chip->ecc.steps; i++, count += 2) { + info = nfc_info_ptr(nfc, i); + oob_buf[count] = info->info_bytes & 0xff; + oob_buf[count + 1] = (info->info_bytes >> 8) & 0xff; + } +} + +static int meson_nfc_ecc_correct(struct mtd_info *mtd, + struct nand_chip *chip) +{ + struct meson_nfc *nfc = nand_get_controller_data(chip); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip); + struct meson_nfc_info_format *info; + u32 bitflips = 0, i; + u8 zero_cnt; + + for (i = 0; i < chip->ecc.steps; i++) { + info = nfc_info_ptr(nfc, i); + if (info->ecc.eccerr_cnt == 0x3f) { + zero_cnt = info->zero_cnt & 0x3f; + if (meson_chip->is_scramble && + zero_cnt < chip->ecc.strength) + return ECC_CHECK_RETURN_FF; + mtd->ecc_stats.failed++; + continue; + } + mtd->ecc_stats.corrected += info->ecc.eccerr_cnt; + bitflips = max_t(u32, bitflips, info->ecc.eccerr_cnt); + } + + return bitflips; +} + +static inline u8 meson_nfc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct meson_nfc *nfc = nand_get_controller_data(chip); + u32 cmd; + + cmd = nfc->param.chip_select | NFC_CMD_DRD | 0; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + meson_nfc_drain_cmd(nfc); + + meson_nfc_wait_cmd_finish(nfc, 1000); + + return readb(nfc->reg_base + NFC_REG_BUF); +} + +static void meson_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = meson_nfc_read_byte(mtd); +} + +static void meson_nfc_write_byte(struct mtd_info *mtd, u8 byte) +{ + struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + u32 cmd; + + meson_nfc_cmd_idle(nfc, nfc->timing.twb); + + cmd = nfc->param.chip_select | NFC_CMD_DWR | (byte & 0xff); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + meson_nfc_cmd_idle(nfc, nfc->timing.twb); + meson_nfc_cmd_idle(nfc, 0); + + meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); +} + +static void meson_nfc_write_buf(struct mtd_info *mtd, + const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + meson_nfc_write_byte(mtd, buf[i]); +} + +static int +meson_nfc_rw_cmd_prepare_and_execute(struct meson_nfc *nfc, + struct nand_chip *chip, int page, bool in) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + int cs = nfc->param.chip_select; + int i, cmd0, cmd_num; + int ret = 0; + + cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN; + cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int); + if (!in) + cmd_num--; + + nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0; + for (i = 0; i < MAX_CYCLE_COLUMN_ADDRS; i++) + nfc->cmdfifo.rw.col[i] = cs | NFC_CMD_ALE | 0; + + for (i = 0; i < MAX_CYCLE_ROW_ADDRS; i++) + nfc->cmdfifo.rw.row[i] = cs | NFC_CMD_ALE | ROW_ADDER(page, i); + + nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART; + + for (i = 0; i < cmd_num; i++) + writel(nfc->cmdfifo.cmd[i], nfc->reg_base + NFC_REG_CMD); + + if (in) + meson_nfc_queue_rb(nfc, sdr->tR_max); + else + meson_nfc_cmd_idle(nfc, nfc->timing.tadl); + + return ret; +} + +static int meson_nfc_write_page_sub(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int page, int raw) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct meson_nfc *nfc = nand_get_controller_data(chip); + dma_addr_t daddr, iaddr; + u32 cmd, ecc_step; + int ret; + + ecc_step = mtd->writesize / chip->ecc.size; + + daddr = dma_map_single(nfc->dev, (void *)nfc->data_buf, + mtd->writesize + mtd->oobsize, + DMA_TO_DEVICE); + ret = dma_mapping_error(nfc->dev, daddr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + goto err; + } + + iaddr = dma_map_single(nfc->dev, (void *)nfc->info_buf, + ecc_step * PER_INFO_BYTE, + DMA_TO_DEVICE); + ret = dma_mapping_error(nfc->dev, iaddr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + goto err_map_daddr; + } + + ret = meson_nfc_rw_cmd_prepare_and_execute(nfc, chip, page, DIRWRITE); + if (ret) + goto err_map_iaddr; + + cmd = GENCMDDADDRL(NFC_CMD_ADL, daddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDDADDRH(NFC_CMD_ADH, daddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDIADDRL(NFC_CMD_AIL, iaddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDIADDRH(NFC_CMD_AIH, iaddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + meson_nfc_cmd_seed(nfc, page); + + meson_nfc_cmd_access(nfc, mtd, raw, DIRWRITE); + + ret = meson_nfc_wait_dma_finish(nfc); + cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + meson_nfc_queue_rb(nfc, sdr->tPROG_max); + +err_map_iaddr: + dma_unmap_single(nfc->dev, iaddr, + ecc_step * PER_INFO_BYTE, DMA_TO_DEVICE); +err_map_daddr: + dma_unmap_single(nfc->dev, daddr, + mtd->writesize + mtd->oobsize, DMA_TO_DEVICE); +err: + return ret; +} + +static int meson_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct meson_nfc *nfc = nand_get_controller_data(chip); + u8 *oob_buf = chip->oob_poi; + + meson_nfc_format_data_oob(nfc, mtd, buf, oob_buf); + + return meson_nfc_write_page_sub(mtd, chip, nfc->data_buf, page, 1); +} + +static int meson_nfc_write_page_hwecc(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct meson_nfc *nfc = nand_get_controller_data(chip); + u8 *oob_buf = chip->oob_poi; + + memcpy(nfc->data_buf, buf, mtd->writesize); + meson_nfc_set_user_byte(mtd, chip, oob_buf); + + return meson_nfc_write_page_sub(mtd, chip, nfc->data_buf, page, 0); +} + +static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, + struct mtd_info *mtd, int raw) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct meson_nfc_info_format *info; + int neccpages, i; + + neccpages = raw ? 1 : (mtd->writesize / chip->ecc.size); + + for (i = 0; i < neccpages; i++) { + info = nfc_info_ptr(nfc, neccpages - 1); + if (info->ecc.completed == 0) + dev_err(nfc->dev, "seems eccpage is invalid\n"); + } +} + +static int meson_nfc_read_page_sub(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int page, int raw) +{ + struct meson_nfc *nfc = nand_get_controller_data(chip); + dma_addr_t daddr, iaddr; + u32 cmd, ecc_step; + int ret; + + ecc_step = mtd->writesize / chip->ecc.size; + + daddr = dma_map_single(nfc->dev, (void *)nfc->data_buf, + mtd->writesize + mtd->oobsize, DMA_FROM_DEVICE); + ret = dma_mapping_error(nfc->dev, daddr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + goto err; + } + + iaddr = dma_map_single(nfc->dev, (void *)nfc->info_buf, + ecc_step * PER_INFO_BYTE, DMA_FROM_DEVICE); + ret = dma_mapping_error(nfc->dev, iaddr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + goto err_map_daddr; + } + + ret = meson_nfc_rw_cmd_prepare_and_execute(nfc, chip, page, DIRREAD); + if (ret) + goto err_map_iaddr; + + cmd = GENCMDDADDRL(NFC_CMD_ADL, daddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDDADDRH(NFC_CMD_ADH, daddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDIADDRL(NFC_CMD_AIL, iaddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + cmd = GENCMDIADDRH(NFC_CMD_AIH, iaddr); + writel(cmd, nfc->reg_base + NFC_REG_CMD); + + meson_nfc_cmd_seed(nfc, page); + meson_nfc_cmd_access(nfc, mtd, raw, DIRREAD); + ret = meson_nfc_wait_dma_finish(nfc); + meson_nfc_check_ecc_pages_valid(nfc, mtd, raw); + +err_map_iaddr: + dma_unmap_single(nfc->dev, iaddr, + ecc_step * PER_INFO_BYTE, DMA_FROM_DEVICE); +err_map_daddr: + dma_unmap_single(nfc->dev, daddr, + mtd->writesize + mtd->oobsize, DMA_FROM_DEVICE); +err: + + return ret; +} + +static int meson_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct meson_nfc *nfc = nand_get_controller_data(chip); + u8 *oob_buf = chip->oob_poi; + int ret; + + ret = meson_nfc_read_page_sub(mtd, chip, nfc->data_buf, page, 1); + if (ret) + return ret; + + meson_nfc_prase_data_oob(nfc, mtd, buf, oob_buf); + + return 0; +} + +static int meson_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct meson_nfc *nfc = nand_get_controller_data(chip); + u8 *oob_buf = chip->oob_poi; + int ret; + + ret = meson_nfc_read_page_sub(mtd, chip, nfc->data_buf, page, 0); + if (ret) + return ret; + + meson_nfc_get_user_byte(mtd, chip, oob_buf); + + ret = meson_nfc_ecc_correct(mtd, chip); + if (ret == ECC_CHECK_RETURN_FF) { + if (buf) + memset(buf, 0xff, mtd->writesize); + + memset(oob_buf, 0xff, mtd->oobsize); + return 0; + } + + if (buf && buf != nfc->data_buf) + memcpy(buf, nfc->data_buf, mtd->writesize); + + return ret; +} + +static int meson_nfc_read_oob_raw(struct nand_chip *chip, int page) +{ + return meson_nfc_read_page_raw(chip, NULL, 1, page); +} + +static int meson_nfc_read_oob(struct nand_chip *chip, int page) +{ + return meson_nfc_read_page_hwecc(chip, NULL, 1, page); +} + +static int meson_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct meson_nfc *nfc = nand_get_controller_data(chip); + const struct nand_op_instr *instr = NULL; + int ret = 0, cmd; + unsigned int op_id; + int i; + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (instr->ctx.cmd.opcode == NAND_CMD_STATUS) + meson_nfc_cmd_idle(nfc, nfc->timing.twb); + cmd = nfc->param.chip_select | NFC_CMD_CLE; + cmd |= instr->ctx.cmd.opcode & 0xff; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + if (instr->ctx.cmd.opcode == NAND_CMD_STATUS) + meson_nfc_cmd_idle(nfc, nfc->timing.twhr); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + cmd = nfc->param.chip_select | NFC_CMD_ALE; + cmd |= instr->ctx.addr.addrs[i] & 0xff; + writel(cmd, nfc->reg_base + NFC_REG_CMD); + } + break; + + case NAND_OP_DATA_IN_INSTR: + meson_nfc_read_buf(mtd, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + meson_nfc_write_buf(mtd, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms); + break; + } + } + return ret; +} + +static int meson_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = 2 + (section * (2 + chip->ecc.bytes)); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int meson_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = section * (2 + chip->ecc.bytes); + oobregion->length = 2; + + return 0; +} + +static const struct mtd_ooblayout_ops meson_ooblayout_ops = { + .ecc = meson_ooblayout_ecc, + .free = meson_ooblayout_free, +}; + +static int meson_nfc_clk_init(struct meson_nfc *nfc) +{ + int ret; + + /* request core clock */ + nfc->core_clk = devm_clk_get(nfc->dev, "core"); + if (IS_ERR(nfc->core_clk)) { + dev_err(nfc->dev, "failed to get core clk\n"); + return PTR_ERR(nfc->core_clk); + } + + nfc->device_clk = devm_clk_get(nfc->dev, "device"); + if (IS_ERR(nfc->device_clk)) { + dev_err(nfc->dev, "failed to get device clk\n"); + return PTR_ERR(nfc->device_clk); + } + + nfc->phase_tx = devm_clk_get(nfc->dev, "tx"); + if (IS_ERR(nfc->phase_tx)) { + dev_err(nfc->dev, "failed to get tx clk\n"); + return PTR_ERR(nfc->phase_tx); + } + + nfc->phase_rx = devm_clk_get(nfc->dev, "rx"); + if (IS_ERR(nfc->phase_rx)) { + dev_err(nfc->dev, "failed to get rx clk\n"); + return PTR_ERR(nfc->phase_rx); + } + + /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ + regmap_update_bits(nfc->reg_clk, 0, + CLK_SELECT_NAND | CLK_ALWAYS_ON, + CLK_SELECT_NAND | CLK_ALWAYS_ON); + + ret = clk_prepare_enable(nfc->core_clk); + if (ret) { + dev_err(nfc->dev, "failed to enable core clk\n"); + return ret; + } + + ret = clk_prepare_enable(nfc->device_clk); + if (ret) { + dev_err(nfc->dev, "failed to enable device clk\n"); + clk_disable_unprepare(nfc->core_clk); + return ret; + } + + ret = clk_prepare_enable(nfc->phase_tx); + if (ret) { + dev_err(nfc->dev, "failed to enable tx clk\n"); + clk_disable_unprepare(nfc->core_clk); + clk_disable_unprepare(nfc->device_clk); + return ret; + } + + ret = clk_prepare_enable(nfc->phase_rx); + if (ret) { + dev_err(nfc->dev, "failed to enable rx clk\n"); + clk_disable_unprepare(nfc->core_clk); + clk_disable_unprepare(nfc->device_clk); + clk_disable_unprepare(nfc->phase_tx); + return ret; + } + + return 0; +} + +static void meson_nfc_disable_clk(struct meson_nfc *nfc) +{ + clk_disable_unprepare(nfc->phase_rx); + clk_disable_unprepare(nfc->phase_tx); + clk_disable_unprepare(nfc->device_clk); + clk_disable_unprepare(nfc->core_clk); +} + +static void meson_nfc_free_buffer(struct meson_nfc *nfc) +{ + kfree(nfc->info_buf); + kfree(nfc->data_buf); +} + +static int meson_nfc_buffer_init(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct meson_nfc *nfc = nand_get_controller_data(nand); + static int max_page_bytes, max_info_bytes; + int page_bytes, info_bytes; + int nsectors; + + nsectors = mtd->writesize / nand->ecc.size; + page_bytes = mtd->writesize + mtd->oobsize; + info_bytes = nsectors * PER_INFO_BYTE; + + if (nfc->data_buf && nfc->info_buf) { + if (max_page_bytes < page_bytes) + meson_nfc_free_buffer(nfc); + else + return 0; + } + + max_page_bytes = max_t(int, max_page_bytes, page_bytes); + max_info_bytes = max_t(int, max_info_bytes, info_bytes); + + nfc->data_buf = kmalloc(max_page_bytes, GFP_KERNEL); + if (!nfc->data_buf) + return -ENOMEM; + + nfc->info_buf = kmalloc(max_info_bytes, GFP_KERNEL); + if (!nfc->info_buf) { + kfree(nfc->data_buf); + return -ENOMEM; + } + + return 0; +} + +static int meson_nfc_calc_set_timing(struct meson_nfc *nfc, + const struct nand_sdr_timings *timings) +{ + struct nand_timing *timing = &nfc->timing; + int div, bt_min, bt_max, bus_timing; + int ret; + + div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); + ret = clk_set_rate(nfc->device_clk, 1000000000 / div); + if (ret) { + dev_err(nfc->dev, "failed to set nand clock rate\n"); + return ret; + } + + timing->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), + div * NFC_CLK_CYCLE); + timing->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), + div * NFC_CLK_CYCLE); + timing->twhr = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWHR_min), + div * NFC_CLK_CYCLE); + + bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; + bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min + + timings->tRC_min / 2) / div; + + bt_min = DIV_ROUND_UP(bt_min, 1000); + bt_max = DIV_ROUND_UP(bt_max, 1000); + + if (bt_max < bt_min) + return -EINVAL; + + bus_timing = (bt_min + bt_max) / 2 + 1; + + writel((1 << 21), nfc->reg_base + NFC_REG_CFG); + writel((NFC_CLK_CYCLE - 1) | (bus_timing << 5), + nfc->reg_base + NFC_REG_CFG); + + writel((1 << 31), nfc->reg_base + NFC_REG_CMD); + + return 0; +} + +static int +meson_nfc_setup_data_interface(struct nand_chip *nand, int csline, + const struct nand_data_interface *conf) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + const struct nand_sdr_timings *timings; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + meson_nfc_calc_set_timing(nfc, timings); + return 0; +} + +static int meson_nand_bch_mode(struct nand_chip *nand) +{ + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct meson_nand_ecc meson_ecc[] = { + MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8), + MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24), + MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30), + MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40), + MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50), + MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60), + }; + int i, ret = 0; + + if (nand->ecc.strength > 60 || nand->ecc.strength < 8) + return -EINVAL; + + for (i = 0; i < sizeof(meson_ecc); i++) { + if (meson_ecc[i].strength == nand->ecc.strength) { + meson_chip->bch_mode = meson_ecc[i].bch; + break; + } + } + + return ret; +} + +static int meson_nand_attach_chip(struct nand_chip *nand) +{ + struct meson_nfc *nfc = nand_get_controller_data(nand); + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); + struct mtd_info *mtd = nand_to_mtd(nand); + int nsectors = mtd->writesize / 1024; + int ret; + + if (!mtd->name) { + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s:nand%d", + dev_name(nfc->dev), + meson_chip->sels[0]); + if (!mtd->name) + return -ENOMEM; + } + + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + nand->options |= NAND_NO_SUBPAGE_WRITE; + + meson_chip->is_scramble = + (nand->options & NAND_NEED_SCRAMBLING) ? 1 : 0; + + ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps, + mtd->oobsize - 2 * nsectors); + if (ret) { + dev_err(nfc->dev, "failed to ecc init\n"); + return -EINVAL; + } + + ret = meson_nand_bch_mode(nand); + if (ret) + return -EINVAL; + + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.write_page_raw = meson_nfc_write_page_raw; + nand->ecc.write_page = meson_nfc_write_page_hwecc; + nand->ecc.write_oob_raw = nand_write_oob_std; + nand->ecc.write_oob = nand_write_oob_std; + + nand->ecc.read_page_raw = meson_nfc_read_page_raw; + nand->ecc.read_page = meson_nfc_read_page_hwecc; + nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; + nand->ecc.read_oob = meson_nfc_read_oob; + + if (nand->options & NAND_BUSWIDTH_16) { + dev_err(nfc->dev, "16bits buswidth not supported"); + return -EINVAL; + } + + ret = meson_nfc_buffer_init(mtd); + if (ret) + return -ENOMEM; + + return ret; +} + +static const struct nand_controller_ops meson_nand_controller_ops = { + .attach_chip = meson_nand_attach_chip, +}; + +static int +meson_nfc_nand_chip_init(struct device *dev, + struct meson_nfc *nfc, struct device_node *np) +{ + struct meson_nfc_nand_chip *chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int ret, nsels, i; + u32 tmp; + + if (!of_get_property(np, "reg", &nsels)) + return -EINVAL; + + nsels /= sizeof(u32); + if (!nsels || nsels > MAX_CE_NUM) { + dev_err(dev, "invalid reg property size\n"); + return -EINVAL; + } + + chip = devm_kzalloc(dev, sizeof(*chip) + (nsels * sizeof(u8)), + GFP_KERNEL); + if (!chip) + return -ENOMEM; + + chip->nsels = nsels; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", tmp); + return -EINVAL; + } + } + + nand = &chip->nand; + nand->controller = &nfc->controller; + nand->controller->ops = &meson_nand_controller_ops; + nand_set_flash_node(nand, np); + nand_set_controller_data(nand, nfc); + + nand->options |= NAND_USE_BOUNCE_BUFFER; + nand->select_chip = meson_nfc_select_chip; + nand->exec_op = meson_nfc_exec_op; + nand->setup_data_interface = meson_nfc_setup_data_interface; + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + ret = nand_scan(nand, nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_cleanup(nand); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc) +{ + struct meson_nfc_nand_chip *chip; + struct mtd_info *mtd; + int ret; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct meson_nfc_nand_chip, + node); + mtd = nand_to_mtd(&chip->nand); + ret = mtd_device_unregister(mtd); + if (ret) + return ret; + + nand_cleanup(&chip->nand); + list_del(&chip->node); + } + + return 0; +} + +static int meson_nfc_nand_chips_init(struct device *dev, + struct meson_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret; + + for_each_child_of_node(np, nand_np) { + ret = meson_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + meson_nfc_nand_chip_cleanup(nfc); + return ret; + } + } + meson_nfc_free_buffer(nfc); + + return 0; +} + +static irqreturn_t meson_nfc_irq(int irq, void *id) +{ + struct meson_nfc *nfc = id; + u32 cfg; + + cfg = readl(nfc->reg_base + NFC_REG_CFG); + if (!(cfg & NFC_RB_IRQ_EN)) + return IRQ_NONE; + + cfg &= ~(NFC_RB_IRQ_EN); + writel(cfg, nfc->reg_base + NFC_REG_CFG); + + complete(&nfc->completion); + return IRQ_HANDLED; +} + +static const struct meson_nfc_data meson_gxl_data = { + .ecc_caps = &meson_gxl_ecc_caps, +}; + +static const struct meson_nfc_data meson_axg_data = { + .ecc_caps = &meson_axg_ecc_caps, +}; + +static const struct of_device_id meson_nfc_id_table[] = { + { + .compatible = "amlogic,meson-gxl-nfc", + .data = &meson_gxl_data, + }, { + .compatible = "amlogic,meson-axg-nfc", + .data = &meson_axg_data, + }, + {} +}; +MODULE_DEVICE_TABLE(of, meson_nfc_id_table); + +static int meson_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct meson_nfc *nfc; + struct resource *res; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->data = of_device_get_match_data(&pdev->dev); + if (!nfc->data) + return -ENODEV; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + nfc->dev = dev; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->reg_base = devm_ioremap_resource(dev, res); + if (IS_ERR(nfc->reg_base)) + return PTR_ERR(nfc->reg_base); + + nfc->reg_clk = + syscon_regmap_lookup_by_phandle(dev->of_node, + "amlogic,mmc-syscon"); + if (IS_ERR(nfc->reg_clk)) { + dev_err(dev, "Failed to lookup clock base\n"); + return PTR_ERR(nfc->reg_clk); + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no nfi irq resource\n"); + return -EINVAL; + } + + ret = meson_nfc_clk_init(nfc); + if (ret) { + dev_err(dev, "failed to initialize nand clk\n"); + goto err; + } + + writel(0, nfc->reg_base + NFC_REG_CFG); + ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc); + if (ret) { + dev_err(dev, "failed to request nfi irq\n"); + ret = -EINVAL; + goto err_clk; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set dma mask\n"); + goto err_clk; + } + + platform_set_drvdata(pdev, nfc); + + ret = meson_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto err_clk; + } + + return 0; + +err_clk: + meson_nfc_disable_clk(nfc); +err: + return ret; +} + +static int meson_nfc_remove(struct platform_device *pdev) +{ + struct meson_nfc *nfc = platform_get_drvdata(pdev); + int ret; + + ret = meson_nfc_nand_chip_cleanup(nfc); + if (ret) + return ret; + + meson_nfc_disable_clk(nfc); + + platform_set_drvdata(pdev, NULL); + + return 0; +} + +static struct platform_driver meson_nfc_driver = { + .probe = meson_nfc_probe, + .remove = meson_nfc_remove, + .driver = { + .name = "meson-nand", + .of_match_table = meson_nfc_id_table, + }, +}; +module_platform_driver(meson_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>"); +MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");