Message ID | 20180425062629.29404-8-takahiro.akashi@linaro.org (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Hi Akashi, On 25/04/18 07:26, AKASHI Takahiro wrote: > Enabling crash dump (kdump) includes > * prepare contents of ELF header of a core dump file, /proc/vmcore, > using crash_prepare_elf64_headers(), and > * add two device tree properties, "linux,usable-memory-range" and > "linux,elfcorehdr", which represent repsectively a memory range (Nit: respectively) > to be used by crash dump kernel and the header's location > arch/arm64/include/asm/kexec.h | 4 + > arch/arm64/kernel/kexec_image.c | 9 +- > arch/arm64/kernel/machine_kexec_file.c | 202 +++++++++++++++++++++++++ In this patch, machine_kexec_file.c gains its own private fdt array encoder. > diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > index 37c0a9dc2e47..ec674f4d267c 100644 > --- a/arch/arm64/kernel/machine_kexec_file.c > +++ b/arch/arm64/kernel/machine_kexec_file.c > @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > return ret; > } > > +static int __init arch_kexec_file_init(void) > +{ > + /* Those values are used later on loading the kernel */ > + __dt_root_addr_cells = dt_root_addr_cells; > + __dt_root_size_cells = dt_root_size_cells; > + > + return 0; > +} > +late_initcall(arch_kexec_file_init); If we need these is it worth taking them out of __initdata? I note they've been 'temporary' for quite a long time. > + > +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) > +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) > + > +static int fdt_prop_len(const char *prop_name, int len) > +{ > + return (strlen(prop_name) + 1) + > + sizeof(struct fdt_property) + > + FDT_TAGALIGN(len); > +} This stuff should really be in libfdt.h Those macros come from libfdt_internal.h, so we're probably doing something wrong here. > +static bool cells_size_fitted(unsigned long base, unsigned long size) > +{ > + /* if *_cells >= 2, cells can hold 64-bit values anyway */ > + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) > + return false; > + > + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) > + return false; Using '> U32_MAX' here may be more readable. > + return true; > +} > + > +static void fill_property(void *buf, u64 val64, int cells) > +{ > + u32 val32; > + > + if (cells == 1) { > + val32 = cpu_to_fdt32((u32)val64); > + memcpy(buf, &val32, sizeof(val32)); > + } else { > + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > + buf += cells * sizeof(u32) - sizeof(u64); Is this trying to clear the 'top' cells and shuffle the pointer to point at the 'bottom' 2? I'm pretty sure this isn't endian safe. Do we really expect a system to have #address-cells > 2? > + val64 = cpu_to_fdt64(val64); > + memcpy(buf, &val64, sizeof(val64)); > + } > +} > + > +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > + unsigned long addr, unsigned long size) (the device-tree spec describes a 'ranges' property, which had me confused. This is encoding a prop-encoded-array) > +{ > + void *buf, *prop; > + size_t buf_size; > + int result; > + > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > + prop = buf = vmalloc(buf_size); virtual memory allocation for something less than PAGE_SIZE? > + if (!buf) > + return -ENOMEM; > + > + fill_property(prop, addr, __dt_root_addr_cells); > + prop += __dt_root_addr_cells * sizeof(u32); > + > + fill_property(prop, size, __dt_root_size_cells); > + > + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > + > + vfree(buf); > + > + return result; > +} Doesn't this stuff belong in libfdt? I guess there is no 'add array element' api because this the first time we've wanted to create a node with more than key=fixed-size-value. I don't think this belongs in arch C code. Do we have a plan for getting libfdt to support encoding prop-arrays? Can we put it somewhere anyone else duplicating this will find it, until we can (re)move it? I have no idea how that happens... it looks like the devicetree list is the place to ask. > static int setup_dtb(struct kimage *image, > unsigned long initrd_load_addr, unsigned long initrd_len, > char *cmdline, unsigned long cmdline_len, > @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > int range_len; > int ret; > > + /* check ranges against root's #address-cells and #size-cells */ > + if (image->type == KEXEC_TYPE_CRASH && > + (!cells_size_fitted(image->arch.elf_load_addr, > + image->arch.elf_headers_sz) || > + !cells_size_fitted(crashk_res.start, > + crashk_res.end - crashk_res.start + 1))) { > + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > + ret = -EINVAL; > + goto out_err; > + } To check I've understood this properly: This can happen if the firmware provided a DTB with 32bit address/size cells, but at least some of the memory requires 64 bit address/size cells. This could only happen on a UEFI system where the firmware-DTB doesn't describe memory. ACPI-only systems would have the EFIstub DT. > /* duplicate dt blob */ > buf_size = fdt_totalsize(initial_boot_params); > range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > + if (image->type == KEXEC_TYPE_CRASH) > + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > + + fdt_prop_len("linux,usable-memory-range", > + range_len); > + > if (initrd_load_addr) > buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) > + fdt_prop_len("linux,initrd-end", sizeof(u64)); > @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, > if (nodeoffset < 0) > goto out_err; > > + if (image->type == KEXEC_TYPE_CRASH) { > + /* add linux,elfcorehdr */ > + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", > + image->arch.elf_load_addr, > + image->arch.elf_headers_sz); > + if (ret) > + goto out_err; > + > + /* add linux,usable-memory-range */ > + ret = fdt_setprop_range(buf, nodeoffset, > + "linux,usable-memory-range", > + crashk_res.start, > + crashk_res.end - crashk_res.start + 1); Don't you need to add "linux,usable-memory-range" to the buf_size estimate? > + if (ret) > + goto out_err; > + } > @@ -148,17 +258,109 @@ static int setup_dtb(struct kimage *image, > +static struct crash_mem *get_crash_memory_ranges(void) > +{ > + unsigned int nr_ranges; > + struct crash_mem *cmem; > + > + nr_ranges = 1; /* for exclusion of crashkernel region */ > + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); > + > + cmem = vmalloc(sizeof(struct crash_mem) + > + sizeof(struct crash_mem_range) * nr_ranges); > + if (!cmem) > + return NULL; > + > + cmem->max_nr_ranges = nr_ranges; > + cmem->nr_ranges = 0; > + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); > + > + /* Exclude crashkernel region */ > + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { > + vfree(cmem); > + return NULL; > + } > + > + return cmem; > +} Could this function be included in prepare_elf_headers() so that the alloc() and free() occur together. > +static int prepare_elf_headers(void **addr, unsigned long *sz) > +{ > + struct crash_mem *cmem; > + int ret = 0; > + > + cmem = get_crash_memory_ranges(); > + if (!cmem) > + return -ENOMEM; > + > + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); > + > + vfree(cmem); > + return ret; > +} All this is moving memory-range information from core-code's walk_system_ram_res() into core-code's struct crash_mem, and excluding crashk_res, which again is accessible to the core code. It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 doesn't have a second 'crashk_low_res' region, and always wants elf64, instead of when IS_ENABLED(CONFIG_X86_64). If we can abstract just those two, more of this could be moved to core code where powerpc can make use of it if they want to support kdump with kexec_file_load(). But, its getting late for cross-architecture dependencies, lets put that on the for-later list. (assuming there isn't a powerpc-kdump series out there adding a third copy of this) Thanks, James
Hi guys, (CC: +RobH, devicetree list) On 25/04/18 07:26, AKASHI Takahiro wrote: > Enabling crash dump (kdump) includes > * prepare contents of ELF header of a core dump file, /proc/vmcore, > using crash_prepare_elf64_headers(), and > * add two device tree properties, "linux,usable-memory-range" and > "linux,elfcorehdr", which represent repsectively a memory range > to be used by crash dump kernel and the header's location kexec_file_load() on arm64 needs to be able to create a prop encoded array to the FDT, but there doesn't appear to be a libfdt helper to do this. Akashi's code below adds fdt_setprop_range() to the arch code, and duplicates bits of libfdt_internal.h to do the work. How should this be done? I'm assuming this is something we need a new API in libfdt.h for. How do these come about, and is there an interim step we can use until then? Thanks! James > diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > index 37c0a9dc2e47..ec674f4d267c 100644 > --- a/arch/arm64/kernel/machine_kexec_file.c > +++ b/arch/arm64/kernel/machine_kexec_file.c > @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > return ret; > } > > +static int __init arch_kexec_file_init(void) > +{ > + /* Those values are used later on loading the kernel */ > + __dt_root_addr_cells = dt_root_addr_cells; > + __dt_root_size_cells = dt_root_size_cells; > + > + return 0; > +} > +late_initcall(arch_kexec_file_init); > + > +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) > +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) > + > +static int fdt_prop_len(const char *prop_name, int len) > +{ > + return (strlen(prop_name) + 1) + > + sizeof(struct fdt_property) + > + FDT_TAGALIGN(len); > +} > + > +static bool cells_size_fitted(unsigned long base, unsigned long size) > +{ > + /* if *_cells >= 2, cells can hold 64-bit values anyway */ > + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) > + return false; > + > + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) > + return false; > + > + return true; > +} > + > +static void fill_property(void *buf, u64 val64, int cells) > +{ > + u32 val32; > + > + if (cells == 1) { > + val32 = cpu_to_fdt32((u32)val64); > + memcpy(buf, &val32, sizeof(val32)); > + } else { > + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > + buf += cells * sizeof(u32) - sizeof(u64); > + > + val64 = cpu_to_fdt64(val64); > + memcpy(buf, &val64, sizeof(val64)); > + } > +} > + > +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > + unsigned long addr, unsigned long size) > +{ > + void *buf, *prop; > + size_t buf_size; > + int result; > + > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > + prop = buf = vmalloc(buf_size); > + if (!buf) > + return -ENOMEM; > + > + fill_property(prop, addr, __dt_root_addr_cells); > + prop += __dt_root_addr_cells * sizeof(u32); > + > + fill_property(prop, size, __dt_root_size_cells); > + > + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > + > + vfree(buf); > + > + return result; > +} > + > static int setup_dtb(struct kimage *image, > unsigned long initrd_load_addr, unsigned long initrd_len, > char *cmdline, unsigned long cmdline_len, > @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > int range_len; > int ret; > > + /* check ranges against root's #address-cells and #size-cells */ > + if (image->type == KEXEC_TYPE_CRASH && > + (!cells_size_fitted(image->arch.elf_load_addr, > + image->arch.elf_headers_sz) || > + !cells_size_fitted(crashk_res.start, > + crashk_res.end - crashk_res.start + 1))) { > + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > + ret = -EINVAL; > + goto out_err; > + } > + > /* duplicate dt blob */ > buf_size = fdt_totalsize(initial_boot_params); > range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > + if (image->type == KEXEC_TYPE_CRASH) > + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > + + fdt_prop_len("linux,usable-memory-range", > + range_len); > + > if (initrd_load_addr) > buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) > + fdt_prop_len("linux,initrd-end", sizeof(u64)); > @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, > if (nodeoffset < 0) > goto out_err; > > + if (image->type == KEXEC_TYPE_CRASH) { > + /* add linux,elfcorehdr */ > + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", > + image->arch.elf_load_addr, > + image->arch.elf_headers_sz); > + if (ret) > + goto out_err; > + > + /* add linux,usable-memory-range */ > + ret = fdt_setprop_range(buf, nodeoffset, > + "linux,usable-memory-range", > + crashk_res.start, > + crashk_res.end - crashk_res.start + 1); > + if (ret) > + goto out_err; > + } > + > /* add bootargs */ > if (cmdline) { > ret = fdt_setprop(buf, nodeoffset, "bootargs",
Hi Akashi, On 15/05/18 18:11, James Morse wrote: > On 25/04/18 07:26, AKASHI Takahiro wrote: >> Enabling crash dump (kdump) includes >> * prepare contents of ELF header of a core dump file, /proc/vmcore, >> using crash_prepare_elf64_headers(), and >> * add two device tree properties, "linux,usable-memory-range" and >> "linux,elfcorehdr", which represent repsectively a memory range >> to be used by crash dump kernel and the header's location >> diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c >> index 37c0a9dc2e47..ec674f4d267c 100644 >> --- a/arch/arm64/kernel/machine_kexec_file.c >> +++ b/arch/arm64/kernel/machine_kexec_file.c >> @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, >> +static void fill_property(void *buf, u64 val64, int cells) >> +{ >> + u32 val32; >> + >> + if (cells == 1) { >> + val32 = cpu_to_fdt32((u32)val64); >> + memcpy(buf, &val32, sizeof(val32)); >> + } else { > >> + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); >> + buf += cells * sizeof(u32) - sizeof(u64); > > Is this trying to clear the 'top' cells and shuffle the pointer to point at the > 'bottom' 2? I'm pretty sure this isn't endian safe. It came to me at 2am: this only works on big-endian, which is exactly what you want as that is the DT format. > Do we really expect a system to have #address-cells > 2? Thanks, James
Hi Akashi, On 15/05/18 18:11, James Morse wrote: > On 25/04/18 07:26, AKASHI Takahiro wrote: >> Enabling crash dump (kdump) includes >> * prepare contents of ELF header of a core dump file, /proc/vmcore, >> using crash_prepare_elf64_headers(), and >> * add two device tree properties, "linux,usable-memory-range" and >> "linux,elfcorehdr", which represent repsectively a memory range >> to be used by crash dump kernel and the header's location >> diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c >> index 37c0a9dc2e47..ec674f4d267c 100644 >> --- a/arch/arm64/kernel/machine_kexec_file.c >> +++ b/arch/arm64/kernel/machine_kexec_file.c >> +static struct crash_mem *get_crash_memory_ranges(void) >> +{ >> + unsigned int nr_ranges; >> + struct crash_mem *cmem; >> + >> + nr_ranges = 1; /* for exclusion of crashkernel region */ >> + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); >> + >> + cmem = vmalloc(sizeof(struct crash_mem) + >> + sizeof(struct crash_mem_range) * nr_ranges); >> + if (!cmem) >> + return NULL; >> + >> + cmem->max_nr_ranges = nr_ranges; >> + cmem->nr_ranges = 0; >> + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); >> + >> + /* Exclude crashkernel region */ >> + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { >> + vfree(cmem); >> + return NULL; >> + } >> + >> + return cmem; >> +} > > Could this function be included in prepare_elf_headers() so that the alloc() and > free() occur together. > > >> +static int prepare_elf_headers(void **addr, unsigned long *sz) >> +{ >> + struct crash_mem *cmem; >> + int ret = 0; >> + >> + cmem = get_crash_memory_ranges(); >> + if (!cmem) >> + return -ENOMEM; >> + >> + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); >> + >> + vfree(cmem); > >> + return ret; >> +} > > All this is moving memory-range information from core-code's > walk_system_ram_res() into core-code's struct crash_mem, and excluding > crashk_res, which again is accessible to the core code. > > It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 > doesn't have a second 'crashk_low_res' region, and always wants elf64, instead > of when IS_ENABLED(CONFIG_X86_64). Thinking about it some more: don't we want to walk memblock here, not walk_system_ram_res()? What we want is a list of not-nomap regions that the kernel may have been using, to form part of vmcore. walk_system_ram_res() is becoming a murkier list of maybe-nomap, maybe-reserved. I think we should walk the same list here as we do in patch 4. Thanks, James
On Wed, May 16, 2018 at 11:06:02AM +0100, James Morse wrote: > Hi Akashi, > > On 15/05/18 18:11, James Morse wrote: > > On 25/04/18 07:26, AKASHI Takahiro wrote: > >> Enabling crash dump (kdump) includes > >> * prepare contents of ELF header of a core dump file, /proc/vmcore, > >> using crash_prepare_elf64_headers(), and > >> * add two device tree properties, "linux,usable-memory-range" and > >> "linux,elfcorehdr", which represent repsectively a memory range > >> to be used by crash dump kernel and the header's location > > >> diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > >> index 37c0a9dc2e47..ec674f4d267c 100644 > >> --- a/arch/arm64/kernel/machine_kexec_file.c > >> +++ b/arch/arm64/kernel/machine_kexec_file.c > > >> +static struct crash_mem *get_crash_memory_ranges(void) > >> +{ > >> + unsigned int nr_ranges; > >> + struct crash_mem *cmem; > >> + > >> + nr_ranges = 1; /* for exclusion of crashkernel region */ > >> + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); > >> + > >> + cmem = vmalloc(sizeof(struct crash_mem) + > >> + sizeof(struct crash_mem_range) * nr_ranges); > >> + if (!cmem) > >> + return NULL; > >> + > >> + cmem->max_nr_ranges = nr_ranges; > >> + cmem->nr_ranges = 0; > >> + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); > >> + > >> + /* Exclude crashkernel region */ > >> + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { > >> + vfree(cmem); > >> + return NULL; > >> + } > >> + > >> + return cmem; > >> +} > > > > Could this function be included in prepare_elf_headers() so that the alloc() and > > free() occur together. > > > > > >> +static int prepare_elf_headers(void **addr, unsigned long *sz) > >> +{ > >> + struct crash_mem *cmem; > >> + int ret = 0; > >> + > >> + cmem = get_crash_memory_ranges(); > >> + if (!cmem) > >> + return -ENOMEM; > >> + > >> + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); > >> + > >> + vfree(cmem); > > > >> + return ret; > >> +} > > > > All this is moving memory-range information from core-code's > > walk_system_ram_res() into core-code's struct crash_mem, and excluding > > crashk_res, which again is accessible to the core code. > > > > It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 > > doesn't have a second 'crashk_low_res' region, and always wants elf64, instead > > of when IS_ENABLED(CONFIG_X86_64). > > Thinking about it some more: don't we want to walk memblock here, not > walk_system_ram_res()? What we want is a list of not-nomap regions that the > kernel may have been using, to form part of vmcore. > walk_system_ram_res() is becoming a murkier list of maybe-nomap, maybe-reserved. > > I think we should walk the same list here as we do in patch 4. For consistency, yes. I missed that. -Takahiro AKASHI > > > Thanks, > > James
On Wed, May 16, 2018 at 09:34:41AM +0100, James Morse wrote: > Hi Akashi, > > On 15/05/18 18:11, James Morse wrote: > > On 25/04/18 07:26, AKASHI Takahiro wrote: > >> Enabling crash dump (kdump) includes > >> * prepare contents of ELF header of a core dump file, /proc/vmcore, > >> using crash_prepare_elf64_headers(), and > >> * add two device tree properties, "linux,usable-memory-range" and > >> "linux,elfcorehdr", which represent repsectively a memory range > >> to be used by crash dump kernel and the header's location > > >> diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > >> index 37c0a9dc2e47..ec674f4d267c 100644 > >> --- a/arch/arm64/kernel/machine_kexec_file.c > >> +++ b/arch/arm64/kernel/machine_kexec_file.c > >> @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > > >> +static void fill_property(void *buf, u64 val64, int cells) > >> +{ > >> + u32 val32; > >> + > >> + if (cells == 1) { > >> + val32 = cpu_to_fdt32((u32)val64); > >> + memcpy(buf, &val32, sizeof(val32)); > >> + } else { > > > >> + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > >> + buf += cells * sizeof(u32) - sizeof(u64); > > > > Is this trying to clear the 'top' cells and shuffle the pointer to point at the > > 'bottom' 2? I'm pretty sure this isn't endian safe. > > It came to me at 2am: this only works on big-endian, which is exactly what you > want as that is the DT format. Oops, I was almost tricked as I haven't tested kexec on BE for a long time :) Thanks, -Takahiro AKASHI > > > Do we really expect a system to have #address-cells > 2? > > > Thanks, > > James
On Tue, May 15, 2018 at 06:11:15PM +0100, James Morse wrote: > Hi Akashi, > > On 25/04/18 07:26, AKASHI Takahiro wrote: > > Enabling crash dump (kdump) includes > > * prepare contents of ELF header of a core dump file, /proc/vmcore, > > using crash_prepare_elf64_headers(), and > > * add two device tree properties, "linux,usable-memory-range" and > > "linux,elfcorehdr", which represent repsectively a memory range > > (Nit: respectively) Will fix. > > > to be used by crash dump kernel and the header's location > > > arch/arm64/include/asm/kexec.h | 4 + > > arch/arm64/kernel/kexec_image.c | 9 +- > > arch/arm64/kernel/machine_kexec_file.c | 202 +++++++++++++++++++++++++ > > In this patch, machine_kexec_file.c gains its own private fdt array encoder. See below. > > > diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > > index 37c0a9dc2e47..ec674f4d267c 100644 > > --- a/arch/arm64/kernel/machine_kexec_file.c > > +++ b/arch/arm64/kernel/machine_kexec_file.c > > @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > > return ret; > > } > > > > +static int __init arch_kexec_file_init(void) > > +{ > > + /* Those values are used later on loading the kernel */ > > + __dt_root_addr_cells = dt_root_addr_cells; > > + __dt_root_size_cells = dt_root_size_cells; > > + > > + return 0; > > +} > > +late_initcall(arch_kexec_file_init); > > If we need these is it worth taking them out of __initdata? I note they've been > 'temporary' for quite a long time. I think that I had some reason that I didn't do that, but don't remember now. If there's no problem, I will take your suggestion. > > > + > > +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) > > +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) > > + > > +static int fdt_prop_len(const char *prop_name, int len) > > +{ > > + return (strlen(prop_name) + 1) + > > + sizeof(struct fdt_property) + > > + FDT_TAGALIGN(len); > > +} > > This stuff should really be in libfdt.h Those macros come from > libfdt_internal.h, so we're probably doing something wrong here. > > > > +static bool cells_size_fitted(unsigned long base, unsigned long size) > > +{ > > + /* if *_cells >= 2, cells can hold 64-bit values anyway */ > > + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) > > + return false; > > + > > + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) > > + return false; > > Using '> U32_MAX' here may be more readable. OK > > > + return true; > > +} > > + > > +static void fill_property(void *buf, u64 val64, int cells) > > +{ > > + u32 val32; > > + > > + if (cells == 1) { > > + val32 = cpu_to_fdt32((u32)val64); > > + memcpy(buf, &val32, sizeof(val32)); > > + } else { > > > + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > > + buf += cells * sizeof(u32) - sizeof(u64); > > Is this trying to clear the 'top' cells and shuffle the pointer to point at the > 'bottom' 2? I'm pretty sure this isn't endian safe. > > Do we really expect a system to have #address-cells > 2? I don't know, but just for safety. > > > + val64 = cpu_to_fdt64(val64); > > + memcpy(buf, &val64, sizeof(val64)); > > + } > > +} > > + > > +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > > + unsigned long addr, unsigned long size) > > (the device-tree spec describes a 'ranges' property, which had me confused. This > is encoding a prop-encoded-array) Should we rename it to, say, fdt_setprop_reg()? > > +{ > > + void *buf, *prop; > > + size_t buf_size; > > + int result; > > + > > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > + prop = buf = vmalloc(buf_size); > > virtual memory allocation for something less than PAGE_SIZE? I've never cared about that. Let me think again. > > > + if (!buf) > > + return -ENOMEM; > > + > > + fill_property(prop, addr, __dt_root_addr_cells); > > + prop += __dt_root_addr_cells * sizeof(u32); > > + > > + fill_property(prop, size, __dt_root_size_cells); > > + > > + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > > + > > + vfree(buf); > > + > > + return result; > > +} > > Doesn't this stuff belong in libfdt? I guess there is no 'add array element' api > because this the first time we've wanted to create a node with more than > key=fixed-size-value. > > I don't think this belongs in arch C code. Do we have a plan for getting libfdt > to support encoding prop-arrays? Can we put it somewhere anyone else duplicating > this will find it, until we can (re)move it? I will temporarily move all fdt-related stuff to a separate file, but > I have no idea how that happens... it looks like the devicetree list is the > place to ask. should we always sync with the original dtc/libfdt repository? > > > static int setup_dtb(struct kimage *image, > > unsigned long initrd_load_addr, unsigned long initrd_len, > > char *cmdline, unsigned long cmdline_len, > > @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > > int range_len; > > int ret; > > > > + /* check ranges against root's #address-cells and #size-cells */ > > + if (image->type == KEXEC_TYPE_CRASH && > > + (!cells_size_fitted(image->arch.elf_load_addr, > > + image->arch.elf_headers_sz) || > > + !cells_size_fitted(crashk_res.start, > > + crashk_res.end - crashk_res.start + 1))) { > > + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > > + ret = -EINVAL; > > + goto out_err; > > + } > > To check I've understood this properly: This can happen if the firmware provided > a DTB with 32bit address/size cells, but at least some of the memory requires 64 > bit address/size cells. This could only happen on a UEFI system where the > firmware-DTB doesn't describe memory. ACPI-only systems would have the EFIstub DT. Probably, yes. I assumed the case where #address-cells and #size-cells were just missing in fdt. > > > /* duplicate dt blob */ > > buf_size = fdt_totalsize(initial_boot_params); > > range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > > > + if (image->type == KEXEC_TYPE_CRASH) > > + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > > + + fdt_prop_len("linux,usable-memory-range", > > + range_len); ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > > + > > if (initrd_load_addr) > > buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) > > + fdt_prop_len("linux,initrd-end", sizeof(u64)); > > @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, > > if (nodeoffset < 0) > > goto out_err; > > > > + if (image->type == KEXEC_TYPE_CRASH) { > > + /* add linux,elfcorehdr */ > > + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", > > + image->arch.elf_load_addr, > > + image->arch.elf_headers_sz); > > + if (ret) > > + goto out_err; > > + > > + /* add linux,usable-memory-range */ > > + ret = fdt_setprop_range(buf, nodeoffset, > > + "linux,usable-memory-range", > > + crashk_res.start, > > + crashk_res.end - crashk_res.start + 1); > > Don't you need to add "linux,usable-memory-range" to the buf_size estimate? I think the code exists. See above. > > > + if (ret) > > + goto out_err; > > + } > > > @@ -148,17 +258,109 @@ static int setup_dtb(struct kimage *image, > > > +static struct crash_mem *get_crash_memory_ranges(void) > > +{ > > + unsigned int nr_ranges; > > + struct crash_mem *cmem; > > + > > + nr_ranges = 1; /* for exclusion of crashkernel region */ > > + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); > > + > > + cmem = vmalloc(sizeof(struct crash_mem) + > > + sizeof(struct crash_mem_range) * nr_ranges); > > + if (!cmem) > > + return NULL; > > + > > + cmem->max_nr_ranges = nr_ranges; > > + cmem->nr_ranges = 0; > > + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); > > + > > + /* Exclude crashkernel region */ > > + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { > > + vfree(cmem); > > + return NULL; > > + } > > + > > + return cmem; > > +} > > Could this function be included in prepare_elf_headers() so that the alloc() and > free() occur together. Or aiming that arm64 and x86 have similar-look code? > > > +static int prepare_elf_headers(void **addr, unsigned long *sz) > > +{ > > + struct crash_mem *cmem; > > + int ret = 0; > > + > > + cmem = get_crash_memory_ranges(); > > + if (!cmem) > > + return -ENOMEM; > > + > > + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); > > + > > + vfree(cmem); > > > + return ret; > > +} > > All this is moving memory-range information from core-code's > walk_system_ram_res() into core-code's struct crash_mem, and excluding > crashk_res, which again is accessible to the core code. > > It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 > doesn't have a second 'crashk_low_res' region, and always wants elf64, instead > of when IS_ENABLED(CONFIG_X86_64). > If we can abstract just those two, more of this could be moved to core code > where powerpc can make use of it if they want to support kdump with > kexec_file_load(). > > But, its getting late for cross-architecture dependencies, lets put that on the > for-later list. (assuming there isn't a powerpc-kdump series out there adding a > third copy of this) Sure. X86 code has so many exceptional lines in the code :) Thanks, -Takahiro AKASHI > > Thanks, > > James
On Tue, May 15, 2018 at 06:12:59PM +0100, James Morse wrote: > Hi guys, > > (CC: +RobH, devicetree list) Thanks. > On 25/04/18 07:26, AKASHI Takahiro wrote: > > Enabling crash dump (kdump) includes > > * prepare contents of ELF header of a core dump file, /proc/vmcore, > > using crash_prepare_elf64_headers(), and > > * add two device tree properties, "linux,usable-memory-range" and > > "linux,elfcorehdr", which represent repsectively a memory range > > to be used by crash dump kernel and the header's location BTW, I intend to move existing parsing these out of the arch code. Please don't add more DT handling to arch/ unless it is *really* arch specific. I'd assume that the next arch to add kexec support will use these bindings instead of the powerpc way. > kexec_file_load() on arm64 needs to be able to create a prop encoded array to > the FDT, but there doesn't appear to be a libfdt helper to do this. > > Akashi's code below adds fdt_setprop_range() to the arch code, and duplicates > bits of libfdt_internal.h to do the work. > > How should this be done? I'm assuming this is something we need a new API in > libfdt.h for. How do these come about, and is there an interim step we can use > until then? Submit patches to upstream dtc and then we can pull it in. Ahead of that you can add it to drivers/of/fdt.c (or maybe fdt_address.c because that's really what this is dealing with). libfdt has only recently gained the beginnings of address handling. > > Thanks! > > James > > > diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > > index 37c0a9dc2e47..ec674f4d267c 100644 > > --- a/arch/arm64/kernel/machine_kexec_file.c > > +++ b/arch/arm64/kernel/machine_kexec_file.c > > @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > > return ret; > > } > > > > +static int __init arch_kexec_file_init(void) > > +{ > > + /* Those values are used later on loading the kernel */ > > + __dt_root_addr_cells = dt_root_addr_cells; > > + __dt_root_size_cells = dt_root_size_cells; I intend to make dt_root_*_cells private, so don't add another user outside of drivers/of/. > > + > > + return 0; > > +} > > +late_initcall(arch_kexec_file_init); > > + > > +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) > > +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) > > + > > +static int fdt_prop_len(const char *prop_name, int len) > > +{ > > + return (strlen(prop_name) + 1) + > > + sizeof(struct fdt_property) + > > + FDT_TAGALIGN(len); > > +} > > + > > +static bool cells_size_fitted(unsigned long base, unsigned long size) I can't imagine this would happen. However, when this is moved to drivers/of/ or dtc, these need to be u64 types to work on 32-bit. > > +{ > > + /* if *_cells >= 2, cells can hold 64-bit values anyway */ > > + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) > > + return false; > > + > > + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) > > + return false; > > + > > + return true; > > +} > > + > > +static void fill_property(void *buf, u64 val64, int cells) > > +{ > > + u32 val32; This should be a __be32 or fdt32 type. So should buf. > > + > > + if (cells == 1) { > > + val32 = cpu_to_fdt32((u32)val64); > > + memcpy(buf, &val32, sizeof(val32)); > > + } else { > > + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > > + buf += cells * sizeof(u32) - sizeof(u64); > > + > > + val64 = cpu_to_fdt64(val64); > > + memcpy(buf, &val64, sizeof(val64)); Look how of_read_number() is implemented. You should be able to do something similar here looping and avoiding the if/else. > > + } > > +} > > + > > +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > > + unsigned long addr, unsigned long size) A very generic sounding function, but really only works on addresses in children of the root node. > > +{ > > + void *buf, *prop; > > + size_t buf_size; > > + int result; > > + > > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > + prop = buf = vmalloc(buf_size); This can go on the stack instead (and would be required to to work in libfdt). > > + if (!buf) > > + return -ENOMEM; > > + > > + fill_property(prop, addr, __dt_root_addr_cells); > > + prop += __dt_root_addr_cells * sizeof(u32); > > + > > + fill_property(prop, size, __dt_root_size_cells); > > + > > + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > > + > > + vfree(buf); > > + > > + return result; > > +} > > + > > static int setup_dtb(struct kimage *image, > > unsigned long initrd_load_addr, unsigned long initrd_len, > > char *cmdline, unsigned long cmdline_len, > > @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > > int range_len; > > int ret; > > > > + /* check ranges against root's #address-cells and #size-cells */ > > + if (image->type == KEXEC_TYPE_CRASH && > > + (!cells_size_fitted(image->arch.elf_load_addr, > > + image->arch.elf_headers_sz) || > > + !cells_size_fitted(crashk_res.start, > > + crashk_res.end - crashk_res.start + 1))) { > > + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > > + ret = -EINVAL; > > + goto out_err; > > + } > > + > > /* duplicate dt blob */ > > buf_size = fdt_totalsize(initial_boot_params); > > range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > > > + if (image->type == KEXEC_TYPE_CRASH) > > + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > > + + fdt_prop_len("linux,usable-memory-range", > > + range_len); > > + > > if (initrd_load_addr) > > buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) > > + fdt_prop_len("linux,initrd-end", sizeof(u64)); > > @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, > > if (nodeoffset < 0) > > goto out_err; > > > > + if (image->type == KEXEC_TYPE_CRASH) { > > + /* add linux,elfcorehdr */ > > + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", > > + image->arch.elf_load_addr, > > + image->arch.elf_headers_sz); > > + if (ret) > > + goto out_err; > > + > > + /* add linux,usable-memory-range */ > > + ret = fdt_setprop_range(buf, nodeoffset, > > + "linux,usable-memory-range", > > + crashk_res.start, > > + crashk_res.end - crashk_res.start + 1); > > + if (ret) > > + goto out_err; > > + } > > + > > /* add bootargs */ > > if (cmdline) { > > ret = fdt_setprop(buf, nodeoffset, "bootargs", >
Hi Akashi, On 18/05/18 11:39, AKASHI Takahiro wrote: > On Tue, May 15, 2018 at 06:11:15PM +0100, James Morse wrote: >> On 25/04/18 07:26, AKASHI Takahiro wrote: >>> Enabling crash dump (kdump) includes >>> * prepare contents of ELF header of a core dump file, /proc/vmcore, >>> using crash_prepare_elf64_headers(), and >>> * add two device tree properties, "linux,usable-memory-range" and >>> "linux,elfcorehdr", which represent repsectively a memory range >>> diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c >>> index 37c0a9dc2e47..ec674f4d267c 100644 >>> --- a/arch/arm64/kernel/machine_kexec_file.c >>> +++ b/arch/arm64/kernel/machine_kexec_file.c >>> +static void fill_property(void *buf, u64 val64, int cells) >>> +{ >>> + u32 val32; >>> + >>> + if (cells == 1) { >>> + val32 = cpu_to_fdt32((u32)val64); >>> + memcpy(buf, &val32, sizeof(val32)); >>> + } else { >> >>> + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); >>> + buf += cells * sizeof(u32) - sizeof(u64); >> >> Is this trying to clear the 'top' cells and shuffle the pointer to point at the >> 'bottom' 2? I'm pretty sure this isn't endian safe. >> >> Do we really expect a system to have #address-cells > 2? > > I don't know, but just for safety. Okay, so this is aiming to be a cover-all-cases library function. >>> + val64 = cpu_to_fdt64(val64); >>> + memcpy(buf, &val64, sizeof(val64)); >>> + } >>> +} >>> + >>> +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, >>> + unsigned long addr, unsigned long size) >> >> (the device-tree spec describes a 'ranges' property, which had me confused. This >> is encoding a prop-encoded-array) > > Should we rename it to, say, fdt_setprop_reg()? Sure, but I'd really like this code to come from libfdt. I'm hoping for some temporary workaround, lets see what the DT folk say. >>> + if (!buf) >>> + return -ENOMEM; >>> + >>> + fill_property(prop, addr, __dt_root_addr_cells); >>> + prop += __dt_root_addr_cells * sizeof(u32); >>> + >>> + fill_property(prop, size, __dt_root_size_cells); >>> + >>> + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); >>> + >>> + vfree(buf); >>> + >>> + return result; >>> +} >> >> Doesn't this stuff belong in libfdt? I guess there is no 'add array element' api >> because this the first time we've wanted to create a node with more than >> key=fixed-size-value. >> >> I don't think this belongs in arch C code. Do we have a plan for getting libfdt >> to support encoding prop-arrays? Can we put it somewhere anyone else duplicating >> this will find it, until we can (re)move it? > > I will temporarily move all fdt-related stuff to a separate file, but > >> I have no idea how that happens... it looks like the devicetree list is the >> place to ask. > > should we always sync with the original dtc/libfdt repository? I thought so, libfdt is one of those external libraries that the kernel consumes, like acpica. For acpica at least the rule is changes go upstream, then get sync'd back. >>> static int setup_dtb(struct kimage *image, >>> unsigned long initrd_load_addr, unsigned long initrd_len, >>> char *cmdline, unsigned long cmdline_len, >>> @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, >>> int range_len; >>> int ret; >>> >>> + /* check ranges against root's #address-cells and #size-cells */ >>> + if (image->type == KEXEC_TYPE_CRASH && >>> + (!cells_size_fitted(image->arch.elf_load_addr, >>> + image->arch.elf_headers_sz) || >>> + !cells_size_fitted(crashk_res.start, >>> + crashk_res.end - crashk_res.start + 1))) { >>> + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); >>> + ret = -EINVAL; >>> + goto out_err; >>> + } >> >> To check I've understood this properly: This can happen if the firmware provided >> a DTB with 32bit address/size cells, but at least some of the memory requires 64 >> bit address/size cells. This could only happen on a UEFI system where the >> firmware-DTB doesn't describe memory. ACPI-only systems would have the EFIstub DT. > > Probably, yes. I assumed the case where #address-cells and #size-cells > were just missing in fdt. Ah, that's another one. I just wanted to check we could boot on a system where this can happen. >>> /* duplicate dt blob */ >>> buf_size = fdt_totalsize(initial_boot_params); >>> range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); >>> >>> + if (image->type == KEXEC_TYPE_CRASH) >>> + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) >>> + + fdt_prop_len("linux,usable-memory-range", >>> + range_len); > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [...] >> Don't you need to add "linux,usable-memory-range" to the buf_size estimate? > > I think the code exists. See above. Sorry, turns out I can't read! >>> + if (ret) >>> + goto out_err; >>> + } >> >>> @@ -148,17 +258,109 @@ static int setup_dtb(struct kimage *image, >> >>> +static struct crash_mem *get_crash_memory_ranges(void) >>> +{ >>> + unsigned int nr_ranges; >>> + struct crash_mem *cmem; >>> + >>> + nr_ranges = 1; /* for exclusion of crashkernel region */ >>> + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); >>> + >>> + cmem = vmalloc(sizeof(struct crash_mem) + >>> + sizeof(struct crash_mem_range) * nr_ranges); >>> + if (!cmem) >>> + return NULL; >>> + >>> + cmem->max_nr_ranges = nr_ranges; >>> + cmem->nr_ranges = 0; >>> + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); >>> + >>> + /* Exclude crashkernel region */ >>> + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { >>> + vfree(cmem); >>> + return NULL; >>> + } >>> + >>> + return cmem; >>> +} >> >> Could this function be included in prepare_elf_headers() so that the alloc() and >> free() occur together. > > Or aiming that arm64 and x86 have similar-look code? What's the advantage in things looking the same? If they are the same, it probably shouldn't be in per-arch code. Otherwise it should be as simple as possible, otherwise we can't spot the bugs/leaks. But I think walking memblock here will remove all 'looks the same' properties here. >>> +static int prepare_elf_headers(void **addr, unsigned long *sz) >>> +{ >>> + struct crash_mem *cmem; >>> + int ret = 0; >>> + >>> + cmem = get_crash_memory_ranges(); >>> + if (!cmem) >>> + return -ENOMEM; >>> + >>> + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); >>> + >>> + vfree(cmem); >> >>> + return ret; >>> +} >> >> All this is moving memory-range information from core-code's >> walk_system_ram_res() into core-code's struct crash_mem, and excluding >> crashk_res, which again is accessible to the core code. >> >> It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 >> doesn't have a second 'crashk_low_res' region, and always wants elf64, instead >> of when IS_ENABLED(CONFIG_X86_64). >> If we can abstract just those two, more of this could be moved to core code >> where powerpc can make use of it if they want to support kdump with >> kexec_file_load(). >> >> But, its getting late for cross-architecture dependencies, lets put that on the >> for-later list. (assuming there isn't a powerpc-kdump series out there adding a >> third copy of this) > > Sure. X86 code has so many exceptional lines in the code :) They also pass the e820 'usable-memory' map on the cmdline... Thanks, James
James, On Fri, May 18, 2018 at 05:00:55PM +0100, James Morse wrote: > Hi Akashi, > > On 18/05/18 11:39, AKASHI Takahiro wrote: > > On Tue, May 15, 2018 at 06:11:15PM +0100, James Morse wrote: > >> On 25/04/18 07:26, AKASHI Takahiro wrote: > >>> Enabling crash dump (kdump) includes > >>> * prepare contents of ELF header of a core dump file, /proc/vmcore, > >>> using crash_prepare_elf64_headers(), and > >>> * add two device tree properties, "linux,usable-memory-range" and > >>> "linux,elfcorehdr", which represent repsectively a memory range > > >>> diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > >>> index 37c0a9dc2e47..ec674f4d267c 100644 > >>> --- a/arch/arm64/kernel/machine_kexec_file.c > >>> +++ b/arch/arm64/kernel/machine_kexec_file.c > > >>> +static void fill_property(void *buf, u64 val64, int cells) > >>> +{ > >>> + u32 val32; > >>> + > >>> + if (cells == 1) { > >>> + val32 = cpu_to_fdt32((u32)val64); > >>> + memcpy(buf, &val32, sizeof(val32)); > >>> + } else { > >> > >>> + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > >>> + buf += cells * sizeof(u32) - sizeof(u64); > >> > >> Is this trying to clear the 'top' cells and shuffle the pointer to point at the > >> 'bottom' 2? I'm pretty sure this isn't endian safe. > >> > >> Do we really expect a system to have #address-cells > 2? > > > > I don't know, but just for safety. > > Okay, so this is aiming to be a cover-all-cases library function. > > > >>> + val64 = cpu_to_fdt64(val64); > >>> + memcpy(buf, &val64, sizeof(val64)); > >>> + } > >>> +} > >>> + > >>> +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > >>> + unsigned long addr, unsigned long size) > >> > >> (the device-tree spec describes a 'ranges' property, which had me confused. This > >> is encoding a prop-encoded-array) > > > > Should we rename it to, say, fdt_setprop_reg()? > > Sure, but I'd really like this code to come from libfdt. I'm hoping for some > temporary workaround, lets see what the DT folk say. OK, I will follow Rob's suggestion. > >>> + if (!buf) > >>> + return -ENOMEM; > >>> + > >>> + fill_property(prop, addr, __dt_root_addr_cells); > >>> + prop += __dt_root_addr_cells * sizeof(u32); > >>> + > >>> + fill_property(prop, size, __dt_root_size_cells); > >>> + > >>> + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > >>> + > >>> + vfree(buf); > >>> + > >>> + return result; > >>> +} > >> > >> Doesn't this stuff belong in libfdt? I guess there is no 'add array element' api > >> because this the first time we've wanted to create a node with more than > >> key=fixed-size-value. > >> > >> I don't think this belongs in arch C code. Do we have a plan for getting libfdt > >> to support encoding prop-arrays? Can we put it somewhere anyone else duplicating > >> this will find it, until we can (re)move it? > > > > I will temporarily move all fdt-related stuff to a separate file, but > > > >> I have no idea how that happens... it looks like the devicetree list is the > >> place to ask. > > > > should we always sync with the original dtc/libfdt repository? > > I thought so, libfdt is one of those external libraries that the kernel > consumes, like acpica. For acpica at least the rule is changes go upstream, then > get sync'd back. Same above. > >>> static int setup_dtb(struct kimage *image, > >>> unsigned long initrd_load_addr, unsigned long initrd_len, > >>> char *cmdline, unsigned long cmdline_len, > >>> @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > >>> int range_len; > >>> int ret; > >>> > >>> + /* check ranges against root's #address-cells and #size-cells */ > >>> + if (image->type == KEXEC_TYPE_CRASH && > >>> + (!cells_size_fitted(image->arch.elf_load_addr, > >>> + image->arch.elf_headers_sz) || > >>> + !cells_size_fitted(crashk_res.start, > >>> + crashk_res.end - crashk_res.start + 1))) { > >>> + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > >>> + ret = -EINVAL; > >>> + goto out_err; > >>> + } > >> > >> To check I've understood this properly: This can happen if the firmware provided > >> a DTB with 32bit address/size cells, but at least some of the memory requires 64 > >> bit address/size cells. This could only happen on a UEFI system where the > >> firmware-DTB doesn't describe memory. ACPI-only systems would have the EFIstub DT. > > > > Probably, yes. I assumed the case where #address-cells and #size-cells > > were just missing in fdt. > > Ah, that's another one. I just wanted to check we could boot on a system where > this can happen. > > > >>> /* duplicate dt blob */ > >>> buf_size = fdt_totalsize(initial_boot_params); > >>> range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > >>> > >>> + if (image->type == KEXEC_TYPE_CRASH) > >>> + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > >>> + + fdt_prop_len("linux,usable-memory-range", > >>> + range_len); > > > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > [...] > > >> Don't you need to add "linux,usable-memory-range" to the buf_size estimate? > > > > I think the code exists. See above. > > Sorry, turns out I can't read! > > > >>> + if (ret) > >>> + goto out_err; > >>> + } > >> > >>> @@ -148,17 +258,109 @@ static int setup_dtb(struct kimage *image, > >> > >>> +static struct crash_mem *get_crash_memory_ranges(void) > >>> +{ > >>> + unsigned int nr_ranges; > >>> + struct crash_mem *cmem; > >>> + > >>> + nr_ranges = 1; /* for exclusion of crashkernel region */ > >>> + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); > >>> + > >>> + cmem = vmalloc(sizeof(struct crash_mem) + > >>> + sizeof(struct crash_mem_range) * nr_ranges); > >>> + if (!cmem) > >>> + return NULL; > >>> + > >>> + cmem->max_nr_ranges = nr_ranges; > >>> + cmem->nr_ranges = 0; > >>> + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); > >>> + > >>> + /* Exclude crashkernel region */ > >>> + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { > >>> + vfree(cmem); > >>> + return NULL; > >>> + } > >>> + > >>> + return cmem; > >>> +} > >> > >> Could this function be included in prepare_elf_headers() so that the alloc() and > >> free() occur together. > > > > Or aiming that arm64 and x86 have similar-look code? > > What's the advantage in things looking the same? If they are the same, it > probably shouldn't be in per-arch code. Otherwise it should be as simple as > possible, otherwise we can't spot the bugs/leaks. > > But I think walking memblock here will remove all 'looks the same' properties here. OK, I will unfold the function in prepare_elf_headers(). > > >>> +static int prepare_elf_headers(void **addr, unsigned long *sz) > >>> +{ > >>> + struct crash_mem *cmem; > >>> + int ret = 0; > >>> + > >>> + cmem = get_crash_memory_ranges(); > >>> + if (!cmem) > >>> + return -ENOMEM; > >>> + > >>> + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); > >>> + > >>> + vfree(cmem); > >> > >>> + return ret; > >>> +} > >> > >> All this is moving memory-range information from core-code's > >> walk_system_ram_res() into core-code's struct crash_mem, and excluding > >> crashk_res, which again is accessible to the core code. > >> > >> It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 > >> doesn't have a second 'crashk_low_res' region, and always wants elf64, instead > >> of when IS_ENABLED(CONFIG_X86_64). > >> If we can abstract just those two, more of this could be moved to core code > >> where powerpc can make use of it if they want to support kdump with > >> kexec_file_load(). > >> > >> But, its getting late for cross-architecture dependencies, lets put that on the > >> for-later list. (assuming there isn't a powerpc-kdump series out there adding a > >> third copy of this) > > > > Sure. X86 code has so many exceptional lines in the code :) > > They also pass the e820 'usable-memory' map on the cmdline... Well, according to Dave(RedHat)'s past comment, this type of kernel parameters are in a old style, and x86 now has a dedicated memory region passed for this sake. Thanks, -Takahiro AKASHI > > Thanks, > > James
Hi Rob, On Fri, May 18, 2018 at 10:35:52AM -0500, Rob Herring wrote: > On Tue, May 15, 2018 at 06:12:59PM +0100, James Morse wrote: > > Hi guys, > > > > (CC: +RobH, devicetree list) > > Thanks. > > > On 25/04/18 07:26, AKASHI Takahiro wrote: > > > Enabling crash dump (kdump) includes > > > * prepare contents of ELF header of a core dump file, /proc/vmcore, > > > using crash_prepare_elf64_headers(), and > > > * add two device tree properties, "linux,usable-memory-range" and > > > "linux,elfcorehdr", which represent repsectively a memory range > > > to be used by crash dump kernel and the header's location > > BTW, I intend to move existing parsing these out of the arch code. > Please don't add more DT handling to arch/ unless it is *really* arch > specific. I'd assume that the next arch to add kexec support will use > these bindings instead of the powerpc way. So do you expect all the fdt-related stuff in my current implementation for arm64 to be put into libfdt, or at least drivers/of, from the beginning? I'm not sure how arch-specific the properties here are. For instance, it is only arm64 that uses "linux,usable-memory-range" right now but if some other arch follows, it is no more arch-specific. # I remember that you didn't like this property :) > > kexec_file_load() on arm64 needs to be able to create a prop encoded array to > > the FDT, but there doesn't appear to be a libfdt helper to do this. > > > > Akashi's code below adds fdt_setprop_range() to the arch code, and duplicates > > bits of libfdt_internal.h to do the work. > > > > How should this be done? I'm assuming this is something we need a new API in > > libfdt.h for. How do these come about, and is there an interim step we can use > > until then? > > Submit patches to upstream dtc and then we can pull it in. Ahead of that > you can add it to drivers/of/fdt.c (or maybe fdt_address.c because > that's really what this is dealing with). OK, I'm going to try to follow your suggestion. > libfdt has only recently gained the beginnings of address handling. > > > > > Thanks! > > > > James > > > > > diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > > > index 37c0a9dc2e47..ec674f4d267c 100644 > > > --- a/arch/arm64/kernel/machine_kexec_file.c > > > +++ b/arch/arm64/kernel/machine_kexec_file.c > > > @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > > > return ret; > > > } > > > > > > +static int __init arch_kexec_file_init(void) > > > +{ > > > + /* Those values are used later on loading the kernel */ > > > + __dt_root_addr_cells = dt_root_addr_cells; > > > + __dt_root_size_cells = dt_root_size_cells; > > I intend to make dt_root_*_cells private, so don't add another user > outside of drivers/of/. Once cells_size_fitted() moves to drivers/of, there will be no users. > > > + > > > + return 0; > > > +} > > > +late_initcall(arch_kexec_file_init); > > > + > > > +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) > > > +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) > > > + > > > +static int fdt_prop_len(const char *prop_name, int len) > > > +{ > > > + return (strlen(prop_name) + 1) + > > > + sizeof(struct fdt_property) + > > > + FDT_TAGALIGN(len); > > > +} > > > + > > > +static bool cells_size_fitted(unsigned long base, unsigned long size) > > I can't imagine this would happen. However, when this is moved to > drivers/of/ or dtc, these need to be u64 types to work on 32-bit. OK. > > > + /* if *_cells >= 2, cells can hold 64-bit values anyway */ > > > + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) > > > + return false; > > > + > > > + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) > > > + return false; > > > + > > > + return true; > > > +} > > > + > > > +static void fill_property(void *buf, u64 val64, int cells) > > > +{ > > > + u32 val32; > > This should be a __be32 or fdt32 type. So should buf. OK for val32, but buf is a local pointer address. > > > + > > > + if (cells == 1) { > > > + val32 = cpu_to_fdt32((u32)val64); > > > + memcpy(buf, &val32, sizeof(val32)); > > > + } else { > > > + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > > > + buf += cells * sizeof(u32) - sizeof(u64); > > > + > > > + val64 = cpu_to_fdt64(val64); > > > + memcpy(buf, &val64, sizeof(val64)); > > Look how of_read_number() is implemented. You should be able to do > something similar here looping and avoiding the if/else. Ah, excellent! > > > + } > > > +} > > > + > > > +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > > > + unsigned long addr, unsigned long size) > > A very generic sounding function, but really only works on addresses in > children of the root node. > > > > +{ > > > + void *buf, *prop; > > > + size_t buf_size; > > > + int result; > > > + > > > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > > + prop = buf = vmalloc(buf_size); > > This can go on the stack instead (and would be required to to work in > libfdt). Well, I can't agree with you here since we are now in effort, as far as I correctly understand, of purging all the variable-sized arrays on a local stack out of the kernel code. Thank you for your review. -Takahiro AKASHI > > > + if (!buf) > > > + return -ENOMEM; > > > + > > > + fill_property(prop, addr, __dt_root_addr_cells); > > > + prop += __dt_root_addr_cells * sizeof(u32); > > > + > > > + fill_property(prop, size, __dt_root_size_cells); > > > + > > > + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > > > + > > > + vfree(buf); > > > + > > > + return result; > > > +} > > > + > > > static int setup_dtb(struct kimage *image, > > > unsigned long initrd_load_addr, unsigned long initrd_len, > > > char *cmdline, unsigned long cmdline_len, > > > @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > > > int range_len; > > > int ret; > > > > > > + /* check ranges against root's #address-cells and #size-cells */ > > > + if (image->type == KEXEC_TYPE_CRASH && > > > + (!cells_size_fitted(image->arch.elf_load_addr, > > > + image->arch.elf_headers_sz) || > > > + !cells_size_fitted(crashk_res.start, > > > + crashk_res.end - crashk_res.start + 1))) { > > > + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > > > + ret = -EINVAL; > > > + goto out_err; > > > + } > > > + > > > /* duplicate dt blob */ > > > buf_size = fdt_totalsize(initial_boot_params); > > > range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > > > > > + if (image->type == KEXEC_TYPE_CRASH) > > > + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > > > + + fdt_prop_len("linux,usable-memory-range", > > > + range_len); > > > + > > > if (initrd_load_addr) > > > buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) > > > + fdt_prop_len("linux,initrd-end", sizeof(u64)); > > > @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, > > > if (nodeoffset < 0) > > > goto out_err; > > > > > > + if (image->type == KEXEC_TYPE_CRASH) { > > > + /* add linux,elfcorehdr */ > > > + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", > > > + image->arch.elf_load_addr, > > > + image->arch.elf_headers_sz); > > > + if (ret) > > > + goto out_err; > > > + > > > + /* add linux,usable-memory-range */ > > > + ret = fdt_setprop_range(buf, nodeoffset, > > > + "linux,usable-memory-range", > > > + crashk_res.start, > > > + crashk_res.end - crashk_res.start + 1); > > > + if (ret) > > > + goto out_err; > > > + } > > > + > > > /* add bootargs */ > > > if (cmdline) { > > > ret = fdt_setprop(buf, nodeoffset, "bootargs", > >
On Mon, May 21, 2018 at 5:14 AM, AKASHI Takahiro <takahiro.akashi@linaro.org> wrote: > Hi Rob, > > On Fri, May 18, 2018 at 10:35:52AM -0500, Rob Herring wrote: >> On Tue, May 15, 2018 at 06:12:59PM +0100, James Morse wrote: >> > Hi guys, >> > >> > (CC: +RobH, devicetree list) >> >> Thanks. >> >> > On 25/04/18 07:26, AKASHI Takahiro wrote: >> > > Enabling crash dump (kdump) includes >> > > * prepare contents of ELF header of a core dump file, /proc/vmcore, >> > > using crash_prepare_elf64_headers(), and >> > > * add two device tree properties, "linux,usable-memory-range" and >> > > "linux,elfcorehdr", which represent repsectively a memory range >> > > to be used by crash dump kernel and the header's location >> >> BTW, I intend to move existing parsing these out of the arch code. >> Please don't add more DT handling to arch/ unless it is *really* arch >> specific. I'd assume that the next arch to add kexec support will use >> these bindings instead of the powerpc way. > > So do you expect all the fdt-related stuff in my current implementation > for arm64 to be put into libfdt, or at least drivers/of, from the beginning? Yes. > I'm not sure how arch-specific the properties here are. For instance, > it is only arm64 that uses "linux,usable-memory-range" right now but > if some other arch follows, it is no more arch-specific. > # I remember that you didn't like this property :) The question I guess is what will the next arch use. I don't think any other DT based arch supports crashdump or kexec yet. >> > > +{ >> > > + void *buf, *prop; >> > > + size_t buf_size; >> > > + int result; >> > > + >> > > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); >> > > + prop = buf = vmalloc(buf_size); >> >> This can go on the stack instead (and would be required to to work in >> libfdt). > > Well, I can't agree with you here since we are now in effort, as far as > I correctly understand, of purging all the variable-sized arrays on a local > stack out of the kernel code. You don't need a variable sized array. The array size just needs to the the maximum size (16 bytes). Rob
diff --git a/arch/arm64/include/asm/kexec.h b/arch/arm64/include/asm/kexec.h index 3cba4161818a..77f05bcf6a42 100644 --- a/arch/arm64/include/asm/kexec.h +++ b/arch/arm64/include/asm/kexec.h @@ -100,6 +100,10 @@ struct kimage_arch { int kern_segment; phys_addr_t dtb_mem; void *dtb_buf; + /* Core ELF header buffer */ + void *elf_headers; + unsigned long elf_headers_sz; + unsigned long elf_load_addr; }; /** diff --git a/arch/arm64/kernel/kexec_image.c b/arch/arm64/kernel/kexec_image.c index 4dd524ad6611..2b3baf7285e0 100644 --- a/arch/arm64/kernel/kexec_image.c +++ b/arch/arm64/kernel/kexec_image.c @@ -39,8 +39,13 @@ static void *image_load(struct kimage *image, /* Load the kernel */ kbuf.image = image; - kbuf.buf_min = 0; - kbuf.buf_max = ULONG_MAX; + if (image->type == KEXEC_TYPE_CRASH) { + kbuf.buf_min = crashk_res.start; + kbuf.buf_max = crashk_res.end + 1; + } else { + kbuf.buf_min = 0; + kbuf.buf_max = ULONG_MAX; + } kbuf.top_down = false; kbuf.buffer = kernel; diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c index 37c0a9dc2e47..ec674f4d267c 100644 --- a/arch/arm64/kernel/machine_kexec_file.c +++ b/arch/arm64/kernel/machine_kexec_file.c @@ -17,6 +17,7 @@ #include <linux/memblock.h> #include <linux/of_fdt.h> #include <linux/types.h> +#include <linux/vmalloc.h> #include <asm/byteorder.h> static int __dt_root_addr_cells; @@ -32,6 +33,10 @@ int arch_kimage_file_post_load_cleanup(struct kimage *image) vfree(image->arch.dtb_buf); image->arch.dtb_buf = NULL; + vfree(image->arch.elf_headers); + image->arch.elf_headers = NULL; + image->arch.elf_headers_sz = 0; + return kexec_image_post_load_cleanup_default(image); } @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, return ret; } +static int __init arch_kexec_file_init(void) +{ + /* Those values are used later on loading the kernel */ + __dt_root_addr_cells = dt_root_addr_cells; + __dt_root_size_cells = dt_root_size_cells; + + return 0; +} +late_initcall(arch_kexec_file_init); + +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) + +static int fdt_prop_len(const char *prop_name, int len) +{ + return (strlen(prop_name) + 1) + + sizeof(struct fdt_property) + + FDT_TAGALIGN(len); +} + +static bool cells_size_fitted(unsigned long base, unsigned long size) +{ + /* if *_cells >= 2, cells can hold 64-bit values anyway */ + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) + return false; + + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) + return false; + + return true; +} + +static void fill_property(void *buf, u64 val64, int cells) +{ + u32 val32; + + if (cells == 1) { + val32 = cpu_to_fdt32((u32)val64); + memcpy(buf, &val32, sizeof(val32)); + } else { + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); + buf += cells * sizeof(u32) - sizeof(u64); + + val64 = cpu_to_fdt64(val64); + memcpy(buf, &val64, sizeof(val64)); + } +} + +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, + unsigned long addr, unsigned long size) +{ + void *buf, *prop; + size_t buf_size; + int result; + + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); + prop = buf = vmalloc(buf_size); + if (!buf) + return -ENOMEM; + + fill_property(prop, addr, __dt_root_addr_cells); + prop += __dt_root_addr_cells * sizeof(u32); + + fill_property(prop, size, __dt_root_size_cells); + + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); + + vfree(buf); + + return result; +} + static int setup_dtb(struct kimage *image, unsigned long initrd_load_addr, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len, @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, int range_len; int ret; + /* check ranges against root's #address-cells and #size-cells */ + if (image->type == KEXEC_TYPE_CRASH && + (!cells_size_fitted(image->arch.elf_load_addr, + image->arch.elf_headers_sz) || + !cells_size_fitted(crashk_res.start, + crashk_res.end - crashk_res.start + 1))) { + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); + ret = -EINVAL; + goto out_err; + } + /* duplicate dt blob */ buf_size = fdt_totalsize(initial_boot_params); range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); + if (image->type == KEXEC_TYPE_CRASH) + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) + + fdt_prop_len("linux,usable-memory-range", + range_len); + if (initrd_load_addr) buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) + fdt_prop_len("linux,initrd-end", sizeof(u64)); @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, if (nodeoffset < 0) goto out_err; + if (image->type == KEXEC_TYPE_CRASH) { + /* add linux,elfcorehdr */ + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", + image->arch.elf_load_addr, + image->arch.elf_headers_sz); + if (ret) + goto out_err; + + /* add linux,usable-memory-range */ + ret = fdt_setprop_range(buf, nodeoffset, + "linux,usable-memory-range", + crashk_res.start, + crashk_res.end - crashk_res.start + 1); + if (ret) + goto out_err; + } + /* add bootargs */ if (cmdline) { ret = fdt_setprop(buf, nodeoffset, "bootargs", @@ -148,17 +258,109 @@ static int setup_dtb(struct kimage *image, return ret; } +static int get_nr_ranges_callback(struct resource *res, void *arg) +{ + unsigned int *nr_ranges = arg; + + (*nr_ranges)++; + return 0; +} + +static int add_mem_range_callback(struct resource *res, void *arg) +{ + struct crash_mem *cmem = arg; + + cmem->ranges[cmem->nr_ranges].start = res->start; + cmem->ranges[cmem->nr_ranges].end = res->end; + cmem->nr_ranges++; + + return 0; +} + +static struct crash_mem *get_crash_memory_ranges(void) +{ + unsigned int nr_ranges; + struct crash_mem *cmem; + + nr_ranges = 1; /* for exclusion of crashkernel region */ + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); + + cmem = vmalloc(sizeof(struct crash_mem) + + sizeof(struct crash_mem_range) * nr_ranges); + if (!cmem) + return NULL; + + cmem->max_nr_ranges = nr_ranges; + cmem->nr_ranges = 0; + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); + + /* Exclude crashkernel region */ + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { + vfree(cmem); + return NULL; + } + + return cmem; +} + +static int prepare_elf_headers(void **addr, unsigned long *sz) +{ + struct crash_mem *cmem; + int ret = 0; + + cmem = get_crash_memory_ranges(); + if (!cmem) + return -ENOMEM; + + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); + + vfree(cmem); + return ret; +} + int load_other_segments(struct kimage *image, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len) { struct kexec_segment *kern_seg; struct kexec_buf kbuf; + void *hdrs_addr; + unsigned long hdrs_sz; unsigned long initrd_load_addr = 0; char *dtb = NULL; unsigned long dtb_len = 0; int ret = 0; + /* load elf core header */ + if (image->type == KEXEC_TYPE_CRASH) { + ret = prepare_elf_headers(&hdrs_addr, &hdrs_sz); + if (ret) { + pr_err("Preparing elf core header failed\n"); + goto out_err; + } + + kbuf.image = image; + kbuf.buffer = hdrs_addr; + kbuf.bufsz = hdrs_sz; + kbuf.memsz = hdrs_sz; + kbuf.buf_align = PAGE_SIZE; + kbuf.buf_min = crashk_res.start; + kbuf.buf_max = crashk_res.end + 1; + kbuf.top_down = true; + + ret = kexec_add_buffer(&kbuf); + if (ret) { + vfree(hdrs_addr); + goto out_err; + } + image->arch.elf_headers = hdrs_addr; + image->arch.elf_headers_sz = hdrs_sz; + image->arch.elf_load_addr = kbuf.mem; + + pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n", + image->arch.elf_load_addr, hdrs_sz, hdrs_sz); + } + kern_seg = &image->segment[image->arch.kern_segment]; kbuf.image = image; /* not allocate anything below the kernel */
Enabling crash dump (kdump) includes * prepare contents of ELF header of a core dump file, /proc/vmcore, using crash_prepare_elf64_headers(), and * add two device tree properties, "linux,usable-memory-range" and "linux,elfcorehdr", which represent repsectively a memory range to be used by crash dump kernel and the header's location Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> --- arch/arm64/include/asm/kexec.h | 4 + arch/arm64/kernel/kexec_image.c | 9 +- arch/arm64/kernel/machine_kexec_file.c | 202 +++++++++++++++++++++++++ 3 files changed, 213 insertions(+), 2 deletions(-)