Message ID | 20190620172250.9102-4-vigneshr@ti.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | MTD: Add Initial HyperBus support | expand |
Hello! On 06/20/2019 08:22 PM, Vignesh Raghavendra wrote: > Cypress' HyperBus is Low Signal Count, High Performance Double Data Rate > Bus interface between a host system master and one or more slave > interfaces. HyperBus is used to connect microprocessor, microcontroller, > or ASIC devices with random access NOR flash memory (called HyperFlash) > or self refresh DRAM (called HyperRAM). > > Its a 8-bit data bus (DQ[7:0]) with Read-Write Data Strobe (RWDS) > signal and either Single-ended clock(3.0V parts) or Differential clock > (1.8V parts). It uses ChipSelect lines to select b/w multiple slaves. > At bus level, it follows a separate protocol described in HyperBus > specification[1]. > > HyperFlash follows CFI AMD/Fujitsu Extended Command Set (0x0002) similar > to that of existing parallel NORs. Since HyperBus is x8 DDR bus, > its equivalent to x16 parallel NOR flash wrt bits per clock cycle. But > HyperBus operates at >166MHz frequencies. s/wrt/WRT/. > HyperRAM provides direct random read/write access to flash memory > array. > > But, HyperBus memory controllers seem to abstract implementation details > and expose a simple MMIO interface to access connected flash. > > Add support for registering HyperFlash devices with MTD framework. MTD > maps framework along with CFI chip support framework are used to support > communicating with flash. > > Framework is modelled along the lines of spi-nor framework. HyperBus > memory controller (HBMC) drivers calls hyperbus_register_device() to > register a single HyperFlash device. HyperFlash core parses MMIO access > information from DT, sets up the map_info struct, probes CFI flash and > registers it with MTD framework. > > Some HBMC masters need calibration/training sequence[3] to be carried > out, in order for DLL inside the controller to lock, by reading a known > string/pattern. This is done by repeatedly reading CFI Query > Identification String. Calibration needs to be done before trying to detect > flash as part of CFI flash probe. > > HyperRAM is not supported at the moment. > > HyperBus specification can be found at[1] > HyperFlash datasheet can be found at[2] > > [1] https://www.cypress.com/file/213356/download > [2] https://www.cypress.com/file/213346/download > [3] http://www.ti.com/lit/ug/spruid7b/spruid7b.pdf > Table 12-5741. HyperFlash Access Sequence > > Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com> [...] > diff --git a/include/linux/mtd/hyperbus.h b/include/linux/mtd/hyperbus.h > new file mode 100644 > index 000000000000..ead969aad35b > --- /dev/null > +++ b/include/linux/mtd/hyperbus.h > @@ -0,0 +1,86 @@ [...] > +/** > + * struct hyperbus_ops - struct representing custom HyperBus operations > + * @read16: read 16 bit of data to flash in a single burst. Used to read s/to flash/from flash/. [...] > +#endif /* __LINUX_MTD_HYPERBUS_H__ */ I thought you agreed to add the #defines for the HF commands. Well, I can add them as well... MBR, Sergei
On 22/06/19 1:22 AM, Sergei Shtylyov wrote: > Hello! > > On 06/20/2019 08:22 PM, Vignesh Raghavendra wrote: > >> Cypress' HyperBus is Low Signal Count, High Performance Double Data Rate >> Bus interface between a host system master and one or more slave >> interfaces. HyperBus is used to connect microprocessor, microcontroller, >> or ASIC devices with random access NOR flash memory (called HyperFlash) >> or self refresh DRAM (called HyperRAM). >> >> Its a 8-bit data bus (DQ[7:0]) with Read-Write Data Strobe (RWDS) >> signal and either Single-ended clock(3.0V parts) or Differential clock >> (1.8V parts). It uses ChipSelect lines to select b/w multiple slaves. >> At bus level, it follows a separate protocol described in HyperBus >> specification[1]. >> >> HyperFlash follows CFI AMD/Fujitsu Extended Command Set (0x0002) similar >> to that of existing parallel NORs. Since HyperBus is x8 DDR bus, >> its equivalent to x16 parallel NOR flash wrt bits per clock cycle. But >> HyperBus operates at >166MHz frequencies. > > s/wrt/WRT/. OK [...] >> diff --git a/include/linux/mtd/hyperbus.h b/include/linux/mtd/hyperbus.h >> new file mode 100644 >> index 000000000000..ead969aad35b >> --- /dev/null >> +++ b/include/linux/mtd/hyperbus.h >> @@ -0,0 +1,86 @@ > [...] >> +/** >> + * struct hyperbus_ops - struct representing custom HyperBus operations >> + * @read16: read 16 bit of data to flash in a single burst. Used to read > > s/to flash/from flash/. > Will fix > [...] >> +#endif /* __LINUX_MTD_HYPERBUS_H__ */ > > I thought you agreed to add the #defines for the HF commands. Well, I can add them > as well... > Sorry, I thought you were proposing to add them to your driver's header file. Anyways, I think its better to add defines when there is an actual user. If there are no further comments, I will fixup things locally and queue up for next release.
Hi Vignesh, > > Subject > > [PATCH v7 3/5] mtd: Add support for HyperBus memory devices > > Cypress' HyperBus is Low Signal Count, High Performance Double Data Rate > Bus interface between a host system master and one or more slave > interfaces. HyperBus is used to connect microprocessor, microcontroller, > or ASIC devices with random access NOR flash memory (called HyperFlash) > or self refresh DRAM (called HyperRAM). > > Its a 8-bit data bus (DQ[7:0]) with Read-Write Data Strobe (RWDS) > signal and either Single-ended clock(3.0V parts) or Differential clock > (1.8V parts). It uses ChipSelect lines to select b/w multiple slaves. > At bus level, it follows a separate protocol described in HyperBus > specification[1]. > > HyperFlash follows CFI AMD/Fujitsu Extended Command Set (0x0002) similar > to that of existing parallel NORs. Since HyperBus is x8 DDR bus, > its equivalent to x16 parallel NOR flash wrt bits per clock cycle. But > HyperBus operates at >166MHz frequencies. > HyperRAM provides direct random read/write access to flash memory > array. > > But, HyperBus memory controllers seem to abstract implementation details > and expose a simple MMIO interface to access connected flash. > > Add support for registering HyperFlash devices with MTD framework. MTD > maps framework along with CFI chip support framework are used to support > communicating with flash. > > Framework is modelled along the lines of spi-nor framework. HyperBus > memory controller (HBMC) drivers calls hyperbus_register_device() to > register a single HyperFlash device. HyperFlash core parses MMIO access > information from DT, sets up the map_info struct, probes CFI flash and > registers it with MTD framework. > > Some HBMC masters need calibration/training sequence[3] to be carried > out, in order for DLL inside the controller to lock, by reading a known > string/pattern. This is done by repeatedly reading CFI Query > Identification String. Calibration needs to be done before trying to detect > flash as part of CFI flash probe. > > HyperRAM is not supported at the moment. > > HyperBus specification can be found at[1] > HyperFlash datasheet can be found at[2] > > [1] https://www.cypress.com/file/213356/download > [2] https://www.cypress.com/file/213346/download > [3] http://www.ti.com/lit/ug/spruid7b/spruid7b.pdf > Table 12-5741. HyperFlash Access Sequence > > Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com> Cypress has announced the inclusion of Cypress’ high-bandwidth HyperBus™ 8-bit serial memory interface into the new eXpanded SPI (xSPI) electrical interface standard from the JEDEC Solid State Technology Association for detail, please goes to https://www.cypress.com/news/cypress-hyperbus-memory-interface-instant-applications-incorporated-jedec-xspi-electrical FYI, thanks & best regards, Mason CONFIDENTIALITY NOTE: This e-mail and any attachments may contain confidential information and/or personal data, which is protected by applicable laws. Please be reminded that duplication, disclosure, distribution, or use of this e-mail (and/or its attachments) or any part thereof is prohibited. If you receive this e-mail in error, please notify us immediately and delete this mail as well as its attachment(s) from your system. In addition, please be informed that collection, processing, and/or use of personal data is prohibited unless expressly permitted by personal data protection laws. Thank you for your attention and cooperation. Macronix International Co., Ltd. ===================================================================== ============================================================================ CONFIDENTIALITY NOTE: This e-mail and any attachments may contain confidential information and/or personal data, which is protected by applicable laws. Please be reminded that duplication, disclosure, distribution, or use of this e-mail (and/or its attachments) or any part thereof is prohibited. If you receive this e-mail in error, please notify us immediately and delete this mail as well as its attachment(s) from your system. In addition, please be informed that collection, processing, and/or use of personal data is prohibited unless expressly permitted by personal data protection laws. Thank you for your attention and cooperation. Macronix International Co., Ltd. =====================================================================
On 26/06/19 6:46 AM, masonccyang@mxic.com.tw wrote: > Hi Vignesh, > >> >> Subject >> >> [PATCH v7 3/5] mtd: Add support for HyperBus memory devices >> >> Cypress' HyperBus is Low Signal Count, High Performance Double Data Rate >> Bus interface between a host system master and one or more slave >> interfaces. HyperBus is used to connect microprocessor, microcontroller, >> or ASIC devices with random access NOR flash memory (called HyperFlash) >> or self refresh DRAM (called HyperRAM). >> >> Its a 8-bit data bus (DQ[7:0]) with Read-Write Data Strobe (RWDS) >> signal and either Single-ended clock(3.0V parts) or Differential clock >> (1.8V parts). It uses ChipSelect lines to select b/w multiple slaves. >> At bus level, it follows a separate protocol described in HyperBus >> specification[1]. >> >> HyperFlash follows CFI AMD/Fujitsu Extended Command Set (0x0002) similar >> to that of existing parallel NORs. Since HyperBus is x8 DDR bus, >> its equivalent to x16 parallel NOR flash wrt bits per clock cycle. But >> HyperBus operates at >166MHz frequencies. >> HyperRAM provides direct random read/write access to flash memory >> array. >> >> But, HyperBus memory controllers seem to abstract implementation details >> and expose a simple MMIO interface to access connected flash. >> >> Add support for registering HyperFlash devices with MTD framework. MTD >> maps framework along with CFI chip support framework are used to support >> communicating with flash. >> >> Framework is modelled along the lines of spi-nor framework. HyperBus >> memory controller (HBMC) drivers calls hyperbus_register_device() to >> register a single HyperFlash device. HyperFlash core parses MMIO access >> information from DT, sets up the map_info struct, probes CFI flash and >> registers it with MTD framework. >> >> Some HBMC masters need calibration/training sequence[3] to be carried >> out, in order for DLL inside the controller to lock, by reading a known >> string/pattern. This is done by repeatedly reading CFI Query >> Identification String. Calibration needs to be done before trying to > detect >> flash as part of CFI flash probe. >> >> HyperRAM is not supported at the moment. >> >> HyperBus specification can be found at[1] >> HyperFlash datasheet can be found at[2] >> >> [1] https://www.cypress.com/file/213356/download >> [2] https://www.cypress.com/file/213346/download >> [3] http://www.ti.com/lit/ug/spruid7b/spruid7b.pdf >> Table 12-5741. HyperFlash Access Sequence >> >> Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com> > > Cypress has announced the inclusion of Cypress’ high-bandwidth > HyperBus™ 8-bit serial memory interface into the new eXpanded SPI (xSPI) > electrical interface standard from the JEDEC Solid State Technology > Association > > for detail, please goes to > https://www.cypress.com/news/cypress-hyperbus-memory-interface-instant-applications-incorporated-jedec-xspi-electrical > Thanks for the link! Announcement seems to be from March 2018 since then Cypress has published detailed HyperBus protocol in public domain . Comparing JEDEC xSPI specification and HyperBus protocol that Cypress has published, they seem to be following 8D-8D-8D Profile 2.0 with Extended Command Modifier of JEDEC xSPI spec. Did you see anything missing/different? I need to study xSPI spec in more detail, but seems like as long as we support HyperBus Protocol spec from Cypress we should be safe.
diff --git a/MAINTAINERS b/MAINTAINERS index ff7c2b7e67b9..58c6ad3dae66 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -7353,6 +7353,13 @@ F: include/asm-generic/mshyperv.h F: tools/hv/ F: Documentation/ABI/stable/sysfs-bus-vmbus +HYPERBUS SUPPORT +M: Vignesh Raghavendra <vigneshr@ti.com> +S: Supported +F: drivers/mtd/hyperbus/ +F: include/linux/mtd/hyperbus.h +F: Documentation/devicetree/bindings/mtd/cypress,hyperflash.txt + HYPERVISOR VIRTUAL CONSOLE DRIVER L: linuxppc-dev@lists.ozlabs.org S: Odd Fixes diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index fb31a7f649a3..80a6e2dcd085 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -274,4 +274,6 @@ source "drivers/mtd/spi-nor/Kconfig" source "drivers/mtd/ubi/Kconfig" +source "drivers/mtd/hyperbus/Kconfig" + endif # MTD diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile index 806287e80e84..62d649a959e2 100644 --- a/drivers/mtd/Makefile +++ b/drivers/mtd/Makefile @@ -34,3 +34,4 @@ obj-y += chips/ lpddr/ maps/ devices/ nand/ tests/ obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ obj-$(CONFIG_MTD_UBI) += ubi/ +obj-$(CONFIG_MTD_HYPERBUS) += hyperbus/ diff --git a/drivers/mtd/hyperbus/Kconfig b/drivers/mtd/hyperbus/Kconfig new file mode 100644 index 000000000000..98147e28caa0 --- /dev/null +++ b/drivers/mtd/hyperbus/Kconfig @@ -0,0 +1,11 @@ +menuconfig MTD_HYPERBUS + tristate "HyperBus support" + select MTD_CFI + select MTD_MAP_BANK_WIDTH_2 + select MTD_CFI_AMDSTD + select MTD_COMPLEX_MAPPINGS + help + This is the framework for the HyperBus which can be used by + the HyperBus Controller driver to communicate with + HyperFlash. See Cypress HyperBus specification for more + details diff --git a/drivers/mtd/hyperbus/Makefile b/drivers/mtd/hyperbus/Makefile new file mode 100644 index 000000000000..ca61dedd730d --- /dev/null +++ b/drivers/mtd/hyperbus/Makefile @@ -0,0 +1,3 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_MTD_HYPERBUS) += hyperbus-core.o diff --git a/drivers/mtd/hyperbus/hyperbus-core.c b/drivers/mtd/hyperbus/hyperbus-core.c new file mode 100644 index 000000000000..63a9e64895bc --- /dev/null +++ b/drivers/mtd/hyperbus/hyperbus-core.c @@ -0,0 +1,154 @@ +// SPDX-License-Identifier: GPL-2.0 +// +// Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/ +// Author: Vignesh Raghavendra <vigneshr@ti.com> + +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/hyperbus.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/types.h> + +static struct hyperbus_device *map_to_hbdev(struct map_info *map) +{ + return container_of(map, struct hyperbus_device, map); +} + +static map_word hyperbus_read16(struct map_info *map, unsigned long addr) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + map_word read_data; + + read_data.x[0] = ctlr->ops->read16(hbdev, addr); + + return read_data; +} + +static void hyperbus_write16(struct map_info *map, map_word d, + unsigned long addr) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + + ctlr->ops->write16(hbdev, addr, d.x[0]); +} + +static void hyperbus_copy_from(struct map_info *map, void *to, + unsigned long from, ssize_t len) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + + ctlr->ops->copy_from(hbdev, to, from, len); +} + +static void hyperbus_copy_to(struct map_info *map, unsigned long to, + const void *from, ssize_t len) +{ + struct hyperbus_device *hbdev = map_to_hbdev(map); + struct hyperbus_ctlr *ctlr = hbdev->ctlr; + + ctlr->ops->copy_to(hbdev, to, from, len); +} + +int hyperbus_register_device(struct hyperbus_device *hbdev) +{ + const struct hyperbus_ops *ops; + struct hyperbus_ctlr *ctlr; + struct device_node *np; + struct map_info *map; + struct resource res; + struct device *dev; + int ret; + + if (!hbdev || !hbdev->np || !hbdev->ctlr || !hbdev->ctlr->dev) { + pr_err("hyperbus: please fill all the necessary fields!\n"); + return -EINVAL; + } + + np = hbdev->np; + ctlr = hbdev->ctlr; + if (!of_device_is_compatible(np, "cypress,hyperflash")) + return -ENODEV; + + hbdev->memtype = HYPERFLASH; + + ret = of_address_to_resource(np, 0, &res); + if (ret) + return ret; + + dev = ctlr->dev; + map = &hbdev->map; + map->size = resource_size(&res); + map->virt = devm_ioremap_resource(dev, &res); + if (IS_ERR(map->virt)) + return PTR_ERR(map->virt); + + map->name = dev_name(dev); + map->bankwidth = 2; + map->device_node = np; + + simple_map_init(map); + ops = ctlr->ops; + if (ops) { + if (ops->read16) + map->read = hyperbus_read16; + if (ops->write16) + map->write = hyperbus_write16; + if (ops->copy_to) + map->copy_to = hyperbus_copy_to; + if (ops->copy_from) + map->copy_from = hyperbus_copy_from; + + if (ops->calibrate && !ctlr->calibrated) { + ret = ops->calibrate(hbdev); + if (!ret) { + dev_err(dev, "Calibration failed\n"); + return -ENODEV; + } + ctlr->calibrated = true; + } + } + + hbdev->mtd = do_map_probe("cfi_probe", map); + if (!hbdev->mtd) { + dev_err(dev, "probing of hyperbus device failed\n"); + return -ENODEV; + } + + hbdev->mtd->dev.parent = dev; + mtd_set_of_node(hbdev->mtd, np); + + ret = mtd_device_register(hbdev->mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device\n"); + map_destroy(hbdev->mtd); + return ret; + } + hbdev->registered = true; + + return 0; +} +EXPORT_SYMBOL_GPL(hyperbus_register_device); + +int hyperbus_unregister_device(struct hyperbus_device *hbdev) +{ + int ret = 0; + + if (hbdev && hbdev->mtd && hbdev->registered) { + ret = mtd_device_unregister(hbdev->mtd); + map_destroy(hbdev->mtd); + } + + return ret; +} +EXPORT_SYMBOL_GPL(hyperbus_unregister_device); + +MODULE_DESCRIPTION("HyperBus Framework"); +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); diff --git a/include/linux/mtd/hyperbus.h b/include/linux/mtd/hyperbus.h new file mode 100644 index 000000000000..ead969aad35b --- /dev/null +++ b/include/linux/mtd/hyperbus.h @@ -0,0 +1,86 @@ +/* SPDX-License-Identifier: GPL-2.0 + * + * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/ + */ + +#ifndef __LINUX_MTD_HYPERBUS_H__ +#define __LINUX_MTD_HYPERBUS_H__ + +#include <linux/mtd/map.h> + +enum hyperbus_memtype { + HYPERFLASH, + HYPERRAM, +}; + +/** + * struct hyperbus_device - struct representing HyperBus slave device + * @map: map_info struct for accessing MMIO HyperBus flash memory + * @np: pointer to HyperBus slave device node + * @mtd: pointer to MTD struct + * @ctlr: pointer to HyperBus controller struct + * @memtype: type of memory device: HyperFlash or HyperRAM + * @registered: flag to indicate whether device is registered with MTD core + */ + +struct hyperbus_device { + struct map_info map; + struct device_node *np; + struct mtd_info *mtd; + struct hyperbus_ctlr *ctlr; + enum hyperbus_memtype memtype; + bool registered; +}; + +/** + * struct hyperbus_ops - struct representing custom HyperBus operations + * @read16: read 16 bit of data to flash in a single burst. Used to read + * from non default address space, such as ID/CFI space + * @write16: write 16 bit of data to flash in a single burst. Used to + * send cmd to flash or write single 16 bit word at a time. + * @copy_from: copy data from flash memory + * @copy_to: copy data to flash memory + * @calibrate: calibrate HyperBus controller + */ + +struct hyperbus_ops { + u16 (*read16)(struct hyperbus_device *hbdev, unsigned long addr); + void (*write16)(struct hyperbus_device *hbdev, + unsigned long addr, u16 val); + void (*copy_from)(struct hyperbus_device *hbdev, void *to, + unsigned long from, ssize_t len); + void (*copy_to)(struct hyperbus_device *dev, unsigned long to, + const void *from, ssize_t len); + int (*calibrate)(struct hyperbus_device *dev); +}; + +/** + * struct hyperbus_ctlr - struct representing HyperBus controller + * @dev: pointer to HyperBus controller device + * @calibrated: flag to indicate ctlr calibration sequence is complete + * @ops: HyperBus controller ops + */ +struct hyperbus_ctlr { + struct device *dev; + bool calibrated; + + const struct hyperbus_ops *ops; +}; + +/** + * hyperbus_register_device - probe and register a HyperBus slave memory device + * @hbdev: hyperbus_device struct with dev, np and ctlr field populated + * + * Return: 0 for success, others for failure. + */ +int hyperbus_register_device(struct hyperbus_device *hbdev); + +/** + * hyperbus_unregister_device - deregister HyperBus slave memory device + * @hbdev: hyperbus_device to be unregistered + * + * Return: 0 for success, others for failure. + */ +int hyperbus_unregister_device(struct hyperbus_device *hbdev); + +#endif /* __LINUX_MTD_HYPERBUS_H__ */
Cypress' HyperBus is Low Signal Count, High Performance Double Data Rate Bus interface between a host system master and one or more slave interfaces. HyperBus is used to connect microprocessor, microcontroller, or ASIC devices with random access NOR flash memory (called HyperFlash) or self refresh DRAM (called HyperRAM). Its a 8-bit data bus (DQ[7:0]) with Read-Write Data Strobe (RWDS) signal and either Single-ended clock(3.0V parts) or Differential clock (1.8V parts). It uses ChipSelect lines to select b/w multiple slaves. At bus level, it follows a separate protocol described in HyperBus specification[1]. HyperFlash follows CFI AMD/Fujitsu Extended Command Set (0x0002) similar to that of existing parallel NORs. Since HyperBus is x8 DDR bus, its equivalent to x16 parallel NOR flash wrt bits per clock cycle. But HyperBus operates at >166MHz frequencies. HyperRAM provides direct random read/write access to flash memory array. But, HyperBus memory controllers seem to abstract implementation details and expose a simple MMIO interface to access connected flash. Add support for registering HyperFlash devices with MTD framework. MTD maps framework along with CFI chip support framework are used to support communicating with flash. Framework is modelled along the lines of spi-nor framework. HyperBus memory controller (HBMC) drivers calls hyperbus_register_device() to register a single HyperFlash device. HyperFlash core parses MMIO access information from DT, sets up the map_info struct, probes CFI flash and registers it with MTD framework. Some HBMC masters need calibration/training sequence[3] to be carried out, in order for DLL inside the controller to lock, by reading a known string/pattern. This is done by repeatedly reading CFI Query Identification String. Calibration needs to be done before trying to detect flash as part of CFI flash probe. HyperRAM is not supported at the moment. HyperBus specification can be found at[1] HyperFlash datasheet can be found at[2] [1] https://www.cypress.com/file/213356/download [2] https://www.cypress.com/file/213346/download [3] http://www.ti.com/lit/ug/spruid7b/spruid7b.pdf Table 12-5741. HyperFlash Access Sequence Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com> --- v7: No change v6: Clarify read16()/write16() APIs Move calibration code out into TI specific driver MAINTAINERS | 7 ++ drivers/mtd/Kconfig | 2 + drivers/mtd/Makefile | 1 + drivers/mtd/hyperbus/Kconfig | 11 ++ drivers/mtd/hyperbus/Makefile | 3 + drivers/mtd/hyperbus/hyperbus-core.c | 154 +++++++++++++++++++++++++++ include/linux/mtd/hyperbus.h | 86 +++++++++++++++ 7 files changed, 264 insertions(+) create mode 100644 drivers/mtd/hyperbus/Kconfig create mode 100644 drivers/mtd/hyperbus/Makefile create mode 100644 drivers/mtd/hyperbus/hyperbus-core.c create mode 100644 include/linux/mtd/hyperbus.h