@@ -54,6 +54,8 @@ cpucap_is_possible(const unsigned int cap)
return IS_ENABLED(CONFIG_ARM64_ERRATUM_2658417);
case ARM64_WORKAROUND_CAVIUM_23154:
return IS_ENABLED(CONFIG_CAVIUM_ERRATUM_23154);
+ case ARM64_WORKAROUND_NVIDIA_CARMEL_CNP:
+ return IS_ENABLED(CONFIG_NVIDIA_CARMEL_CNP_ERRATUM);
}
return true;
@@ -1628,7 +1628,7 @@ has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
if (is_kdump_kernel())
return false;
- if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
+ if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
return false;
return has_cpuid_feature(entry, scope);
In has_useable_cnp() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_NVIDIA_CARMEL_CNP, but this is not necessary and cpus_have_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. We use has_useable_cnp() to determine whether we have the system-wide ARM64_HAS_CNP cpucap. Due to the structure of the cpufeature code, we call has_useable_cnp() in two distinct cases: 1) When finalizing system capabilities, setup_system_capabilities() will call has_useable_cnp() with SCOPE_SYSTEM to determine whether all CPUs have the feature. This is called after we've detected any local cpucaps including ARM64_WORKAROUND_NVIDIA_CARMEL_CNP, but prior to patching alternatives. If the ARM64_WORKAROUND_NVIDIA_CARMEL_CNP was detected, we will not detect ARM64_HAS_CNP. 2) After finalizing system capabilties, verify_local_cpu_capabilities() will call has_useable_cnp() with SCOPE_LOCAL_CPU to verify that CPUs have CNP if we previously detected it. Note that if ARM64_WORKAROUND_NVIDIA_CARMEL_CNP was detected, we will not have detected ARM64_HAS_CNP. For case 1 we must check the system_cpucaps bitmap as this occurs prior to patching the alternatives. For case 2 we'll only call has_useable_cnp() once per subsequent onlining of a CPU, and as this isn't a fast path it's not necessary to optimize for this case. This patch replaces the use of cpus_have_const_cap() with cpus_have_cap(), which will only generate the bitmap test and avoid generating an alternative sequence, resulting in slightly simpler annd smaller code being generated. The ARM64_WORKAROUND_NVIDIA_CARMEL_CNP cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> --- arch/arm64/include/asm/cpucaps.h | 2 ++ arch/arm64/kernel/cpufeature.c | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-)