@@ -94,8 +94,22 @@ static struct sg_table *
secure_heap_map_dma_buf(struct dma_buf_attachment *attachment, enum dma_data_direction direction)
{
struct secure_heap_attachment *a = attachment->priv;
+ struct dma_buf *dmabuf = attachment->dmabuf;
+ struct secure_buffer *sec_buf = dmabuf->priv;
struct sg_table *table = a->table;
+ /*
+ * Technically dma_address refers to the address used by HW, But for secure buffer
+ * we don't know its dma_address in kernel, Instead, we only know its "secure handle".
+ * Thus use this property to save the "secure handle", and the user will use it to
+ * obtain the real address in secure world.
+ *
+ * Note: CONFIG_DMA_API_DEBUG requires it to be aligned with PAGE_SIZE.
+ */
+ if (sec_buf->secure_address) {
+ sg_dma_address(table->sgl) = sec_buf->secure_address;
+ sg_dma_len(table->sgl) = sec_buf->size;
+ }
return table;
}
@@ -106,6 +120,8 @@ secure_heap_unmap_dma_buf(struct dma_buf_attachment *attachment, struct sg_table
struct secure_heap_attachment *a = attachment->priv;
WARN_ON(a->table != table);
+ sg_dma_address(table->sgl) = 0;
+ sg_dma_len(table->sgl) = 0;
}
static int
@@ -11,6 +11,8 @@
struct secure_buffer {
struct dma_heap *heap;
size_t size;
+
+ u64 secure_address; /* A reference to the buffer in the secure world */
};
struct secure_heap {
@@ -25,6 +25,27 @@ enum mtk_secure_mem_type {
MTK_SECURE_MEMORY_TYPE_CM_TZ = 1,
};
+enum mtk_secure_buffer_tee_cmd {
+ /*
+ * Allocate the zeroed secure memory from TEE.
+ *
+ * [in] value[0].a: The buffer size.
+ * value[0].b: alignment.
+ * [in] value[1].a: enum mtk_secure_mem_type.
+ * [out] value[3].a: The secure handle.
+ */
+ MTK_TZCMD_SECMEM_ZALLOC = 0x10000, /* MTK TEE Command ID Base */
+
+ /*
+ * Free secure memory.
+ *
+ * [in] value[0].a: The secure handle of this buffer, It's value[3].a of
+ * MTK_TZCMD_SECMEM_ZALLOC.
+ * [out] value[1].a: return value, 0 means successful, otherwise fail.
+ */
+ MTK_TZCMD_SECMEM_FREE = 0x10001,
+};
+
struct mtk_secure_heap_data {
struct tee_context *tee_ctx;
u32 tee_session;
@@ -74,6 +95,73 @@ static int mtk_tee_session_init(struct mtk_secure_heap_data *data)
return ret;
}
+static int
+mtk_tee_service_call(struct tee_context *tee_ctx, u32 session,
+ unsigned int command, struct tee_param *params)
+{
+ struct tee_ioctl_invoke_arg arg = {0};
+ int ret;
+
+ arg.num_params = TEE_PARAM_NUM;
+ arg.session = session;
+ arg.func = command;
+
+ ret = tee_client_invoke_func(tee_ctx, &arg, params);
+ if (ret < 0 || arg.ret) {
+ pr_err("%s: cmd %d ret %d:%x.\n", __func__, command, ret, arg.ret);
+ ret = -EOPNOTSUPP;
+ }
+ return ret;
+}
+
+static int mtk_tee_secure_memory(struct secure_heap *sec_heap, struct secure_buffer *sec_buf)
+{
+ struct mtk_secure_heap_data *data = sec_heap->priv_data;
+ struct tee_param params[TEE_PARAM_NUM] = {0};
+ int ret;
+
+ params[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT;
+ params[0].u.value.a = sec_buf->size;
+ params[0].u.value.b = PAGE_SIZE;
+ params[1].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT;
+ params[1].u.value.a = data->mem_type;
+ params[2].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT;
+ params[3].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT;
+ ret = mtk_tee_service_call(data->tee_ctx, data->tee_session,
+ MTK_TZCMD_SECMEM_ZALLOC, params);
+ if (ret)
+ return -ENOMEM;
+
+ sec_buf->secure_address = params[3].u.value.a;
+ return 0;
+}
+
+static void mtk_tee_unsecure_memory(struct secure_heap *sec_heap, struct secure_buffer *sec_buf)
+{
+ struct mtk_secure_heap_data *data = sec_heap->priv_data;
+ struct tee_param params[TEE_PARAM_NUM] = {0};
+
+ params[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT;
+ params[0].u.value.a = sec_buf->secure_address;
+ params[1].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT;
+
+ mtk_tee_service_call(data->tee_ctx, data->tee_session,
+ MTK_TZCMD_SECMEM_FREE, params);
+ if (params[1].u.value.a)
+ pr_err("%s, unsecure buffer(0x%llx) fail(%lld) from TEE.\n",
+ sec_heap->name, sec_buf->secure_address, params[1].u.value.a);
+}
+
+static int mtk_secure_memory_allocate(struct secure_heap *sec_heap, struct secure_buffer *sec_buf)
+{
+ /* The memory allocating is within the TEE. */
+ return 0;
+}
+
+static void mtk_secure_memory_free(struct secure_heap *sec_heap, struct secure_buffer *sec_buf)
+{
+}
+
static int mtk_secure_heap_init(struct secure_heap *sec_heap)
{
struct mtk_secure_heap_data *data = sec_heap->priv_data;
@@ -85,6 +173,10 @@ static int mtk_secure_heap_init(struct secure_heap *sec_heap)
static const struct secure_heap_ops mtk_sec_mem_ops = {
.heap_init = mtk_secure_heap_init,
+ .memory_alloc = mtk_secure_memory_allocate,
+ .memory_free = mtk_secure_memory_free,
+ .secure_the_memory = mtk_tee_secure_memory,
+ .unsecure_the_memory = mtk_tee_unsecure_memory,
};
static struct mtk_secure_heap_data mtk_sec_heap_data = {
Add TEE service call for MediaTek heap. We have a limited number of hardware entries to protect memory, therefore we cannot protect memory arbitrarily, then our secure memory management is actually inside OPTEE. The kernel just tells the TEE what size I want and the TEE will return a "secure address". The secure_address is a reference to a secure buffer within TEE. We put it in the sg_dma_address, please see the comment in code. Signed-off-by: Yong Wu <yong.wu@mediatek.com> --- drivers/dma-buf/heaps/secure_heap.c | 16 +++++ drivers/dma-buf/heaps/secure_heap.h | 2 + drivers/dma-buf/heaps/secure_heap_mtk.c | 92 +++++++++++++++++++++++++ 3 files changed, 110 insertions(+)