@@ -454,6 +454,14 @@ config MTD_NAND_TS72XX
help
Enables support for NAND controller on ts72xx SBCs.
+config MTD_NAND_NUVOTON_MA35
+ tristate "Nuvoton MA35 SoC NAND controller"
+ depends on ARCH_MA35 || COMPILE_TEST
+ depends on OF
+ help
+ Enables support for the NAND controller found on
+ the Nuvoton MA35 series SoCs.
+
comment "Misc"
config MTD_SM_COMMON
@@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o
obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o
obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o
+obj-$(CONFIG_MTD_NAND_NUVOTON_MA35) += nuvoton-ma35d1-nand-controller.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
new file mode 100644
@@ -0,0 +1,932 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2024 Nuvoton Technology Corp.
+ */
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/* NFI Registers */
+#define MA35_NFI_REG_DMACTL 0x400
+#define DMA_EN BIT(0)
+#define DMA_RST BIT(1)
+#define DMA_BUSY BIT(9)
+
+#define MA35_NFI_REG_DMASA 0x408
+#define MA35_NFI_REG_GCTL 0x800
+#define GRST BIT(0)
+#define NAND_EN BIT(3)
+
+#define MA35_NFI_REG_NANDCTL 0x8A0
+#define SWRST BIT(0)
+#define DMA_R_EN BIT(1)
+#define DMA_W_EN BIT(2)
+#define ECC_CHK BIT(7)
+#define PROT3BEN BIT(8)
+#define PSIZE_2K BIT(16)
+#define PSIZE_4K BIT(17)
+#define PSIZE_8K GENMASK(17, 16)
+#define PSIZE_MASK GENMASK(17, 16)
+#define BCH_T24 BIT(18)
+#define BCH_T8 BIT(20)
+#define BCH_T12 BIT(21)
+#define BCH_NONE (0x0)
+#define BCH_MASK GENMASK(22, 18)
+#define ECC_EN BIT(23)
+#define DISABLE_CS0 BIT(25)
+
+#define MA35_NFI_REG_NANDINTEN 0x8A8
+#define MA35_NFI_REG_NANDINTSTS 0x8AC
+#define INT_DMA BIT(0)
+#define INT_ECC BIT(2)
+#define INT_RB0 BIT(10)
+
+#define MA35_NFI_REG_NANDCMD 0x8B0
+#define MA35_NFI_REG_NANDADDR 0x8B4
+#define ENDADDR BIT(31)
+
+#define MA35_NFI_REG_NANDDATA 0x8B8
+#define MA35_NFI_REG_NANDRACTL 0x8BC
+#define MA35_NFI_REG_NANDECTL 0x8C0
+#define ENABLE_WP 0x0
+#define DISABLE_WP BIT(0)
+
+#define MA35_NFI_REG_NANDECCES0 0x8D0
+#define ECC_STATUS_MASK GENMASK(1, 0)
+#define ECC_ERR_CNT_MASK GENMASK(4, 0)
+
+#define MA35_NFI_REG_NANDECCEA0 0x900
+#define MA35_NFI_REG_NANDECCED0 0x960
+#define MA35_NFI_REG_NANDRA0 0xA00
+
+/* Define for the BCH hardware ECC engine */
+/* define the total padding bytes for 512/1024 data segment */
+#define MA35_BCH_PADDING_512 32
+#define MA35_BCH_PADDING_1024 64
+/* define the BCH parity code length for 512 bytes data pattern */
+#define MA35_PARITY_BCH8 15
+#define MA35_PARITY_BCH12 23
+/* define the BCH parity code length for 1024 bytes data pattern */
+#define MA35_PARITY_BCH24 45
+
+#define MA35_MAX_NSELS (2)
+#define PREFIX_RA_IS_EMPTY(reg) FIELD_GET(GENMASK(31, 16), (reg))
+
+struct ma35_nand_chip {
+ struct list_head node;
+ struct nand_chip chip;
+
+ u32 nchunks;
+ u8 nsels;
+ u8 sels[] __counted_by(nsels);
+};
+
+struct ma35_nand_info {
+ struct nand_controller controller;
+ struct device *dev;
+ void __iomem *regs;
+ int irq;
+ struct clk *clk;
+ struct completion complete;
+ struct list_head chips;
+
+ unsigned long assigned_cs;
+};
+
+static inline struct ma35_nand_chip *to_ma35_nand(struct nand_chip *chip)
+{
+ return container_of(chip, struct ma35_nand_chip, chip);
+}
+
+static int ma35_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oob_region->length = chip->ecc.total;
+ oob_region->offset = mtd->oobsize - oob_region->length;
+
+ return 0;
+}
+
+static int ma35_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oob_region->length = mtd->oobsize - chip->ecc.total - 2;
+ oob_region->offset = 2;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops ma35_ooblayout_ops = {
+ .free = ma35_ooblayout_free,
+ .ecc = ma35_ooblayout_ecc,
+};
+
+static inline void ma35_clear_spare(struct nand_chip *chip, int size)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ int i;
+
+ for (i = 0; i < size / 4; i++)
+ writel(0xff, nand->regs + MA35_NFI_REG_NANDRA0);
+}
+
+static inline void read_remaining_bytes(struct ma35_nand_info *nand, u32 *buf,
+ u32 offset, int size)
+{
+ u32 value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset);
+ u8 *ptr = (u8 *)buf;
+ int i;
+
+ for (i = 0; i < size; i++)
+ ptr[i] = (value >> (i * 8)) & 0xff;
+}
+
+static inline void ma35_read_spare(struct nand_chip *chip, int size, u32 *buf, u32 offset)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ int i, j;
+
+ if ((offset % 4) == 0) {
+ for (i = 0, j = 0; i < size / 4; i++, j += 4)
+ *buf++ = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset + j);
+
+ read_remaining_bytes(nand, buf, offset + j, size % 4);
+ } else {
+ read_remaining_bytes(nand, buf, offset, 4 - (offset % 4));
+ offset += 4;
+ size -= (4 - (offset % 4));
+
+ for (i = 0, j = 0; i < size / 4; i++, j += 4)
+ *buf++ = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset + j);
+
+ read_remaining_bytes(nand, buf, offset + j, size % 4);
+ }
+}
+
+static inline void ma35_write_spare(struct nand_chip *chip, int size, u32 *buf)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ u32 value;
+ int i, j;
+ u8 *ptr;
+
+ for (i = 0, j = 0; i < size / 4; i++, j += 4)
+ writel(*buf++, nand->regs + MA35_NFI_REG_NANDRA0 + j);
+
+ ptr = (u8 *)buf;
+ switch (size % 4) {
+ case 1:
+ writel(*ptr, nand->regs + MA35_NFI_REG_NANDRA0 + j);
+ break;
+ case 2:
+ value = *ptr | (*(ptr+1) << 8);
+ writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j);
+ break;
+ case 3:
+ value = *ptr | (*(ptr+1) << 8) | (*(ptr+2) << 16);
+ writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j);
+ break;
+ default:
+ break;
+ }
+}
+
+static void ma35_nand_target_enable(struct nand_chip *chip, unsigned int cs)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ u32 reg;
+
+ switch (cs) {
+ case 0:
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
+ writel(reg & ~DISABLE_CS0, nand->regs + MA35_NFI_REG_NANDCTL);
+
+ reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
+ reg |= INT_RB0;
+ writel(reg, nand->regs + MA35_NFI_REG_NANDINTSTS);
+ break;
+ default:
+ break;
+ }
+}
+
+static int ma35_nand_hwecc_init(struct nand_chip *chip, struct ma35_nand_info *nand)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 reg;
+
+ /* Redundant area size */
+ writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
+
+ /* Protect redundant 3 bytes and disable ECC engine */
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
+ reg |= (PROT3BEN | ECC_CHK);
+ reg &= ~ECC_EN;
+
+ if (chip->ecc.strength != 0) {
+ chip->ecc.steps = mtd->writesize / chip->ecc.size;
+ /* Set BCH algorithm */
+ reg &= ~BCH_MASK;
+ switch (chip->ecc.strength) {
+ case 8:
+ chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH8;
+ reg |= BCH_T8;
+ break;
+ case 12:
+ chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH12;
+ reg |= BCH_T12;
+ break;
+ case 24:
+ chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH24;
+ reg |= BCH_T24;
+ break;
+ default:
+ dev_err(nand->dev, "ECC strength unsupported\n");
+ return -EINVAL;
+ }
+
+ chip->ecc.bytes = chip->ecc.total / chip->ecc.steps;
+ }
+ writel(reg, nand->regs + MA35_NFI_REG_NANDCTL);
+ return 0;
+}
+
+/* Correct data by BCH alrogithm */
+static void ma35_nfi_correct(struct nand_chip *chip, u8 index,
+ u8 err_cnt, u8 *addr)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ u32 temp_data[24], temp_addr[24];
+ u32 padding_len, parity_len;
+ u32 value, offset, remain;
+ u32 err_data[6];
+ u8 i, j;
+
+ /* Configurations */
+ if (chip->ecc.strength <= 8) {
+ parity_len = MA35_PARITY_BCH8;
+ padding_len = MA35_BCH_PADDING_512;
+ } else if (chip->ecc.strength <= 12) {
+ parity_len = MA35_PARITY_BCH12;
+ padding_len = MA35_BCH_PADDING_512;
+ } else if (chip->ecc.strength <= 24) {
+ parity_len = MA35_PARITY_BCH24;
+ padding_len = MA35_BCH_PADDING_1024;
+ } else {
+ dev_err(nand->dev, "Invalid BCH_TSEL = 0x%lx\n",
+ readl(nand->regs + MA35_NFI_REG_NANDCTL) & BCH_MASK);
+ return;
+ }
+
+ /*
+ * got valid BCH_ECC_DATAx and parse them to temp_data[]
+ * got the valid register number of BCH_ECC_DATAx since
+ * one register include 4 error bytes
+ */
+ j = (err_cnt + 3) / 4;
+ j = (j > 6) ? 6 : j;
+ for (i = 0; i < j; i++)
+ err_data[i] = readl(nand->regs + MA35_NFI_REG_NANDECCED0 + i * 4);
+
+ for (i = 0; i < j; i++) {
+ temp_data[i*4+0] = err_data[i] & 0xff;
+ temp_data[i*4+1] = (err_data[i] >> 8) & 0xff;
+ temp_data[i*4+2] = (err_data[i] >> 16) & 0xff;
+ temp_data[i*4+3] = (err_data[i] >> 24) & 0xff;
+ }
+
+ /*
+ * got valid REG_BCH_ECC_ADDRx and parse them to temp_addr[]
+ * got the valid register number of REG_BCH_ECC_ADDRx since
+ * one register include 2 error addresses
+ */
+ j = (err_cnt + 1) / 2;
+ j = (j > 12) ? 12 : j;
+ for (i = 0; i < j; i++) {
+ temp_addr[i*2+0] = readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4)
+ & 0x07ff;
+ temp_addr[i*2+1] = (readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4)
+ >> 16) & 0x07ff;
+ }
+
+ /* pointer to begin address of field that with data error */
+ addr += index * chip->ecc.steps;
+
+ /* correct each error bytes */
+ for (i = 0; i < err_cnt; i++) {
+ u32 corrected_index = temp_addr[i];
+
+ /* for wrong data in field */
+ if (corrected_index < chip->ecc.steps)
+ *(addr + corrected_index) ^= temp_data[i];
+
+ /* for wrong first-3-bytes in redundancy area */
+ else if (corrected_index < (chip->ecc.steps + 3)) {
+ corrected_index -= chip->ecc.steps;
+ temp_addr[i] += (parity_len * index); /* field offset */
+
+ value = readl(nand->regs + MA35_NFI_REG_NANDRA0);
+ value ^= temp_data[i] << (8 * corrected_index);
+ writel(value, nand->regs + MA35_NFI_REG_NANDRA0);
+ }
+ /*
+ * for wrong parity code in redundancy area
+ * BCH_ERR_ADDRx = [data in field] + [3 bytes] + [xx] + [parity code]
+ * |<-- padding bytes -->|
+ * The BCH_ERR_ADDRx for last parity code always = field size + padding size.
+ * So, the first parity code = field size + padding size - parity code length.
+ * For example, for BCH T12, the first parity code = 512 + 32 - 23 = 521.
+ * That is, error byte address offset within field is
+ */
+ else {
+ corrected_index -= (chip->ecc.steps + padding_len - parity_len);
+
+ /*
+ * final address = first parity code of first field +
+ * offset of fields +
+ * offset within field
+ */
+ offset = (readl(nand->regs + MA35_NFI_REG_NANDRACTL) & 0x1ff) -
+ (parity_len * chip->ecc.steps) +
+ (parity_len * index) + corrected_index;
+
+ remain = offset % 4;
+ value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain);
+ value ^= temp_data[i] << (8 * remain);
+ writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain);
+ }
+ }
+}
+
+static int ma35_nfi_ecc_check(struct nand_chip *chip, u8 *addr)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct ma35_nand_chip *nvtnand = to_ma35_nand(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int maxbitflips = 0;
+ int cnt = 0;
+ u32 status;
+ int i, j;
+
+ for (j = 0; j < nvtnand->nchunks; j++) {
+ status = readl(nand->regs + MA35_NFI_REG_NANDECCES0 + j * 4);
+ if (!status)
+ continue;
+
+ for (i = 0; i < 4; i++) {
+ if ((status & ECC_STATUS_MASK) == 0x01) {
+ /* Correctable error */
+ cnt = (status >> 2) & ECC_ERR_CNT_MASK;
+ ma35_nfi_correct(chip, j * 4 + i, cnt, addr);
+ maxbitflips = max_t(u32, maxbitflips, cnt);
+ mtd->ecc_stats.corrected += cnt;
+ } else {
+ /* Uncorrectable error */
+ mtd->ecc_stats.failed++;
+ dev_warn(nand->dev, "uncorrectable error! 0x%4x\n", status);
+ return -EBADMSG;
+ }
+ status >>= 8;
+ }
+ }
+ return maxbitflips;
+}
+
+static void ma35_nand_dmac_init(struct ma35_nand_info *nand)
+{
+ /* DMAC reset and enable */
+ writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
+ writel(DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
+
+ /* Clear DMA finished flag and enable */
+ writel(INT_DMA | INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS);
+ writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTEN);
+}
+
+static int ma35_nand_do_write(struct nand_chip *chip, const u8 *addr, u32 len)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ dma_addr_t dma_addr;
+ int ret = 0, i;
+ u32 reg;
+
+ if (len != mtd->writesize) {
+ for (i = 0; i < len; i++)
+ writel(addr[i], nand->regs + MA35_NFI_REG_NANDDATA);
+ return 0;
+ }
+
+ ma35_nand_dmac_init(nand);
+
+ writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
+
+ /* To mark this page as dirty. */
+ reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
+ if (reg & 0xffff0000)
+ writel(reg & 0xffff, nand->regs + MA35_NFI_REG_NANDRA0);
+
+ dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_TO_DEVICE);
+ ret = dma_mapping_error(nand->dev, dma_addr);
+ if (ret) {
+ dev_err(nand->dev, "dma mapping error\n");
+ return -EINVAL;
+ }
+ dma_sync_single_for_device(nand->dev, dma_addr, len, DMA_TO_DEVICE);
+
+ reinit_completion(&nand->complete);
+ writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA);
+ writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_W_EN,
+ nand->regs + MA35_NFI_REG_NANDCTL);
+ ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000));
+ if (!ret) {
+ dev_err(nand->dev, "write timeout\n");
+ ret = -ETIMEDOUT;
+ }
+
+ dma_unmap_single(nand->dev, dma_addr, len, DMA_TO_DEVICE);
+
+ return ret;
+}
+
+static int ma35_nand_do_read(struct nand_chip *chip, u8 *addr, u32 len)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret = 0, cnt = 0, i;
+ dma_addr_t dma_addr;
+ u32 reg;
+
+ if (len != mtd->writesize) {
+ for (i = 0; i < len; i++)
+ addr[i] = readb(nand->regs + MA35_NFI_REG_NANDDATA);
+ return 0;
+ }
+
+ ma35_nand_dmac_init(nand);
+
+ writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
+
+ /* Setup and start DMA using dma_addr */
+ dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_FROM_DEVICE);
+ ret = dma_mapping_error(nand->dev, dma_addr);
+ if (ret) {
+ dev_err(nand->dev, "dma mapping error\n");
+ return -EINVAL;
+ }
+
+ reinit_completion(&nand->complete);
+ writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA);
+ writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_R_EN,
+ nand->regs + MA35_NFI_REG_NANDCTL);
+ ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000));
+ if (!ret) {
+ dev_err(nand->dev, "read timeout\n");
+ ret = -ETIMEDOUT;
+ }
+
+ dma_unmap_single(nand->dev, dma_addr, len, DMA_FROM_DEVICE);
+
+ reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
+ if (reg & INT_ECC) {
+ cnt = ma35_nfi_ecc_check(chip, addr);
+ if (cnt < 0) {
+ writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
+ writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | SWRST,
+ nand->regs + MA35_NFI_REG_NANDCTL);
+ }
+ writel(INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS);
+ }
+
+ ret = ret < 0 ? ret : cnt;
+ return ret;
+}
+
+static int ma35_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 reg;
+
+ /* Enable HW ECC engine */
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
+ writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
+
+ ma35_nand_target_enable(chip, chip->cur_cs);
+
+ ma35_clear_spare(chip, mtd->oobsize);
+ ma35_write_spare(chip, mtd->oobsize - chip->ecc.total,
+ (u32 *)chip->oob_poi);
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ ma35_nand_do_write(chip, buf, mtd->writesize);
+ nand_prog_page_end_op(chip);
+
+ ma35_read_spare(chip, chip->ecc.total,
+ (u32 *)(chip->oob_poi + (mtd->oobsize - chip->ecc.total)),
+ mtd->oobsize - chip->ecc.total);
+
+ /* Disable HW ECC engine */
+ writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
+
+ return 0;
+}
+
+static int ma35_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int bitflips = 0;
+ u32 reg;
+
+ /* Enable HW ECC engine */
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
+ writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
+
+ ma35_nand_target_enable(chip, chip->cur_cs);
+ nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+ ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
+
+ reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
+ if (PREFIX_RA_IS_EMPTY(reg)) {
+ memset((void *)buf, 0xff, mtd->writesize);
+ } else {
+ nand_read_page_op(chip, page, 0, NULL, 0);
+ bitflips = ma35_nand_do_read(chip, buf, mtd->writesize);
+ ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0);
+ }
+
+ /* Disable HW ECC engine */
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
+ writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
+
+ return bitflips;
+}
+
+static int ma35_nand_read_oob_hwecc(struct nand_chip *chip, int page)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 reg;
+
+ ma35_nand_target_enable(chip, chip->cur_cs);
+ nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+
+ /* copy OOB data to controller redundant area for page read */
+ ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
+
+ reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
+ if (PREFIX_RA_IS_EMPTY(reg))
+ memset((void *)chip->oob_poi, 0xff, mtd->oobsize);
+
+ return 0;
+}
+
+static inline void ma35_hw_init(struct ma35_nand_info *nand)
+{
+ u32 reg;
+
+ /* Disable flash wp. */
+ writel(DISABLE_WP, nand->regs + MA35_NFI_REG_NANDECTL);
+
+ /* resets the internal state machine and counters */
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
+ reg |= SWRST;
+ writel(reg, nand->regs + MA35_NFI_REG_NANDCTL);
+}
+
+static irqreturn_t ma35_nand_irq(int irq, void *id)
+{
+ struct ma35_nand_info *nand = (struct ma35_nand_info *)id;
+ u32 isr;
+
+ isr = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
+ if (isr & INT_DMA) {
+ writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTSTS);
+ complete(&nand->complete);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int ma35_nand_attach_chip(struct nand_chip *chip)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ struct ma35_nand_chip *nvtnand = to_ma35_nand(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct device *dev = mtd->dev.parent;
+ u32 reg;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ dev_err(dev, "16 bits bus width not supported");
+ return -EINVAL;
+ }
+
+ nvtnand->nchunks = mtd->writesize / chip->ecc.steps;
+ nvtnand->nchunks = (nvtnand->nchunks < 4) ? 1 : nvtnand->nchunks / 4;
+
+ reg = readl(nand->regs + MA35_NFI_REG_NANDCTL) & (~PSIZE_MASK);
+ if (mtd->writesize == 2048)
+ writel(reg | PSIZE_2K, nand->regs + MA35_NFI_REG_NANDCTL);
+ else if (mtd->writesize == 4096)
+ writel(reg | PSIZE_4K, nand->regs + MA35_NFI_REG_NANDCTL);
+ else if (mtd->writesize == 8192)
+ writel(reg | PSIZE_8K, nand->regs + MA35_NFI_REG_NANDCTL);
+
+ switch (chip->ecc.engine_type) {
+ case NAND_ECC_ENGINE_TYPE_ON_HOST:
+ chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA;
+ chip->ecc.write_page = ma35_nand_write_page_hwecc;
+ chip->ecc.read_page = ma35_nand_read_page_hwecc;
+ chip->ecc.read_oob = ma35_nand_read_oob_hwecc;
+ return ma35_nand_hwecc_init(chip, nand);
+ case NAND_ECC_ENGINE_TYPE_NONE:
+ case NAND_ECC_ENGINE_TYPE_SOFT:
+ case NAND_ECC_ENGINE_TYPE_ON_DIE:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int ma35_nfc_exec_instr(struct nand_chip *chip,
+ const struct nand_op_instr *instr)
+{
+ struct ma35_nand_info *nand = nand_get_controller_data(chip);
+ unsigned int i;
+ int ret = 0;
+ u32 status;
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writel(instr->ctx.cmd.opcode, nand->regs + MA35_NFI_REG_NANDCMD);
+ break;
+ case NAND_OP_ADDR_INSTR:
+ for (i = 0; i < instr->ctx.addr.naddrs; i++) {
+ if (i == (instr->ctx.addr.naddrs - 1))
+ writel(instr->ctx.addr.addrs[i] | ENDADDR,
+ nand->regs + MA35_NFI_REG_NANDADDR);
+ else
+ writel(instr->ctx.addr.addrs[i],
+ nand->regs + MA35_NFI_REG_NANDADDR);
+ }
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ ret = ma35_nand_do_read(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
+ break;
+ case NAND_OP_DATA_OUT_INSTR:
+ ret = ma35_nand_do_write(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
+ break;
+ case NAND_OP_WAITRDY_INSTR:
+ return readl_poll_timeout(nand->regs + MA35_NFI_REG_NANDINTSTS, status,
+ status & INT_RB0, 20,
+ instr->ctx.waitrdy.timeout_ms * MSEC_PER_SEC);
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+static int ma35_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ int ret = 0;
+ u32 i;
+
+ if (check_only)
+ return 0;
+
+ ma35_nand_target_enable(chip, op->cs);
+
+ for (i = 0; i < op->ninstrs; i++) {
+ ret = ma35_nfc_exec_instr(chip, &op->instrs[i]);
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+static const struct nand_controller_ops ma35_nfc_ops = {
+ .attach_chip = ma35_nand_attach_chip,
+ .exec_op = ma35_nfc_exec_op,
+};
+
+static int ma35_nand_chip_init(struct device *dev, struct ma35_nand_info *nand,
+ struct device_node *np)
+{
+ struct ma35_nand_chip *nvtnand;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ int nsels;
+ u32 tmp;
+ int ret;
+ int i;
+
+ if (!of_get_property(np, "reg", &nsels))
+ return -ENODEV;
+
+ nsels /= sizeof(u32);
+ if (!nsels || nsels > MA35_MAX_NSELS) {
+ dev_err(dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ nvtnand = devm_kzalloc(dev, struct_size(nvtnand, sels, nsels),
+ GFP_KERNEL);
+ if (!nvtnand)
+ return -ENOMEM;
+
+ nvtnand->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &tmp);
+ if (ret) {
+ dev_err(dev, "reg property failure : %d\n", ret);
+ return ret;
+ }
+
+ if (tmp >= MA35_MAX_NSELS) {
+ dev_err(dev, "invalid CS: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(tmp, &nand->assigned_cs)) {
+ dev_err(dev, "CS %u already assigned\n", tmp);
+ return -EINVAL;
+ }
+
+ nvtnand->sels[i] = tmp;
+ }
+
+ chip = &nvtnand->chip;
+ chip->controller = &nand->controller;
+
+ nand_set_flash_node(chip, np);
+ nand_set_controller_data(chip, nand);
+
+ mtd = nand_to_mtd(chip);
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = dev;
+
+ mtd_set_ooblayout(mtd, &ma35_ooblayout_ops);
+ ret = nand_scan(chip, nsels);
+ if (ret)
+ return ret;
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "MTD parse partition error\n");
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ list_add_tail(&nvtnand->node, &nand->chips);
+
+ return 0;
+}
+
+static void ma35_chips_cleanup(struct ma35_nand_info *nand)
+{
+ struct ma35_nand_chip *nvtnand, *tmp;
+ struct nand_chip *chip;
+ int ret;
+
+ list_for_each_entry_safe(nvtnand, tmp, &nand->chips, node) {
+ chip = &nvtnand->chip;
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ list_del(&nvtnand->node);
+ }
+}
+
+static int ma35_nand_chips_init(struct device *dev, struct ma35_nand_info *nand)
+{
+ struct device_node *np = dev->of_node, *nand_np;
+ int nchips = of_get_child_count(np);
+ int ret;
+
+ if (!nchips || nchips > MA35_MAX_NSELS) {
+ dev_err(dev, "incorrect number of NAND chips (%d)\n", nchips);
+ return -EINVAL;
+ }
+
+ for_each_child_of_node(np, nand_np) {
+ ret = ma35_nand_chip_init(dev, nand, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ ma35_chips_cleanup(nand);
+ return ret;
+ }
+ }
+ return 0;
+}
+
+static int ma35_nand_probe(struct platform_device *pdev)
+{
+ struct ma35_nand_info *nand;
+ int ret = 0;
+
+ nand = devm_kzalloc(&pdev->dev, sizeof(*nand), GFP_KERNEL);
+ if (!nand)
+ return -ENOMEM;
+
+ nand_controller_init(&nand->controller);
+ INIT_LIST_HEAD(&nand->chips);
+ nand->controller.ops = &ma35_nfc_ops;
+
+ init_completion(&nand->complete);
+
+ nand->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nand->regs))
+ return PTR_ERR(nand->regs);
+
+ nand->dev = &pdev->dev;
+
+ nand->clk = devm_clk_get_enabled(&pdev->dev, "nand_gate");
+ if (IS_ERR(nand->clk))
+ return dev_err_probe(&pdev->dev, PTR_ERR(nand->clk),
+ "failed to find NAND clock\n");
+
+ nand->irq = platform_get_irq(pdev, 0);
+ if (nand->irq < 0)
+ return dev_err_probe(&pdev->dev, nand->irq,
+ "failed to get platform irq\n");
+
+ ret = devm_request_irq(&pdev->dev, nand->irq, ma35_nand_irq,
+ IRQF_TRIGGER_HIGH, "ma35d1-nand", nand);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to request NAND irq\n");
+ return -ENXIO;
+ }
+
+ platform_set_drvdata(pdev, nand);
+
+ writel(GRST | NAND_EN, nand->regs + MA35_NFI_REG_GCTL);
+ ma35_hw_init(nand);
+ ret = ma35_nand_chips_init(&pdev->dev, nand);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to init NAND chips\n");
+ clk_disable(nand->clk);
+ return ret;
+ }
+
+ return ret;
+}
+
+static void ma35_nand_remove(struct platform_device *pdev)
+{
+ struct ma35_nand_info *nand = platform_get_drvdata(pdev);
+
+ ma35_chips_cleanup(nand);
+}
+
+static const struct of_device_id ma35_nand_of_match[] = {
+ { .compatible = "nuvoton,ma35d1-nand" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, ma35_nand_of_match);
+
+static struct platform_driver ma35_nand_driver = {
+ .driver = {
+ .name = "ma35d1-nand",
+ .of_match_table = ma35_nand_of_match,
+ },
+ .probe = ma35_nand_probe,
+ .remove = ma35_nand_remove,
+};
+
+module_platform_driver(ma35_nand_driver);
+
+MODULE_DESCRIPTION("Nuvoton ma35 NAND driver");
+MODULE_AUTHOR("Hui-Ping Chen <hpchen0nvt@gmail.com>");
+MODULE_LICENSE("GPL");
Nuvoton MA35 SoCs NAND Flash Interface Controller supports 2kiB, 4kiB and 8kiB page size, and up to 8-bit, 12-bit, and 24-bit hardware ECC calculation circuit to protect data. Signed-off-by: Hui-Ping Chen <hpchen0nvt@gmail.com> --- drivers/mtd/nand/raw/Kconfig | 8 + drivers/mtd/nand/raw/Makefile | 1 + .../nand/raw/nuvoton-ma35d1-nand-controller.c | 932 ++++++++++++++++++ 3 files changed, 941 insertions(+) create mode 100644 drivers/mtd/nand/raw/nuvoton-ma35d1-nand-controller.c