@@ -47,7 +47,8 @@ extern void fpsimd_update_current_state(struct user_fpsimd_state const *state);
extern void fpsimd_kvm_prepare(void);
extern void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *state,
- void *sve_state, unsigned int sve_vl);
+ void *sve_state, unsigned int sve_vl,
+ enum fp_type *type);
extern void fpsimd_flush_task_state(struct task_struct *target);
extern void fpsimd_save_and_flush_cpu_state(void);
@@ -280,7 +280,19 @@ struct vcpu_reset_state {
struct kvm_vcpu_arch {
struct kvm_cpu_context ctxt;
+
+ /*
+ * Guest floating point state
+ *
+ * The architecture has two main floating point extensions,
+ * the original FPSIMD and SVE. These have overlapping
+ * register views, with the FPSIMD V registers occupying the
+ * low 128 bits of the SVE Z registers. When the core
+ * floating point code saves the register state of a task it
+ * records which view it saved in fp_type.
+ */
void *sve_state;
+ enum fp_type fp_type;
unsigned int sve_max_vl;
/* Stage 2 paging state used by the hardware on next switch */
@@ -115,6 +115,11 @@ struct debug_info {
#endif
};
+enum fp_type {
+ FP_STATE_FPSIMD,
+ FP_STATE_SVE,
+};
+
struct cpu_context {
unsigned long x19;
unsigned long x20;
@@ -145,6 +150,7 @@ struct thread_struct {
struct user_fpsimd_state fpsimd_state;
} uw;
+ enum fp_type fp_type; /* registers FPSIMD or SVE? */
unsigned int fpsimd_cpu;
void *sve_state; /* SVE registers, if any */
unsigned int sve_vl; /* SVE vector length */
@@ -117,6 +117,7 @@ struct fpsimd_last_state_struct {
struct user_fpsimd_state *st;
void *sve_state;
unsigned int sve_vl;
+ enum fp_type *fp_type;
};
static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
@@ -243,14 +244,6 @@ static void sve_free(struct task_struct *task)
* The task can execute SVE instructions while in userspace without
* trapping to the kernel.
*
- * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
- * corresponding Zn), P0-P15 and FFR are encoded in in
- * task->thread.sve_state, formatted appropriately for vector
- * length task->thread.sve_vl.
- *
- * task->thread.sve_state must point to a valid buffer at least
- * sve_state_size(task) bytes in size.
- *
* During any syscall, the kernel may optionally clear TIF_SVE and
* discard the vector state except for the FPSIMD subset.
*
@@ -260,7 +253,15 @@ static void sve_free(struct task_struct *task)
* do_sve_acc() to be called, which does some preparation and then
* sets TIF_SVE.
*
- * When stored, FPSIMD registers V0-V31 are encoded in
+ * During any syscall, the kernel may optionally clear TIF_SVE and
+ * discard the vector state except for the FPSIMD subset.
+ *
+ * The data will be stored in one of two formats:
+ *
+ * * FPSIMD only - FP_STATE_FPSIMD:
+ *
+ * When the FPSIMD only state stored task->thread.fp_type is set to
+ * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
* task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
* logically zero but not stored anywhere; P0-P15 and FFR are not
* stored and have unspecified values from userspace's point of
@@ -270,6 +271,19 @@ static void sve_free(struct task_struct *task)
* task->thread.sve_state does not need to be non-NULL, valid or any
* particular size: it must not be dereferenced.
*
+ * * SVE state - FP_STATE_SVE:
+ *
+ * When the full SVE state is stored task->thread.fp_type is set to
+ * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
+ * corresponding Zn), P0-P15 and FFR are encoded in in
+ * task->thread.sve_state, formatted appropriately for vector
+ * length task->thread.sve_vl or, if SVCR.SM is set,
+ * task->thread.sme_vl. The storage for the vector registers in
+ * task->thread.uw.fpsimd_state should be ignored.
+ *
+ * task->thread.sve_state must point to a valid buffer at least
+ * sve_state_size(task) bytes in size.
+ *
* * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
* irrespective of whether TIF_SVE is clear or set, since these are
* not vector length dependent.
@@ -287,12 +301,15 @@ static void task_fpsimd_load(void)
WARN_ON(!system_supports_fpsimd());
WARN_ON(!have_cpu_fpsimd_context());
- if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE))
+ if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
+ WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
sve_load_state(sve_pffr(¤t->thread),
¤t->thread.uw.fpsimd_state.fpsr,
sve_vq_from_vl(current->thread.sve_vl) - 1);
- else
+ } else {
+ WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
fpsimd_load_state(¤t->thread.uw.fpsimd_state);
+ }
}
/*
@@ -324,8 +341,11 @@ static void fpsimd_save(void)
sve_save_state((char *)last->sve_state +
sve_ffr_offset(last->sve_vl),
&last->st->fpsr);
- } else
+ *last->fp_type = FP_STATE_SVE;
+ } else {
fpsimd_save_state(last->st);
+ *last->fp_type = FP_STATE_FPSIMD;
+ }
}
}
@@ -624,8 +644,10 @@ int sve_set_vector_length(struct task_struct *task,
}
fpsimd_flush_task_state(task);
- if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
+ if (test_and_clear_tsk_thread_flag(task, TIF_SVE)) {
sve_to_fpsimd(task);
+ task->thread.fp_type = FP_STATE_FPSIMD;
+ }
if (task == current)
put_cpu_fpsimd_context();
@@ -1079,6 +1101,8 @@ void fpsimd_flush_thread(void)
current->thread.sve_vl_onexec = 0;
}
+ current->thread.fp_type = FP_STATE_FPSIMD;
+
put_cpu_fpsimd_context();
}
@@ -1125,8 +1149,10 @@ void fpsimd_kvm_prepare(void)
*/
get_cpu_fpsimd_context();
- if (test_and_clear_thread_flag(TIF_SVE))
+ if (test_and_clear_thread_flag(TIF_SVE)) {
sve_to_fpsimd(current);
+ current->thread.fp_type = FP_STATE_FPSIMD;
+ }
put_cpu_fpsimd_context();
}
@@ -1145,6 +1171,7 @@ static void fpsimd_bind_task_to_cpu(void)
last->st = ¤t->thread.uw.fpsimd_state;
last->sve_state = current->thread.sve_state;
last->sve_vl = current->thread.sve_vl;
+ last->fp_type = ¤t->thread.fp_type;
current->thread.fpsimd_cpu = smp_processor_id();
if (system_supports_sve()) {
@@ -1159,7 +1186,7 @@ static void fpsimd_bind_task_to_cpu(void)
}
void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
- unsigned int sve_vl)
+ unsigned int sve_vl, enum fp_type *type)
{
struct fpsimd_last_state_struct *last =
this_cpu_ptr(&fpsimd_last_state);
@@ -1170,6 +1197,7 @@ void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
last->st = st;
last->sve_state = sve_state;
last->sve_vl = sve_vl;
+ last->fp_type = type;
}
/*
@@ -307,6 +307,9 @@ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
dst->thread.sve_state = NULL;
clear_tsk_thread_flag(dst, TIF_SVE);
+
+ dst->thread.fp_type = FP_STATE_FPSIMD;
+
/* clear any pending asynchronous tag fault raised by the parent */
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
@@ -829,6 +829,7 @@ static int sve_set(struct task_struct *target,
ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
SVE_PT_FPSIMD_OFFSET);
clear_tsk_thread_flag(target, TIF_SVE);
+ target->thread.fp_type = FP_STATE_FPSIMD;
goto out;
}
@@ -848,6 +849,7 @@ static int sve_set(struct task_struct *target,
if (!target->thread.sve_state) {
ret = -ENOMEM;
clear_tsk_thread_flag(target, TIF_SVE);
+ target->thread.fp_type = FP_STATE_FPSIMD;
goto out;
}
@@ -858,6 +860,7 @@ static int sve_set(struct task_struct *target,
*/
fpsimd_sync_to_sve(target);
set_tsk_thread_flag(target, TIF_SVE);
+ target->thread.fp_type = FP_STATE_SVE;
BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
start = SVE_PT_SVE_OFFSET;
@@ -207,6 +207,7 @@ static int restore_fpsimd_context(struct fpsimd_context __user *ctx)
__get_user_error(fpsimd.fpcr, &ctx->fpcr, err);
clear_thread_flag(TIF_SVE);
+ current->thread.fp_type = FP_STATE_FPSIMD;
/* load the hardware registers from the fpsimd_state structure */
if (!err)
@@ -271,6 +272,7 @@ static int restore_sve_fpsimd_context(struct user_ctxs *user)
if (sve.head.size <= sizeof(*user->sve)) {
clear_thread_flag(TIF_SVE);
+ current->thread.fp_type = FP_STATE_FPSIMD;
goto fpsimd_only;
}
@@ -303,6 +305,7 @@ static int restore_sve_fpsimd_context(struct user_ctxs *user)
return -EFAULT;
set_thread_flag(TIF_SVE);
+ current->thread.fp_type = FP_STATE_SVE;
fpsimd_only:
/* copy the FP and status/control registers */
@@ -95,7 +95,8 @@ void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs,
vcpu->arch.sve_state,
- vcpu->arch.sve_max_vl);
+ vcpu->arch.sve_max_vl,
+ &vcpu->arch.fp_type);
clear_thread_flag(TIF_FOREIGN_FPSTATE);
update_thread_flag(TIF_SVE, vcpu_has_sve(vcpu));