@@ -584,6 +584,8 @@ static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
return ERR_PTR(-EAGAIN);
}
+ bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
+
return pgpath;
}
@@ -641,7 +643,6 @@ static int __multipath_map_bio(struct multipath *m, struct bio *bio,
bio->bi_status = 0;
bio_set_dev(bio, pgpath->path.dev->bdev);
- bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
if (pgpath->pg->ps.type->start_io)
pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
@@ -855,6 +856,8 @@ static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, char **
return 0;
}
+static void multipath_failover_rq(struct request *rq);
+
static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
struct dm_target *ti)
{
@@ -879,7 +882,10 @@ static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps
goto bad;
}
- if (m->queue_mode != DM_TYPE_NVME_BIO_BASED) {
+ if (m->queue_mode == DM_TYPE_NVME_BIO_BASED) {
+ struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
+ q->failover_rq_fn = multipath_failover_rq;
+ } else {
INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
if (setup_scsi_dh(p->path.dev->bdev, m, &ti->error)) {
dm_put_device(ti, p->path.dev);
@@ -1610,6 +1616,14 @@ static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
unsigned long flags;
int r = DM_ENDIO_DONE;
+ /*
+ * NVMe bio-based only needs to update path selector (on
+ * success or errors that NVMe deemed non-retryable)
+ * - retryable errors are handled by multipath_failover_rq
+ */
+ if (m->queue_mode == DM_TYPE_NVME_BIO_BASED)
+ goto done;
+
if (!*error || !retry_error(*error))
goto done;
@@ -1645,6 +1659,43 @@ static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
return r;
}
+/*
+ * multipath_failover_rq serves as a replacement for multipath_end_io_bio
+ * for all bios in a request with a retryable error.
+ */
+static void multipath_failover_rq(struct request *rq)
+{
+ struct dm_target *ti = dm_bio_get_target(rq->bio);
+ struct multipath *m = ti->private;
+ struct dm_mpath_io *mpio = get_mpio_from_bio(rq->bio);
+ struct pgpath *pgpath = mpio->pgpath;
+ unsigned long flags;
+
+ if (pgpath) {
+ struct path_selector *ps = &pgpath->pg->ps;
+
+ if (ps->type->end_io)
+ ps->type->end_io(ps, &pgpath->path, blk_rq_bytes(rq));
+
+ fail_path(pgpath);
+ }
+
+ if (atomic_read(&m->nr_valid_paths) == 0 &&
+ !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) &&
+ !must_push_back_bio(m)) {
+ dm_report_EIO(m);
+ blk_mq_end_request(rq, BLK_STS_IOERR);
+ return;
+ }
+
+ spin_lock_irqsave(&m->lock, flags);
+ blk_steal_bios(&m->queued_bios, rq);
+ spin_unlock_irqrestore(&m->lock, flags);
+ queue_work(kmultipathd, &m->process_queued_bios);
+
+ blk_mq_end_request(rq, 0);
+}
+
/*
* Suspend can't complete until all the I/O is processed so if
* the last path fails we must error any remaining I/O.
@@ -2029,12 +2080,25 @@ static int multipath_busy(struct dm_target *ti)
return busy;
}
+static void multipath_cleanup_device(struct dm_target *ti, struct dm_dev *dev)
+{
+ struct multipath *m = ti->private;
+ struct request_queue *q;
+
+ if (m->queue_mode != DM_TYPE_NVME_BIO_BASED)
+ return;
+
+ q = bdev_get_queue(dev->bdev);
+ if (q)
+ q->failover_rq_fn = NULL;
+}
+
/*-----------------------------------------------------------------
* Module setup
*---------------------------------------------------------------*/
static struct target_type multipath_target = {
.name = "multipath",
- .version = {1, 12, 0},
+ .version = {1, 13, 0},
.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
.module = THIS_MODULE,
.ctr = multipath_ctr,
@@ -2052,6 +2116,7 @@ static struct target_type multipath_target = {
.prepare_ioctl = multipath_prepare_ioctl,
.iterate_devices = multipath_iterate_devices,
.busy = multipath_busy,
+ .cleanup_device = multipath_cleanup_device,
};
static int __init dm_multipath_init(void)
@@ -517,6 +517,8 @@ void dm_put_device(struct dm_target *ti, struct dm_dev *d)
return;
}
if (refcount_dec_and_test(&dd->count)) {
+ if (ti->type->cleanup_device)
+ ti->type->cleanup_device(ti, d);
dm_put_table_device(ti->table->md, d);
list_del(&dd->list);
kfree(dd);
@@ -92,6 +92,8 @@ typedef int (*dm_message_fn) (struct dm_target *ti, unsigned argc, char **argv);
typedef int (*dm_prepare_ioctl_fn) (struct dm_target *ti,
struct block_device **bdev, fmode_t *mode);
+typedef void (*dm_cleanup_device_fn) (struct dm_target *ti, struct dm_dev *dev);
+
/*
* These iteration functions are typically used to check (and combine)
* properties of underlying devices.
@@ -181,6 +183,7 @@ struct target_type {
dm_message_fn message;
dm_prepare_ioctl_fn prepare_ioctl;
dm_busy_fn busy;
+ dm_cleanup_device_fn cleanup_device;
dm_iterate_devices_fn iterate_devices;
dm_io_hints_fn io_hints;
dm_dax_direct_access_fn direct_access;
Like NVMe's native multipath support, DM multipath's NVMe bio-based support now allows NVMe core's error handling to requeue an NVMe blk-mq request's bios onto DM multipath's queued_bios list for resubmission once fail_path() occurs. multipath_failover_rq() serves as a replacement for the traditional multipath_end_io_bio(). DM multipath's bio submission to NVMe must be done in terms that allow the reuse of NVMe core's error handling. The following care is taken to realize this reuse: - NVMe core won't attempt to retry an IO if it has REQ_FAILFAST_TRANSPORT set; so only set it in __map_bio(). - Setup underlying request_queue's 'failover_rq_fn' callback, to use multipath_failover_rq, so that NVMe blk-mq requests use it if/when NVMe core determines a request must be retried. (a new target_type 'cleanup_device' hook is established to properly reset each underlying requests_queue's 'failover_rq_fn' on final teardown of the multipath device) Signed-off-by: Mike Snitzer <snitzer@redhat.com> --- drivers/md/dm-mpath.c | 71 +++++++++++++++++++++++++++++++++++++++++-- drivers/md/dm-table.c | 2 ++ include/linux/device-mapper.h | 3 ++ 3 files changed, 73 insertions(+), 3 deletions(-)