From patchwork Mon May 7 21:01:33 2018 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Johannes Weiner X-Patchwork-Id: 10384839 Return-Path: Received: from mail.wl.linuxfoundation.org (pdx-wl-mail.web.codeaurora.org [172.30.200.125]) by pdx-korg-patchwork.web.codeaurora.org (Postfix) with ESMTP id 1AEC560548 for ; Mon, 7 May 2018 21:35:13 +0000 (UTC) Received: from mail.wl.linuxfoundation.org (localhost [127.0.0.1]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id 2044B200E7 for ; Mon, 7 May 2018 21:35:13 +0000 (UTC) Received: by mail.wl.linuxfoundation.org (Postfix, from userid 486) id 14A9428B5C; Mon, 7 May 2018 21:35:13 +0000 (UTC) X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on pdx-wl-mail.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-7.8 required=2.0 tests=BAYES_00,DKIM_SIGNED, MAILING_LIST_MULTI, RCVD_IN_DNSWL_HI, T_DKIM_INVALID autolearn=ham version=3.3.1 Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id 8C699200E7 for ; Mon, 7 May 2018 21:35:12 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1753031AbeEGVfK (ORCPT ); Mon, 7 May 2018 17:35:10 -0400 Received: from gum.cmpxchg.org ([85.214.110.215]:49702 "EHLO gum.cmpxchg.org" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1752841AbeEGVfI (ORCPT ); Mon, 7 May 2018 17:35:08 -0400 DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=cmpxchg.org ; s=x; h=References:In-Reply-To:Message-Id:Date:Subject:Cc:To:From:Sender: Reply-To:MIME-Version:Content-Type:Content-Transfer-Encoding:Content-ID: Content-Description:Resent-Date:Resent-From:Resent-Sender:Resent-To:Resent-Cc :Resent-Message-ID:List-Id:List-Help:List-Unsubscribe:List-Subscribe: List-Post:List-Owner:List-Archive; bh=Q9tf/aX05pddBBcSMfINSla3wt3pXRBjeLsf3chgvp0=; b=RmO+/FrVyVnL4yCOTItqEvd/iQ TGGGSTEsRQ1CxTOcEQiZ3iirslPVfEJ7qRa4kuQrHpSJNkYyvmfB+aPVMuLJ1up072cko4HSeeRKb 4BFouTtFYiN1UEWLsvwNwkfgi6de3ORl416bznDbdKbHd0diyBd4GuS59OU94E4trpyY=; From: Johannes Weiner To: linux-kernel@vger.kernel.org, linux-mm@kvack.org, linux-block@vger.kernel.org, cgroups@vger.kernel.org Cc: Ingo Molnar , Peter Zijlstra , Andrew Morton , Tejun Heo , Balbir Singh , Mike Galbraith , Oliver Yang , Shakeel Butt , xxx xxx , Taras Kondratiuk , Daniel Walker , Vinayak Menon , Ruslan Ruslichenko , kernel-team@fb.com Subject: [PATCH 5/7] sched: loadavg: make calc_load_n() public Date: Mon, 7 May 2018 17:01:33 -0400 Message-Id: <20180507210135.1823-6-hannes@cmpxchg.org> X-Mailer: git-send-email 2.17.0 In-Reply-To: <20180507210135.1823-1-hannes@cmpxchg.org> References: <20180507210135.1823-1-hannes@cmpxchg.org> Sender: linux-block-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-block@vger.kernel.org X-Virus-Scanned: ClamAV using ClamSMTP It's going to be used in the following patch. Keep the churn separate. Signed-off-by: Johannes Weiner --- include/linux/sched/loadavg.h | 69 +++++++++++++++++++++++++++++++++++ kernel/sched/loadavg.c | 69 ----------------------------------- 2 files changed, 69 insertions(+), 69 deletions(-) diff --git a/include/linux/sched/loadavg.h b/include/linux/sched/loadavg.h index cc9cc62bb1f8..0e4c24978751 100644 --- a/include/linux/sched/loadavg.h +++ b/include/linux/sched/loadavg.h @@ -37,6 +37,75 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) return newload / FIXED_1; } +/** + * fixed_power_int - compute: x^n, in O(log n) time + * + * @x: base of the power + * @frac_bits: fractional bits of @x + * @n: power to raise @x to. + * + * By exploiting the relation between the definition of the natural power + * function: x^n := x*x*...*x (x multiplied by itself for n times), and + * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, + * (where: n_i \elem {0, 1}, the binary vector representing n), + * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is + * of course trivially computable in O(log_2 n), the length of our binary + * vector. + */ +static inline unsigned long +fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) +{ + unsigned long result = 1UL << frac_bits; + + if (n) { + for (;;) { + if (n & 1) { + result *= x; + result += 1UL << (frac_bits - 1); + result >>= frac_bits; + } + n >>= 1; + if (!n) + break; + x *= x; + x += 1UL << (frac_bits - 1); + x >>= frac_bits; + } + } + + return result; +} + +/* + * a1 = a0 * e + a * (1 - e) + * + * a2 = a1 * e + a * (1 - e) + * = (a0 * e + a * (1 - e)) * e + a * (1 - e) + * = a0 * e^2 + a * (1 - e) * (1 + e) + * + * a3 = a2 * e + a * (1 - e) + * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) + * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) + * + * ... + * + * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] + * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) + * = a0 * e^n + a * (1 - e^n) + * + * [1] application of the geometric series: + * + * n 1 - x^(n+1) + * S_n := \Sum x^i = ------------- + * i=0 1 - x + */ +static inline unsigned long +calc_load_n(unsigned long load, unsigned long exp, + unsigned long active, unsigned int n) +{ + return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); +} + #define LOAD_INT(x) ((x) >> FSHIFT) #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c index 54fbdfb2d86c..0736e349a54e 100644 --- a/kernel/sched/loadavg.c +++ b/kernel/sched/loadavg.c @@ -210,75 +210,6 @@ static long calc_load_nohz_fold(void) return delta; } -/** - * fixed_power_int - compute: x^n, in O(log n) time - * - * @x: base of the power - * @frac_bits: fractional bits of @x - * @n: power to raise @x to. - * - * By exploiting the relation between the definition of the natural power - * function: x^n := x*x*...*x (x multiplied by itself for n times), and - * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, - * (where: n_i \elem {0, 1}, the binary vector representing n), - * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is - * of course trivially computable in O(log_2 n), the length of our binary - * vector. - */ -static unsigned long -fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) -{ - unsigned long result = 1UL << frac_bits; - - if (n) { - for (;;) { - if (n & 1) { - result *= x; - result += 1UL << (frac_bits - 1); - result >>= frac_bits; - } - n >>= 1; - if (!n) - break; - x *= x; - x += 1UL << (frac_bits - 1); - x >>= frac_bits; - } - } - - return result; -} - -/* - * a1 = a0 * e + a * (1 - e) - * - * a2 = a1 * e + a * (1 - e) - * = (a0 * e + a * (1 - e)) * e + a * (1 - e) - * = a0 * e^2 + a * (1 - e) * (1 + e) - * - * a3 = a2 * e + a * (1 - e) - * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) - * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) - * - * ... - * - * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] - * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) - * = a0 * e^n + a * (1 - e^n) - * - * [1] application of the geometric series: - * - * n 1 - x^(n+1) - * S_n := \Sum x^i = ------------- - * i=0 1 - x - */ -static unsigned long -calc_load_n(unsigned long load, unsigned long exp, - unsigned long active, unsigned int n) -{ - return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); -} - /* * NO_HZ can leave us missing all per-CPU ticks calling * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into