From patchwork Wed Oct 30 22:49:16 2019 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: John Hubbard X-Patchwork-Id: 11220421 Return-Path: Received: from mail.kernel.org (pdx-korg-mail-1.web.codeaurora.org [172.30.200.123]) by pdx-korg-patchwork-2.web.codeaurora.org (Postfix) with ESMTP id 9751B14DB for ; Wed, 30 Oct 2019 22:52:51 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.kernel.org (Postfix) with ESMTP id 55A472087F for ; Wed, 30 Oct 2019 22:52:51 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=pass (2048-bit key) header.d=nvidia.com header.i=@nvidia.com header.b="nDqCtGuN" Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1727643AbfJ3Wtq (ORCPT ); Wed, 30 Oct 2019 18:49:46 -0400 Received: from hqemgate15.nvidia.com ([216.228.121.64]:5252 "EHLO hqemgate15.nvidia.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1727614AbfJ3Wtp (ORCPT ); Wed, 30 Oct 2019 18:49:45 -0400 Received: from hqpgpgate101.nvidia.com (Not Verified[216.228.121.13]) by hqemgate15.nvidia.com (using TLS: TLSv1.2, DES-CBC3-SHA) id ; Wed, 30 Oct 2019 15:49:48 -0700 Received: from hqmail.nvidia.com ([172.20.161.6]) by hqpgpgate101.nvidia.com (PGP Universal service); Wed, 30 Oct 2019 15:49:41 -0700 X-PGP-Universal: processed; by hqpgpgate101.nvidia.com on Wed, 30 Oct 2019 15:49:41 -0700 Received: from HQMAIL101.nvidia.com (172.20.187.10) by HQMAIL101.nvidia.com (172.20.187.10) with Microsoft SMTP Server (TLS) id 15.0.1473.3; Wed, 30 Oct 2019 22:49:40 +0000 Received: from rnnvemgw01.nvidia.com (10.128.109.123) by HQMAIL101.nvidia.com (172.20.187.10) with Microsoft SMTP Server (TLS) id 15.0.1473.3 via Frontend Transport; Wed, 30 Oct 2019 22:49:39 +0000 Received: from blueforge.nvidia.com (Not Verified[10.110.48.28]) by rnnvemgw01.nvidia.com with Trustwave SEG (v7,5,8,10121) id ; Wed, 30 Oct 2019 15:49:39 -0700 From: John Hubbard To: Andrew Morton CC: Al Viro , Alex Williamson , Benjamin Herrenschmidt , =?utf-8?b?QmrDtnJuIFQ=?= =?utf-8?b?w7ZwZWw=?= , Christoph Hellwig , Dan Williams , Daniel Vetter , Dave Chinner , David Airlie , "David S . Miller" , Ira Weiny , Jan Kara , Jason Gunthorpe , Jens Axboe , Jonathan Corbet , =?utf-8?b?SsOpcsO0bWUgR2xpc3Nl?= , Magnus Karlsson , Mauro Carvalho Chehab , Michael Ellerman , Michal Hocko , Mike Kravetz , Paul Mackerras , Shuah Khan , Vlastimil Babka , , , , , , , , , , , , , LKML , John Hubbard Subject: [PATCH 05/19] mm/gup: introduce pin_user_pages*() and FOLL_PIN Date: Wed, 30 Oct 2019 15:49:16 -0700 Message-ID: <20191030224930.3990755-6-jhubbard@nvidia.com> X-Mailer: git-send-email 2.23.0 In-Reply-To: <20191030224930.3990755-1-jhubbard@nvidia.com> References: <20191030224930.3990755-1-jhubbard@nvidia.com> MIME-Version: 1.0 X-NVConfidentiality: public DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=nvidia.com; s=n1; t=1572475788; bh=q+XLxTTs3VV9NQYlAIix1/xq2y74kPKr4+k38NlDVWo=; h=X-PGP-Universal:From:To:CC:Subject:Date:Message-ID:X-Mailer: In-Reply-To:References:MIME-Version:X-NVConfidentiality: Content-Transfer-Encoding:Content-Type; b=nDqCtGuNSvvDejx1vtY8xGgFUondHPHr+I+PvmvPI6LppRpXTXHrtb7uWRivWS9t6 4gF30LMcvxWujS+tccoegXL9+UAT8EcFEFJUzGwdMv7TO7uBB0pLyNV7K9kp4jNRTU KDw+KtQ6QpNILKiYWF7MADvsWEEcuISGTEcz1HM9CeQiMQSGUiott2qrunFLPKNFrY Ez3OuvWjeNqJUnEYJmm2FgcNA4VgmPRn9Om7+tLBDnD0yeaO+tuo/gfBWGhIMT+G9z nnSdDH5Y49JsX2G0spTf1fTfOpf2z/AbZxhgx3kJL9MUrCsqp58qgzhjBjY4/EhBAc W7g6XMs0i1myQ== Sender: linux-block-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-block@vger.kernel.org Introduce pin_user_pages*() variations of get_user_pages*() calls, and also pin_longterm_pages*() variations. These variants all set FOLL_PIN, which is also introduced, and basically documented. (An upcoming patch provides more extensive documentation.) The second set (pin_longterm*) also sets FOLL_LONGTERM: pin_user_pages() pin_user_pages_remote() pin_user_pages_fast() pin_longterm_pages() pin_longterm_pages_remote() pin_longterm_pages_fast() All pages that are pinned via the above calls, must be unpinned via put_user_page(). The underlying rules are: * These are gup-internal flags, so the call sites should not directly set FOLL_PIN nor FOLL_LONGTERM. That behavior is enforced with assertions, for the new FOLL_PIN flag. However, for the pre-existing FOLL_LONGTERM flag, which has some call sites that still directly set FOLL_LONGTERM, there is no assertion yet. * Call sites that want to indicate that they are going to do DirectIO ("DIO") or something with similar characteristics, should call a get_user_pages()-like wrapper call that sets FOLL_PIN. These wrappers will: * Start with "pin_user_pages" instead of "get_user_pages". That makes it easy to find and audit the call sites. * Set FOLL_PIN * For pages that are received via FOLL_PIN, those pages must be returned via put_user_page(). Signed-off-by: John Hubbard --- include/linux/mm.h | 53 ++++++++- mm/gup.c | 284 +++++++++++++++++++++++++++++++++++++++++---- 2 files changed, 311 insertions(+), 26 deletions(-) diff --git a/include/linux/mm.h b/include/linux/mm.h index cc292273e6ba..62c838a3e6c7 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -1526,9 +1526,23 @@ long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); +long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas, int *locked); +long pin_longterm_pages_remote(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas, int *locked); long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); +long pin_user_pages(unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas); +long pin_longterm_pages(unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas); long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, @@ -1536,6 +1550,10 @@ long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); +int pin_user_pages_fast(unsigned long start, int nr_pages, + unsigned int gup_flags, struct page **pages); +int pin_longterm_pages_fast(unsigned long start, int nr_pages, + unsigned int gup_flags, struct page **pages); int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, @@ -2594,13 +2612,15 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, #define FOLL_ANON 0x8000 /* don't do file mappings */ #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ +#define FOLL_PIN 0x40000 /* pages must be released via put_user_page() */ /* - * NOTE on FOLL_LONGTERM: + * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each + * other. Here is what they mean, and how to use them: * * FOLL_LONGTERM indicates that the page will be held for an indefinite time - * period _often_ under userspace control. This is contrasted with - * iov_iter_get_pages() where usages which are transient. + * period _often_ under userspace control. This is in contrast to + * iov_iter_get_pages(), where usages which are transient. * * FIXME: For pages which are part of a filesystem, mappings are subject to the * lifetime enforced by the filesystem and we need guarantees that longterm @@ -2615,11 +2635,32 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, * Currently only get_user_pages() and get_user_pages_fast() support this flag * and calls to get_user_pages_[un]locked are specifically not allowed. This * is due to an incompatibility with the FS DAX check and - * FAULT_FLAG_ALLOW_RETRY + * FAULT_FLAG_ALLOW_RETRY. * - * In the CMA case: longterm pins in a CMA region would unnecessarily fragment - * that region. And so CMA attempts to migrate the page before pinning when + * In the CMA case: long term pins in a CMA region would unnecessarily fragment + * that region. And so, CMA attempts to migrate the page before pinning, when * FOLL_LONGTERM is specified. + * + * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, + * but an additional pin counting system) will be invoked. This is intended for + * anything that gets a page reference and then touches page data (for example, + * Direct IO). This lets the filesystem know that some non-file-system entity is + * potentially changing the pages' data. In contrast to FOLL_GET (whose pages + * are released via put_page()), FOLL_PIN pages must be released, ultimately, by + * a call to put_user_page(). + * + * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different + * and separate refcounting mechanisms, however, and that means that each has + * its own acquire and release mechanisms: + * + * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. + * + * FOLL_PIN: pin_user_pages*() or pin_longterm_pages*() to acquire, and + * put_user_pages to release. + * + * FOLL_PIN and FOLL_GET are mutually exclusive. + * + * Please see Documentation/vm/pin_user_pages.rst for more information. */ static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) diff --git a/mm/gup.c b/mm/gup.c index 8fb0d9cdfaf5..8694bc7b3df3 100644 --- a/mm/gup.c +++ b/mm/gup.c @@ -179,6 +179,10 @@ static struct page *follow_page_pte(struct vm_area_struct *vma, spinlock_t *ptl; pte_t *ptep, pte; + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == + (FOLL_PIN | FOLL_GET))) + return ERR_PTR(-EINVAL); retry: if (unlikely(pmd_bad(*pmd))) return no_page_table(vma, flags); @@ -790,7 +794,7 @@ static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, start = untagged_addr(start); - VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); + VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); /* * If FOLL_FORCE is set then do not force a full fault as the hinting @@ -1014,7 +1018,16 @@ static __always_inline long __get_user_pages_locked(struct task_struct *tsk, BUG_ON(*locked != 1); } - if (pages) + /* + * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior + * is to set FOLL_GET if the caller wants pages[] filled in (but has + * carelessly failed to specify FOLL_GET), so keep doing that, but only + * for FOLL_GET, not for the newer FOLL_PIN. + * + * FOLL_PIN always expects pages to be non-null, but no need to assert + * that here, as any failures will be obvious enough. + */ + if (pages && !(flags & FOLL_PIN)) flags |= FOLL_GET; pages_done = 0; @@ -1133,6 +1146,12 @@ static __always_inline long __get_user_pages_locked(struct task_struct *tsk, * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must * be called after the page is finished with, and before put_page is called. * + * A note on gup_flags: FOLL_PIN must only be set internally by the + * pin_user_page*() and pin_longterm_*() APIs, never directly by the caller. + * That's in order to help avoid mismatches when releasing pages: + * get_user_pages*() pages must be released via put_page(), while + * pin_user_pages*() pages must be released via put_user_page(). + * * get_user_pages is typically used for fewer-copy IO operations, to get a * handle on the memory by some means other than accesses via the user virtual * addresses. The pages may be submitted for DMA to devices or accessed via @@ -1151,6 +1170,14 @@ long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked) { + /* + * As detailed above, FOLL_PIN must only be set internally by the + * pin_user_page*() and pin_longterm_*() APIs, never directly by the + * caller, so enforce that with an assertion: + */ + if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) + return -EINVAL; + /* * FIXME: Current FOLL_LONGTERM behavior is incompatible with * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on @@ -1603,11 +1630,25 @@ static __always_inline long __gup_longterm_locked(struct task_struct *tsk, * and mm being operated on are the current task's and don't allow * passing of a locked parameter. We also obviously don't pass * FOLL_REMOTE in here. + * + * A note on gup_flags: FOLL_PIN should only be set internally by the + * pin_user_page*() and pin_longterm_*() APIs, never directly by the caller. + * That's in order to help avoid mismatches when releasing pages: + * get_user_pages*() pages must be released via put_page(), while + * pin_user_pages*() pages must be released via put_user_page(). */ long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas) { + /* + * As detailed above, FOLL_PIN must only be set internally by the + * pin_user_page*() and pin_longterm_*() APIs, never directly by the + * caller, so enforce that with an assertion: + */ + if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) + return -EINVAL; + return __gup_longterm_locked(current, current->mm, start, nr_pages, pages, vmas, gup_flags | FOLL_TOUCH); } @@ -2366,24 +2407,9 @@ static int __gup_longterm_unlocked(unsigned long start, int nr_pages, return ret; } -/** - * get_user_pages_fast() - pin user pages in memory - * @start: starting user address - * @nr_pages: number of pages from start to pin - * @gup_flags: flags modifying pin behaviour - * @pages: array that receives pointers to the pages pinned. - * Should be at least nr_pages long. - * - * Attempt to pin user pages in memory without taking mm->mmap_sem. - * If not successful, it will fall back to taking the lock and - * calling get_user_pages(). - * - * Returns number of pages pinned. This may be fewer than the number - * requested. If nr_pages is 0 or negative, returns 0. If no pages - * were pinned, returns -errno. - */ -int get_user_pages_fast(unsigned long start, int nr_pages, - unsigned int gup_flags, struct page **pages) +static int internal_get_user_pages_fast(unsigned long start, int nr_pages, + unsigned int gup_flags, + struct page **pages) { unsigned long addr, len, end; int nr = 0, ret = 0; @@ -2428,4 +2454,222 @@ int get_user_pages_fast(unsigned long start, int nr_pages, return ret; } + +/** + * get_user_pages_fast() - pin user pages in memory + * @start: starting user address + * @nr_pages: number of pages from start to pin + * @gup_flags: flags modifying pin behaviour + * @pages: array that receives pointers to the pages pinned. + * Should be at least nr_pages long. + * + * Attempt to pin user pages in memory without taking mm->mmap_sem. + * If not successful, it will fall back to taking the lock and + * calling get_user_pages(). + * + * A note on gup_flags: FOLL_PIN must only be set internally by the + * pin_user_page*() and pin_longterm_*() APIs, never directly by the caller. + * That's in order to help avoid mismatches when releasing pages: + * get_user_pages*() pages must be released via put_page(), while + * pin_user_pages*() pages must be released via put_user_page(). + * + * Returns number of pages pinned. This may be fewer than the number requested. + * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns + * -errno. + */ +int get_user_pages_fast(unsigned long start, int nr_pages, + unsigned int gup_flags, struct page **pages) +{ + /* + * As detailed above, FOLL_PIN must only be set internally by the + * pin_user_page*() and pin_longterm_*() APIs, never directly by the + * caller, so enforce that: + */ + if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) + return -EINVAL; + + return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); +} EXPORT_SYMBOL_GPL(get_user_pages_fast); + +/** + * pin_user_pages_fast() - pin user pages in memory without taking locks + * + * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See + * get_user_pages_fast() for documentation on the function arguments, because + * the arguments here are identical. + * + * FOLL_PIN means that the pages must be released via put_user_page(). Please + * see Documentation/vm/pin_user_pages.rst for further details. + * + * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It + * is NOT intended for Case 2 (RDMA: long-term pins). + */ +int pin_user_pages_fast(unsigned long start, int nr_pages, + unsigned int gup_flags, struct page **pages) +{ + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE(gup_flags & FOLL_GET)) + return -EINVAL; + + gup_flags |= FOLL_PIN; + return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); +} +EXPORT_SYMBOL_GPL(pin_user_pages_fast); + +/** + * pin_longterm_pages_fast() - pin user pages in memory without taking locks + * + * Nearly the same as get_user_pages_fast(), except that FOLL_PIN and + * FOLL_LONGTERM are set. See get_user_pages_fast() for documentation on the + * function arguments, because the arguments here are identical. + * + * FOLL_PIN means that the pages must be released via put_user_page(). Please + * see Documentation/vm/pin_user_pages.rst for further details. + * + * FOLL_LONGTERM means that the pages are being pinned for "long term" use, + * typically by a non-CPU device, and we cannot be sure that waiting for a + * pinned page to become unpin will be effective. + * + * This is intended for Case 2 (RDMA: long-term pins) of the FOLL_PIN + * documentation. + */ +int pin_longterm_pages_fast(unsigned long start, int nr_pages, + unsigned int gup_flags, struct page **pages) +{ + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE(gup_flags & FOLL_GET)) + return -EINVAL; + + gup_flags |= (FOLL_PIN | FOLL_LONGTERM); + return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); +} +EXPORT_SYMBOL_GPL(pin_longterm_pages_fast); + +/** + * pin_user_pages_remote() - pin pages for (typically) use by Direct IO, and + * return the pages to the user. + * + * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See + * get_user_pages_remote() for documentation on the function arguments, because + * the arguments here are identical. + * + * FOLL_PIN means that the pages must be released via put_user_page(). Please + * see Documentation/vm/pin_user_pages.rst for details. + * + * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It + * is NOT intended for Case 2 (RDMA: long-term pins). + */ +long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas, int *locked) +{ + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE(gup_flags & FOLL_GET)) + return -EINVAL; + + gup_flags |= FOLL_TOUCH | FOLL_REMOTE | FOLL_PIN; + + return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, + locked, gup_flags); +} +EXPORT_SYMBOL(pin_user_pages_remote); + +/** + * pin_longterm_pages_remote() - pin pages for (typically) use by Direct IO, and + * return the pages to the user. + * + * Nearly the same as get_user_pages_remote(), but note that FOLL_TOUCH is not + * set, and FOLL_PIN and FOLL_LONGTERM are set. See get_user_pages_remote() for + * documentation on the function arguments, because the arguments here are + * identical. + * + * FOLL_PIN means that the pages must be released via put_user_page(). Please + * see Documentation/vm/pin_user_pages.rst for further details. + * + * FOLL_LONGTERM means that the pages are being pinned for "long term" use, + * typically by a non-CPU device, and we cannot be sure that waiting for a + * pinned page to become unpin will be effective. + * + * This is intended for Case 2 (RDMA: long-term pins) in + * Documentation/vm/pin_user_pages.rst. + */ +long pin_longterm_pages_remote(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas, int *locked) +{ + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE(gup_flags & FOLL_GET)) + return -EINVAL; + + /* + * FIXME: as noted in the get_user_pages_remote() implementation, it + * is not yet possible to safely set FOLL_LONGTERM here. FOLL_LONGTERM + * needs to be set, but for now the best we can do is a "TODO" item. + */ + gup_flags |= FOLL_REMOTE | FOLL_PIN; + + return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, + locked, gup_flags); +} +EXPORT_SYMBOL(pin_longterm_pages_remote); + +/** + * pin_user_pages() - pin user pages in memory for use by other devices + * + * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and + * FOLL_PIN is set. + * + * FOLL_PIN means that the pages must be released via put_user_page(). Please + * see Documentation/vm/pin_user_pages.rst for details. + * + * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It + * is NOT intended for Case 2 (RDMA: long-term pins). + */ +long pin_user_pages(unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas) +{ + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE(gup_flags & FOLL_GET)) + return -EINVAL; + + gup_flags |= FOLL_PIN; + return __gup_longterm_locked(current, current->mm, start, nr_pages, + pages, vmas, gup_flags); +} +EXPORT_SYMBOL(pin_user_pages); + +/** + * pin_longterm_pages() - pin user pages in memory for long-term use (RDMA, + * typically) + * + * Nearly the same as get_user_pages(), except that FOLL_PIN and FOLL_LONGTERM + * are set. See get_user_pages_fast() for documentation on the function + * arguments, because the arguments here are identical. + * + * FOLL_PIN means that the pages must be released via put_user_page(). Please + * see Documentation/vm/pin_user_pages.rst for further details. + * + * FOLL_LONGTERM means that the pages are being pinned for "long term" use, + * typically by a non-CPU device, and we cannot be sure that waiting for a + * pinned page to become unpin will be effective. + * + * This is intended for Case 2 (RDMA: long-term pins) in + * Documentation/vm/pin_user_pages.rst. + */ +long pin_longterm_pages(unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas) +{ + /* FOLL_GET and FOLL_PIN are mutually exclusive. */ + if (WARN_ON_ONCE(gup_flags & FOLL_GET)) + return -EINVAL; + + gup_flags |= FOLL_PIN | FOLL_LONGTERM; + return __gup_longterm_locked(current, current->mm, start, nr_pages, + pages, vmas, gup_flags); +} +EXPORT_SYMBOL(pin_longterm_pages);