new file mode 100644
@@ -0,0 +1,338 @@
+/*
+ * fs/btrfs/hotdata_hash.c
+ *
+ * Copyright (C) 2010 International Business Machines Corp.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/list.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/hardirq.h>
+#include <linux/hash.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include "hotdata_map.h"
+#include "hotdata_hash.h"
+#include "hotdata_relocate.h"
+#include "async-thread.h"
+#include "ctree.h"
+
+struct heat_hashlist_node *alloc_heat_hashlist_node(gfp_t mask)
+{
+ struct heat_hashlist_node *node;
+
+ node = kmalloc(sizeof(struct heat_hashlist_node), mask);
+ if (!node || IS_ERR(node))
+ return node;
+ INIT_HLIST_NODE(&node->hashnode);
+ node->freq_data = NULL;
+ node->hlist = NULL;
+ node->location = BTRFS_ON_ROTATING;
+ spin_lock_init(&node->lock);
+ spin_lock_init(&node->location_lock);
+ atomic_set(&node->refs, 1);
+
+ return node;
+}
+
+void free_heat_hashlists(struct btrfs_root *root)
+{
+ int i;
+
+ /* Free node/range heat hash lists */
+ for (i = 0; i < HEAT_HASH_SIZE; i++) {
+ struct hlist_node *pos = NULL, *pos2 = NULL;
+ struct heat_hashlist_node *heatnode = NULL;
+
+ hlist_for_each_safe(pos, pos2,
+ &root->heat_inode_hl[i].hashhead) {
+ heatnode = hlist_entry(pos, struct heat_hashlist_node,
+ hashnode);
+ hlist_del(pos);
+ kfree(heatnode);
+ }
+ hlist_for_each_safe(pos, pos2,
+ &root->heat_range_hl[i].hashhead) {
+ heatnode = hlist_entry(pos, struct heat_hashlist_node,
+ hashnode);
+ hlist_del(pos);
+ kfree(heatnode);
+ }
+ }
+}
+
+/*
+ * btrfs_get_temp is responsible for distilling the six heat criteria, which
+ * are described in detail in hotdata_hash.h) down into a single temperature
+ * value for the data, which is an integer between 0 and HEAT_MAX_VALUE.
+ *
+ * To accomplish this, the raw values from the btrfs_freq_data structure
+ * are shifted various ways in order to make the temperature calculation more
+ * or less sensitive to each value.
+ *
+ * Once this calibration has happened, we do some additional normalization and
+ * make sure that everything fits nicely in a u32. From there, we take a very
+ * rudimentary kind of "average" of each of the values, where the *_COEFF_POWER
+ * values act as weights for the average.
+ *
+ * Finally, we use the HEAT_HASH_BITS value, which determines the size of the
+ * heat hash list, to normalize the temperature to the proper granularity.
+ */
+int btrfs_get_temp(struct btrfs_freq_data *fdata)
+{
+ u32 result = 0;
+
+ struct timespec ckt = current_kernel_time();
+ u64 cur_time = timespec_to_ns(&ckt);
+
+ u32 nrr_heat = fdata->nr_reads << NRR_MULTIPLIER_POWER;
+ u32 nrw_heat = fdata->nr_writes << NRW_MULTIPLIER_POWER;
+
+ u64 ltr_heat = (cur_time - timespec_to_ns(&fdata->last_read_time))
+ >> LTR_DIVIDER_POWER;
+ u64 ltw_heat = (cur_time - timespec_to_ns(&fdata->last_write_time))
+ >> LTW_DIVIDER_POWER;
+
+ u64 avr_heat = (((u64) -1) - fdata->avg_delta_reads)
+ >> AVR_DIVIDER_POWER;
+ u64 avw_heat = (((u64) -1) - fdata->avg_delta_writes)
+ >> AVR_DIVIDER_POWER;
+
+ if (ltr_heat >= ((u64) 1 << 32))
+ ltr_heat = 0;
+ else
+ ltr_heat = ((u64) 1 << 32) - ltr_heat;
+ /* ltr_heat is now guaranteed to be u32 safe */
+
+ if (ltw_heat >= ((u64) 1 << 32))
+ ltw_heat = 0;
+ else
+ ltw_heat = ((u64) 1 << 32) - ltw_heat;
+ /* ltw_heat is now guaranteed to be u32 safe */
+
+ if (avr_heat >= ((u64) 1 << 32))
+ avr_heat = (u32) -1;
+ /* avr_heat is now guaranteed to be u32 safe */
+
+ if (avw_heat >= ((u64) 1 << 32))
+ avr_heat = (u32) -1;
+ /* avw_heat is now guaranteed to be u32 safe */
+
+ nrr_heat = nrr_heat >> (3 - NRR_COEFF_POWER);
+ nrw_heat = nrw_heat >> (3 - NRW_COEFF_POWER);
+ ltr_heat = ltr_heat >> (3 - LTR_COEFF_POWER);
+ ltw_heat = ltw_heat >> (3 - LTW_COEFF_POWER);
+ avr_heat = avr_heat >> (3 - AVR_COEFF_POWER);
+ avw_heat = avw_heat >> (3 - AVW_COEFF_POWER);
+
+ result = nrr_heat + nrw_heat + (u32) ltr_heat +
+ (u32) ltw_heat + (u32) avr_heat + (u32) avw_heat;
+
+ return result >> (32 - HEAT_HASH_BITS);
+}
+
+static int is_old(struct btrfs_freq_data *freq_data)
+{
+ int ret = 0;
+ struct timespec ckt = current_kernel_time();
+
+ u64 cur_time = timespec_to_ns(&ckt);
+ u64 last_read_ns = (cur_time -
+ timespec_to_ns(&freq_data->last_read_time));
+ u64 last_write_ns = (cur_time -
+ timespec_to_ns(&freq_data->last_write_time));
+ u64 kick_ns = TIME_TO_KICK * (u64)1000000000;
+ if ((last_read_ns > kick_ns) && (last_write_ns > kick_ns))
+ ret = 1;
+ return ret;
+}
+
+
+/* update temps for each range item for aging purposes */
+static void btrfs_update_range_data(struct hot_inode_item *hot_inode,
+ struct btrfs_root *root)
+{
+ struct hot_range_tree *inode_range_tree;
+ struct rb_node *node;
+ struct rb_node *old_node;
+ struct hot_range_item *current_range;
+ int location, range_is_old;
+
+ inode_range_tree = &hot_inode->hot_range_tree;
+ write_lock(&inode_range_tree->lock);
+ node = rb_first(&inode_range_tree->map);
+ /* Walk the hot_range_tree for inode */
+ while (node) {
+ current_range = rb_entry(node, struct hot_range_item, rb_node);
+ btrfs_update_heat_index(¤t_range->freq_data, root);
+ old_node = node;
+ node = rb_next(node);
+ /* if the inode is cold and off ssd, quit keeping track of it */
+ spin_lock(¤t_range->heat_node->location_lock);
+ location = current_range->heat_node->location;
+ spin_unlock(¤t_range->heat_node->location_lock);
+
+ spin_lock(¤t_range->lock);
+ range_is_old = is_old(¤t_range->freq_data);
+ spin_unlock(¤t_range->lock);
+
+ if (range_is_old && location == BTRFS_ON_ROTATING) {
+ if (atomic_read(¤t_range->heat_node->refs) <= 1)
+ btrfs_remove_range_from_heat_index(hot_inode,
+ current_range, root);
+ }
+ }
+ write_unlock(&inode_range_tree->lock);
+}
+
+/* update temps for each hot inode item and hot range item for aging purposes */
+static void iterate_and_update_heat(struct btrfs_root *root)
+{
+ struct btrfs_root *fs_root;
+ struct hot_inode_item *current_hot_inode;
+ struct hot_inode_tree *hot_inode_tree;
+ unsigned long inode_num;
+
+ hot_inode_tree = &root->hot_inode_tree;
+
+ fs_root = root->fs_info->fs_root;
+ /* walk the inode tree */
+ current_hot_inode = find_next_hot_inode(fs_root, 0);
+ while (current_hot_inode) {
+ btrfs_update_heat_index(¤t_hot_inode->freq_data, root);
+ btrfs_update_range_data(current_hot_inode, fs_root);
+ inode_num = current_hot_inode->i_ino;
+ free_hot_inode_item(current_hot_inode);
+ current_hot_inode = find_next_hot_inode(fs_root,
+ inode_num + 1);
+ }
+}
+
+/*
+ * kthread iterates each hot_inode_item and hot_range_item
+ * and update temperatures to be shifted in heat hash table
+ * for purposes of relocation and such hot file detection
+ */
+static int update_inode_kthread(void *arg)
+{
+ struct btrfs_root *root = arg;
+ unsigned long delay;
+ do {
+ delay = HZ * HEAT_UPDATE_DELAY;
+ if (mutex_trylock(&root->fs_info->
+ hot_data_update_kthread_mutex)) {
+ iterate_and_update_heat(root);
+ mutex_unlock(&root->fs_info->
+ hot_data_update_kthread_mutex);
+ }
+ if (freezing(current)) {
+ refrigerator();
+ } else {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (!kthread_should_stop())
+ schedule_timeout(delay);
+ __set_current_state(TASK_RUNNING);
+ }
+ } while (!kthread_should_stop());
+ return 0;
+}
+
+/* init the kthread to do temp updates */
+void init_hash_list_kthread(struct btrfs_root *root)
+{
+ root->fs_info->hot_data_update_kthread =
+ kthread_run(update_inode_kthread,
+ root,
+ "update_hot_inode_kthread");
+ if (IS_ERR(root->fs_info->hot_data_update_kthread))
+ kthread_stop(root->fs_info->hot_data_update_kthread);
+}
+
+/*
+ * take hot inode that is now cold and remove from indexes and clean up
+ * any memory associted, involves removing hot inode from rb tree, and
+ * heat hash lists, and freeing up all memory and range memory.
+ */
+void btrfs_remove_inode_from_heat_index(struct hot_inode_item *hot_inode,
+ struct btrfs_root *root)
+{
+ struct rb_node *node2;
+ struct hot_range_item *hr;
+
+ /* remove hot inode item from rb tree */
+ write_lock(&root->hot_inode_tree.lock);
+ remove_hot_inode_item(&root->hot_inode_tree, hot_inode);
+ write_unlock(&root->hot_inode_tree.lock);
+
+ /* remove the hot inode item from hash table */
+ write_lock(&hot_inode->heat_node->hlist->rwlock);
+ hlist_del(&hot_inode->heat_node->hashnode);
+ write_unlock(&hot_inode->heat_node->hlist->rwlock);
+
+ /* remove ranges in inode from rb-tree and heat table first */
+ write_lock(&hot_inode->hot_range_tree.lock);
+ node2 = rb_first(&hot_inode->hot_range_tree.map);
+ while (node2) {
+ hr = rb_entry(node2, struct hot_range_item,
+ rb_node);
+
+ /* remove range from range tree */
+ remove_hot_range_item(&hot_inode->hot_range_tree, hr);
+
+ /* remove range from hash list */
+ write_lock(&hr->heat_node->hlist->rwlock);
+ hlist_del(&hr->heat_node->hashnode);
+ write_unlock(&hr->heat_node->hlist->rwlock);
+
+ /*free up memory */
+ kfree(hr->heat_node);
+ free_hot_range_item(hr);
+
+ node2 = rb_first(&hot_inode->hot_range_tree.map);
+ }
+ write_unlock(&hot_inode->hot_range_tree.lock);
+
+ /* free up associated inode memory */
+ kfree(hot_inode->heat_node);
+ free_hot_inode_item(hot_inode);
+}
+
+/*
+ * take hot range that is now cold and remove from indexes and clean up
+ * any memory associted, involves removing hot range from rb tree, and
+ * heat hash lists, and freeing up all memory.
+ */
+void btrfs_remove_range_from_heat_index(struct hot_inode_item *hot_inode,
+ struct hot_range_item *hr,
+ struct btrfs_root *root)
+{
+ /* remove range from rb tree */
+ remove_hot_range_item(&hot_inode->hot_range_tree, hr);
+
+ /* remove range from hash list */
+ spin_lock(&hr->heat_node->lock);
+ write_lock(&hr->heat_node->hlist->rwlock);
+ hlist_del(&hr->heat_node->hashnode);
+ write_unlock(&hr->heat_node->hlist->rwlock);
+ spin_unlock(&hr->heat_node->lock);
+
+ /*free up memory */
+ kfree(hr->heat_node);
+ free_hot_range_item(hr);
+}
new file mode 100644
@@ -0,0 +1,155 @@
+/*
+ * fs/btrfs/hotdata_hash.h
+ *
+ * Copyright (C) 2010 International Business Machines Corp.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __HOTDATAHASH__
+#define __HOTDATAHASH__
+
+#include <linux/list.h>
+#include <linux/hash.h>
+
+#define HEAT_HASH_BITS 8
+#define HEAT_HASH_SIZE (1 << HEAT_HASH_BITS)
+#define HEAT_HASH_MASK (HEAT_HASH_SIZE - 1)
+#define HEAT_MIN_VALUE 0
+#define HEAT_MAX_VALUE (HEAT_HASH_SIZE - 1)
+#define HEAT_NO_MIGRATE HEAT_HASH_SIZE
+
+/* time to quit keeping track of tracking data (seconds)*/
+#define TIME_TO_KICK 400
+
+/* set how often to update temps (seconds) */
+#define HEAT_UPDATE_DELAY 400
+
+/* initial heat threshold temperature */
+#define HEAT_INITIAL_THRESH 150
+
+/*
+ * The following comments explain what exactly comprises a unit of heat.
+ *
+ * Each of six values of heat are calculated and combined in order to form an
+ * overall temperature for the data:
+ *
+ * NRR - number of reads since mount
+ * NRW - number of writes since mount
+ * LTR - time elapsed since last read (ns)
+ * LTW - time elapsed since last write (ns)
+ * AVR - average delta between recent reads (ns)
+ * AVW - average delta between recent writes (ns)
+ *
+ * These values are divided (right-shifted) according to the *_DIVIDER_POWER
+ * values defined below to bring the numbers into a reasonable range. You can
+ * modify these values to fit your needs. However, each heat unit is a u32 and
+ * thus maxes out at 2^32 - 1. Therefore, you must choose your dividers quite
+ * carefully or else they could max out or be stuck at zero quite easily.
+ *
+ * (E.g., if you chose AVR_DIVIDER_POWER = 0, nothing less than 4s of atime
+ * delta would bring the temperature above zero, ever.)
+ *
+ * Finally, each value is added to the overall temperature between 0 and 8
+ * times, depending on its *_COEFF_POWER value. Note that the coefficients are
+ * also actually implemented with shifts, so take care to treat these values
+ * as powers of 2. (I.e., 0 means we'll add it to the temp once; 1 = 2x, etc.)
+ */
+
+/* NRR/NRW heat unit = 2^X accesses */
+#define NRR_MULTIPLIER_POWER 20
+#define NRR_COEFF_POWER 0
+#define NRW_MULTIPLIER_POWER 20
+#define NRW_COEFF_POWER 0
+
+/* LTR/LTW heat unit = 2^X ns of age */
+#define LTR_DIVIDER_POWER 30
+#define LTR_COEFF_POWER 1
+#define LTW_DIVIDER_POWER 30
+#define LTW_COEFF_POWER 1
+
+/*
+ * AVR/AVW cold unit = 2^X ns of average delta
+ * AVR/AVW heat unit = HEAT_MAX_VALUE - cold unit
+ *
+ * E.g., data with an average delta between 0 and 2^X ns will have a cold value
+ * of 0, which means a heat value equal to HEAT_MAX_VALUE.
+ */
+#define AVR_DIVIDER_POWER 40
+#define AVR_COEFF_POWER 0
+#define AVW_DIVIDER_POWER 40
+#define AVW_COEFF_POWER 0
+
+struct btrfs_root;
+
+/* Hash list heads for heat hash table */
+struct heat_hashlist_entry {
+ struct hlist_head hashhead;
+ rwlock_t rwlock;
+ u32 temperature;
+};
+
+/* Nodes stored in each hash list of hash table */
+struct heat_hashlist_node {
+ struct hlist_node hashnode;
+ struct list_head node;
+ struct btrfs_freq_data *freq_data;
+ struct heat_hashlist_entry *hlist;
+
+ /*
+ * number of references to this node
+ * equals 1 (hashlist entry) + number
+ * of private relocation lists it is on
+ */
+ atomic_t refs;
+
+ spinlock_t lock; /* protects hlist */
+ spinlock_t location_lock; /* protects location */
+ u8 location; /*flag for whether or not on rotating*/
+};
+
+struct heat_hashlist_node *alloc_heat_hashlist_node(gfp_t mask);
+void free_heat_hashlists(struct btrfs_root *root);
+
+/*
+ * Returns a value from 0 to HEAT_MAX_VALUE indicating the temperature of the
+ * file (and consequently its bucket number in hashlist) (see hotdata_hash.c)
+ */
+int btrfs_get_temp(struct btrfs_freq_data *fdata);
+
+/*
+ * initialize kthread for each new mount point that
+ * periodically goes through hot inodes and hot ranges and ages them
+ * based on frequency of access
+ */
+void init_hash_list_kthread(struct btrfs_root *root);
+
+/*
+ * recalculates temperatures for inode or range
+ * and moves around in heat hash table based on temp
+ */
+void btrfs_update_heat_index(struct btrfs_freq_data *fdata,
+ struct btrfs_root *root);
+
+/* remove from index and clean up all memory associated with hot range */
+void btrfs_remove_range_from_heat_index(struct hot_inode_item *hot_inode,
+ struct hot_range_item *hr,
+ struct btrfs_root *root);
+
+/* remove form index and clean up all memory associated with hot inode */
+void btrfs_remove_inode_from_heat_index(struct hot_inode_item *hot_inode,
+ struct btrfs_root *root);
+
+#endif /* __HOTDATAHASH__ */