@@ -60,6 +60,13 @@ config CRYPTO_GHASH_ARM64_CE
select CRYPTO_GF128MUL
select CRYPTO_LIB_AES
+config CRYPTO_POLYVAL_ARM64_CE
+ tristate "POLYVAL using ARMv8 Crypto Extensions (for HCTR2)"
+ depends on KERNEL_MODE_NEON
+ select CRYPTO_CRYPTD
+ select CRYPTO_HASH
+ select CRYPTO_POLYVAL
+
config CRYPTO_CRCT10DIF_ARM64_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"
depends on KERNEL_MODE_NEON && CRC_T10DIF
@@ -26,6 +26,9 @@ sm4-ce-y := sm4-ce-glue.o sm4-ce-core.o
obj-$(CONFIG_CRYPTO_GHASH_ARM64_CE) += ghash-ce.o
ghash-ce-y := ghash-ce-glue.o ghash-ce-core.o
+obj-$(CONFIG_CRYPTO_POLYVAL_ARM64_CE) += polyval-ce.o
+polyval-ce-y := polyval-ce-glue.o polyval-ce-core.o
+
obj-$(CONFIG_CRYPTO_CRCT10DIF_ARM64_CE) += crct10dif-ce.o
crct10dif-ce-y := crct10dif-ce-core.o crct10dif-ce-glue.o
new file mode 100644
@@ -0,0 +1,372 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Implementation of POLYVAL using ARMv8 Crypto Extensions.
+ *
+ * Copyright 2021 Google LLC
+ */
+/*
+ * This is an efficient implementation of POLYVAL using ARMv8 Crypto Extensions
+ * It works on 8 blocks at a time, by precomputing the first 8 keys powers h^8,
+ * ..., h^1 in the POLYVAL finite field. This precomputation allows us to split
+ * finite field multiplication into two steps.
+ *
+ * In the first step, we consider h^i, m_i as normal polynomials of degree less
+ * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
+ * is simply polynomial multiplication.
+ *
+ * In the second step, we compute the reduction of p(x) modulo the finite field
+ * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
+ * multiplication is finite field multiplication. The advantage is that the
+ * two-step process only requires 1 finite field reduction for every 8
+ * polynomial multiplications. Further parallelism is gained by interleaving the
+ * multiplications and polynomial reductions.
+ */
+
+#include <linux/linkage.h>
+#define NUM_PRECOMPUTE_POWERS 8
+
+BLOCKS_LEFT .req x2
+KEY_START .req x10
+EXTRA_BYTES .req x11
+IND .req x12
+TMP .req x13
+PARTIAL_LEFT .req x14
+
+M0 .req v0
+M1 .req v1
+M2 .req v2
+M3 .req v3
+M4 .req v4
+M5 .req v5
+M6 .req v6
+M7 .req v7
+KEY8 .req v8
+KEY7 .req v9
+KEY6 .req v10
+KEY5 .req v11
+KEY4 .req v12
+KEY3 .req v13
+KEY2 .req v14
+KEY1 .req v15
+PL .req v16
+PH .req v17
+T .req v18
+V .req v19
+LO .req v20
+MI .req v21
+HI .req v22
+SUM .req v23
+GSTAR .req v24
+
+ .text
+ .align 4
+
+ .arch armv8-a+crypto
+ .align 4
+
+.Lgstar:
+ .quad 0xc200000000000000, 0xc200000000000000
+
+/*
+ * Computes the product of two 128-bit polynomials in X and Y and XORs the
+ * components of the 256-bit product into LO, MI, HI.
+ *
+ * The multiplication produces four parts:
+ * LOW: The polynomial given by performing carryless multiplication of X_L and
+ * Y_L
+ * MID: The polynomial given by performing carryless multiplication of (X_L ^
+ * X_H) and (Y_L ^ Y_H)
+ * HIGH: The polynomial given by performing carryless multiplication of X_H
+ * and Y_H
+ *
+ * We compute:
+ * LO ^= LOW
+ * MI ^= MID
+ * HI ^= HIGH
+ *
+ * Later, the 256-bit result can be extracted as:
+ * [HI_H : HI_L ^ HI_H ^ MI_H ^ LO_H :: LO_H ^ HI_L ^ MI_L ^ LO_L : LO_L]
+ * This step is done when computing the polynomial reduction for efficiency
+ * reasons.
+ */
+.macro karatsuba1 X Y
+ X .req \X
+ Y .req \Y
+ ext v25.16b, X.16b, Y.16b, #8
+ ext v26.16b, Y.16b, Y.16b, #8
+ eor v25.16b, v25.16b, X.16b
+ eor v26.16b, v26.16b, Y.16b
+ pmull v27.1q, v25.1d, v26.1d
+ pmull2 v28.1q, X.2d, Y.2d
+ pmull v29.1q, X.1d, Y.1d
+ eor HI.16b, HI.16b, v27.16b
+ eor LO.16b, LO.16b, v28.16b
+ eor MI.16b, MI.16b, v29.16b
+ .unreq X
+ .unreq Y
+.endm
+
+/*
+ * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
+ * the result in PL, PH.
+ * [PH :: PL] = [HI_H : HI_L ^ HI_H ^ MI_H ^ LO_H :: LO_H ^ HI_L ^ MI_L ^ LO_L
+ * : LO_L]
+ */
+.macro karatsuba2
+ ext v4.16b, MI.16b, LO.16b, #8
+ eor HI.16b, HI.16b, v4.16b //[HI1 ^ LO0 : HI0 ^ MI1]
+ eor v4.16b, LO.16b, MI.16b //[LO1 ^ MI1 : LO0 ^ MI0]
+ //[LO0 ^ LO1 ^ MI1 ^ HI1 : MI1 ^ LO0 ^ MI0 ^ HI0]
+ eor v4.16b, HI.16b, v4.16b
+ ext LO.16b, LO.16b, LO.16b, #8 // [LO0 : LO1]
+ ext MI.16b, MI.16b, MI.16b, #8 // [MI0 : MI1]
+ ext PH.16b, v4.16b, LO.16b, #8 //[LO1 : LO1 ^ MI1 ^ HI1 ^ LO0]
+ ext PL.16b, MI.16b, v4.16b, #8 //[MI1 ^ LO0 ^ MI0 ^ HI0 : MI0]
+.endm
+
+/*
+ * Computes the 128-bit reduction of PL, PH. Stores the result in PH.
+ *
+ * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
+ * x^128 + x^127 + x^126 + x^121 + 1.
+ *
+ * We have a 256-bit polynomial P_3 : P_2 : P_1 : P_0 that is the product of
+ * two 128-bit polynomials in Montgomery form. We need to reduce it mod g(x).
+ * Also, since polynomials in Montgomery form have an "extra" factor of x^128,
+ * this product has two extra factors of x^128. To get it back into Montgomery
+ * form, we need to remove one of these factors by dividing by x^128.
+ *
+ * To accomplish both of these goals, we add multiples of g(x) that cancel out
+ * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
+ * bits are zero, the polynomial division by x^128 can be done by right shifting.
+ *
+ * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
+ * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
+ * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
+ * x^64 g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
+ * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
+ * = T_1 : T_0 = g*(x) * P0. Thus, bits 0-63 got "folded" into bits 64-191.
+ *
+ * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
+ * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
+ * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
+ * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
+ * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
+ *
+ * So our final computation is:
+ * T = T_1 : T_0 = g*(x) * P_0
+ * V = V_1 : V_0 = g*(x) * (T_0 ^ P_1)
+ * p(x) / x^{128} mod g(x) = P_3 ^ P_1 ^ V_1 ^ T_0 : P_2 ^ P_0 ^ V_0 ^ T_1
+ *
+ * The implementation below saves a XOR instruction by computing P_1 ^ T_0 : P_0
+ * ^ T_1 and XORing it into V, rather than directly XORing P_1 : P_0, T_0 : T1
+ * into PH. This allows us to reuse P_1 ^ T_0 when computing V.
+ */
+.macro montgomery_reduction
+ pmull T.1q, GSTAR.1d, PL.1d
+ ext T.16b, T.16b, T.16b, #8
+ eor PL.16b, PL.16b, T.16b
+ pmull2 V.1q, GSTAR.2d, PL.2d
+ eor V.16b, PL.16b, V.16b
+ eor PH.16b, PH.16b, V.16b
+.endm
+
+/*
+ * Compute Polyval on 8 blocks.
+ *
+ * If reduce is set, also computes the montgomery reduction of the
+ * previous full_stride call and XORs with the first message block.
+ * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
+ * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
+ *
+ * Sets PL, PH.
+ */
+.macro full_stride reduce
+ eor LO.16b, LO.16b, LO.16b
+ eor MI.16b, MI.16b, MI.16b
+ eor HI.16b, HI.16b, HI.16b
+
+ ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [x0], #64
+ ld1 {M4.16b, M5.16b, M6.16b, M7.16b}, [x0], #64
+
+ karatsuba1 M7 KEY1
+ .if (\reduce)
+ pmull T.1q, GSTAR.1d, PL.1d
+ .endif
+
+ karatsuba1 M6 KEY2
+ .if (\reduce)
+ ext T.16b, T.16b, T.16b, #8
+ .endif
+
+ karatsuba1 M5 KEY3
+ .if (\reduce)
+ eor PL.16b, PL.16b, T.16b
+ .endif
+
+ karatsuba1 M4 KEY4
+ .if (\reduce)
+ pmull2 V.1q, GSTAR.2d, PL.2d
+ .endif
+
+ karatsuba1 M3 KEY5
+ .if (\reduce)
+ eor V.16b, PL.16b, V.16b
+ .endif
+
+ karatsuba1 M2 KEY6
+ .if (\reduce)
+ eor PH.16b, PH.16b, V.16b
+ .endif
+
+ karatsuba1 M1 KEY7
+ .if (\reduce)
+ mov SUM.16b, PH.16b
+ .endif
+ eor M0.16b, M0.16b, SUM.16b
+
+ karatsuba1 M0 KEY8
+
+ karatsuba2
+.endm
+
+/*
+ * Handle any extra blocks before
+ * full_stride loop.
+ */
+.macro partial_stride
+ eor LO.16b, LO.16b, LO.16b
+ eor MI.16b, MI.16b, MI.16b
+ eor HI.16b, HI.16b, HI.16b
+ add KEY_START, x1, #(NUM_PRECOMPUTE_POWERS << 4)
+ sub KEY_START, KEY_START, PARTIAL_LEFT, lsl #4
+ ld1 {v0.16b}, [KEY_START]
+ mov v1.16b, SUM.16b
+ karatsuba1 v0 v1
+ karatsuba2
+ montgomery_reduction
+ mov SUM.16b, PH.16b
+ eor LO.16b, LO.16b, LO.16b
+ eor MI.16b, MI.16b, MI.16b
+ eor HI.16b, HI.16b, HI.16b
+ mov IND, XZR
+.LloopPartial:
+ cmp IND, PARTIAL_LEFT
+ bge .LloopExitPartial
+
+ sub TMP, IND, PARTIAL_LEFT
+
+ cmp TMP, #-4
+ bgt .Lgt4Partial
+ ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [x0], #64
+ // Clobber key registers
+ ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_START], #64
+ karatsuba1 M0 KEY8
+ karatsuba1 M1 KEY7
+ karatsuba1 M2 KEY6
+ karatsuba1 M3 KEY5
+ add IND, IND, #4
+ b .LoutPartial
+
+.Lgt4Partial:
+ cmp TMP, #-3
+ bgt .Lgt3Partial
+ ld1 {M0.16b, M1.16b, M2.16b}, [x0], #48
+ // Clobber key registers
+ ld1 {KEY8.16b, KEY7.16b, KEY6.16b}, [KEY_START], #48
+ karatsuba1 M0 KEY8
+ karatsuba1 M1 KEY7
+ karatsuba1 M2 KEY6
+ add IND, IND, #3
+ b .LoutPartial
+
+.Lgt3Partial:
+ cmp TMP, #-2
+ bgt .Lgt2Partial
+ ld1 {M0.16b, M1.16b}, [x0], #32
+ // Clobber key registers
+ ld1 {KEY8.16b, KEY7.16b}, [KEY_START], #32
+ karatsuba1 M0 KEY8
+ karatsuba1 M1 KEY7
+ add IND, IND, #2
+ b .LoutPartial
+
+.Lgt2Partial:
+ ld1 {M0.16b}, [x0], #16
+ // Clobber key registers
+ ld1 {KEY8.16b}, [KEY_START], #16
+ karatsuba1 M0 KEY8
+ add IND, IND, #1
+.LoutPartial:
+ b .LloopPartial
+.LloopExitPartial:
+ karatsuba2
+ montgomery_reduction
+ eor SUM.16b, SUM.16b, PH.16b
+.endm
+
+/*
+ * Perform montgomery multiplication in GF(2^128) and store result in op1.
+ *
+ * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
+ * If op1, op2 are in montgomery form, this computes the montgomery
+ * form of op1*op2.
+ *
+ * void pmull_polyval_mul(u8 *op1, const u8 *op2);
+ */
+SYM_FUNC_START(pmull_polyval_mul)
+ adr TMP, .Lgstar
+ ld1 {GSTAR.2d}, [TMP]
+ eor LO.16b, LO.16b, LO.16b
+ eor MI.16b, MI.16b, MI.16b
+ eor HI.16b, HI.16b, HI.16b
+ ld1 {v0.16b}, [x0]
+ ld1 {v1.16b}, [x1]
+ karatsuba1 v0 v1
+ karatsuba2
+ montgomery_reduction
+ st1 {PH.16b}, [x0]
+ ret
+SYM_FUNC_END(pmull_polyval_mul)
+
+/*
+ * Perform polynomial evaluation as specified by POLYVAL. This computes:
+ * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
+ * where n=nblocks, h is the hash key, and m_i are the message blocks.
+ *
+ * x0 - pointer to message blocks
+ * x1 - pointer to precomputed key powers h^8 ... h^1
+ * x2 - number of blocks to hash
+ * x3 - pointer to accumulator
+ *
+ * void pmull_polyval_update(const u8 *in, const struct polyval_ctx *ctx,
+ * size_t nblocks, u8 *accumulator);
+ */
+SYM_FUNC_START(pmull_polyval_update)
+ adr TMP, .Lgstar
+ ld1 {GSTAR.2d}, [TMP]
+ ld1 {SUM.16b}, [x3]
+ ands PARTIAL_LEFT, BLOCKS_LEFT, #7
+ beq .LskipPartial
+ partial_stride
+.LskipPartial:
+ subs BLOCKS_LEFT, BLOCKS_LEFT, #NUM_PRECOMPUTE_POWERS
+ blt .LstrideLoopExit
+ ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [x1], #64
+ ld1 {KEY4.16b, KEY3.16b, KEY2.16b, KEY1.16b}, [x1], #64
+ full_stride 0
+ subs BLOCKS_LEFT, BLOCKS_LEFT, #NUM_PRECOMPUTE_POWERS
+ blt .LstrideLoopExitReduce
+.LstrideLoop:
+ full_stride 1
+ subs BLOCKS_LEFT, BLOCKS_LEFT, #NUM_PRECOMPUTE_POWERS
+ bge .LstrideLoop
+.LstrideLoopExitReduce:
+ montgomery_reduction
+ mov SUM.16b, PH.16b
+.LstrideLoopExit:
+ st1 {SUM.16b}, [x3]
+ ret
+SYM_FUNC_END(pmull_polyval_update)
new file mode 100644
@@ -0,0 +1,363 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Accelerated POLYVAL implementation with ARMv8 Crypto Extension
+ * instructions. This file contains glue code.
+ *
+ * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
+ * Copyright (c) 2009 Intel Corp.
+ * Author: Huang Ying <ying.huang@intel.com>
+ * Copyright 2021 Google LLC
+ */
+/*
+ * Glue code based on ghash-clmulni-intel_glue.c.
+ *
+ * This implementation of POLYVAL uses montgomery multiplication accelerated by
+ * ARMv8 Crypto Extension instructions to implement the finite field operations.
+ *
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/cryptd.h>
+#include <crypto/gf128mul.h>
+#include <crypto/internal/hash.h>
+#include <crypto/internal/simd.h>
+#include <crypto/polyval.h>
+#include <linux/crypto.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/cpufeature.h>
+#include <asm/neon.h>
+#include <asm/simd.h>
+#include <asm/unaligned.h>
+
+#define NUM_PRECOMPUTE_POWERS 8
+
+struct polyval_async_ctx {
+ struct cryptd_ahash *cryptd_tfm;
+};
+
+struct polyval_ctx {
+ u8 key_powers[NUM_PRECOMPUTE_POWERS][POLYVAL_BLOCK_SIZE];
+};
+
+struct polyval_desc_ctx {
+ u8 buffer[POLYVAL_BLOCK_SIZE];
+ u32 bytes;
+};
+
+asmlinkage void pmull_polyval_update(const u8 *in, const struct polyval_ctx
+ *ctx, size_t nblocks, u8 *accumulator);
+asmlinkage void pmull_polyval_mul(u8 *op1, const u8 *op2);
+
+static int polyval_init(struct shash_desc *desc)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+
+ memset(dctx, 0, sizeof(*dctx));
+
+ return 0;
+}
+
+static int polyval_setkey(struct crypto_shash *tfm,
+ const u8 *key, unsigned int keylen)
+{
+ struct polyval_ctx *ctx = crypto_shash_ctx(tfm);
+ int i;
+
+ if (keylen != POLYVAL_BLOCK_SIZE)
+ return -EINVAL;
+
+ BUILD_BUG_ON(sizeof(u128) != POLYVAL_BLOCK_SIZE);
+
+ memcpy(ctx->key_powers[NUM_PRECOMPUTE_POWERS-1], key,
+ POLYVAL_BLOCK_SIZE);
+
+ kernel_neon_begin();
+ for (i = NUM_PRECOMPUTE_POWERS-2; i >= 0; i--) {
+ memcpy(ctx->key_powers[i], key, POLYVAL_BLOCK_SIZE);
+ pmull_polyval_mul(ctx->key_powers[i], ctx->key_powers[i+1]);
+ }
+ kernel_neon_end();
+
+ return 0;
+}
+
+static int polyval_update(struct shash_desc *desc,
+ const u8 *src, unsigned int srclen)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ struct polyval_ctx *ctx = crypto_shash_ctx(desc->tfm);
+ u8 *pos;
+ unsigned int nblocks;
+ unsigned int n;
+
+ kernel_neon_begin();
+ if (dctx->bytes) {
+ n = min(srclen, dctx->bytes);
+ pos = dctx->buffer + POLYVAL_BLOCK_SIZE - dctx->bytes;
+
+ dctx->bytes -= n;
+ srclen -= n;
+
+ while (n--)
+ *pos++ ^= *src++;
+
+ if (!dctx->bytes)
+ pmull_polyval_mul(dctx->buffer,
+ ctx->key_powers[NUM_PRECOMPUTE_POWERS-1]);
+ }
+
+ nblocks = srclen/POLYVAL_BLOCK_SIZE;
+ pmull_polyval_update(src, ctx, nblocks, dctx->buffer);
+ srclen -= nblocks*POLYVAL_BLOCK_SIZE;
+ kernel_neon_end();
+
+ if (srclen) {
+ dctx->bytes = POLYVAL_BLOCK_SIZE - srclen;
+ src += nblocks*POLYVAL_BLOCK_SIZE;
+ pos = dctx->buffer;
+ while (srclen--)
+ *pos++ ^= *src++;
+ }
+
+ return 0;
+}
+
+static int polyval_final(struct shash_desc *desc, u8 *dst)
+{
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+ struct polyval_ctx *ctx = crypto_shash_ctx(desc->tfm);
+
+ if (dctx->bytes) {
+ kernel_neon_begin();
+ pmull_polyval_mul(dctx->buffer,
+ ctx->key_powers[NUM_PRECOMPUTE_POWERS-1]);
+ kernel_neon_end();
+ }
+
+ dctx->bytes = 0;
+ memcpy(dst, dctx->buffer, POLYVAL_BLOCK_SIZE);
+
+ return 0;
+}
+
+static struct shash_alg polyval_alg = {
+ .digestsize = POLYVAL_DIGEST_SIZE,
+ .init = polyval_init,
+ .update = polyval_update,
+ .final = polyval_final,
+ .setkey = polyval_setkey,
+ .descsize = sizeof(struct polyval_desc_ctx),
+ .base = {
+ .cra_name = "__polyval",
+ .cra_driver_name = "__polyval-ce",
+ .cra_priority = 0,
+ .cra_flags = CRYPTO_ALG_INTERNAL,
+ .cra_blocksize = POLYVAL_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct polyval_ctx),
+ .cra_module = THIS_MODULE,
+ },
+};
+
+static int polyval_async_init(struct ahash_request *req)
+{
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct polyval_async_ctx *ctx = crypto_ahash_ctx(tfm);
+ struct ahash_request *cryptd_req = ahash_request_ctx(req);
+ struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
+ struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
+ struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
+
+ desc->tfm = child;
+ return crypto_shash_init(desc);
+}
+
+static int polyval_async_update(struct ahash_request *req)
+{
+ struct ahash_request *cryptd_req = ahash_request_ctx(req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct polyval_async_ctx *ctx = crypto_ahash_ctx(tfm);
+ struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
+ struct shash_desc *desc;
+
+ if (!crypto_simd_usable() ||
+ (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
+ memcpy(cryptd_req, req, sizeof(*req));
+ ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
+ return crypto_ahash_update(cryptd_req);
+ }
+ desc = cryptd_shash_desc(cryptd_req);
+
+ return shash_ahash_update(req, desc);
+}
+
+static int polyval_async_final(struct ahash_request *req)
+{
+ struct ahash_request *cryptd_req = ahash_request_ctx(req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct polyval_async_ctx *ctx = crypto_ahash_ctx(tfm);
+ struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
+ struct shash_desc *desc;
+
+ if (!crypto_simd_usable() ||
+ (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
+ memcpy(cryptd_req, req, sizeof(*req));
+ ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
+ return crypto_ahash_final(cryptd_req);
+ }
+ desc = cryptd_shash_desc(cryptd_req);
+
+ return crypto_shash_final(desc, req->result);
+}
+
+static int polyval_async_import(struct ahash_request *req, const void *in)
+{
+ struct ahash_request *cryptd_req = ahash_request_ctx(req);
+ struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+
+ polyval_async_init(req);
+ memcpy(dctx, in, sizeof(*dctx));
+ return 0;
+
+}
+
+static int polyval_async_export(struct ahash_request *req, void *out)
+{
+ struct ahash_request *cryptd_req = ahash_request_ctx(req);
+ struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
+ struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
+
+ memcpy(out, dctx, sizeof(*dctx));
+ return 0;
+
+}
+
+static int polyval_async_digest(struct ahash_request *req)
+{
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct polyval_async_ctx *ctx = crypto_ahash_ctx(tfm);
+ struct ahash_request *cryptd_req = ahash_request_ctx(req);
+ struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
+ struct shash_desc *desc;
+ struct crypto_shash *child;
+
+ if (!crypto_simd_usable() ||
+ (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
+ memcpy(cryptd_req, req, sizeof(*req));
+ ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
+ return crypto_ahash_digest(cryptd_req);
+ }
+ desc = cryptd_shash_desc(cryptd_req);
+ child = cryptd_ahash_child(cryptd_tfm);
+
+ desc->tfm = child;
+ return shash_ahash_digest(req, desc);
+}
+
+static int polyval_async_setkey(struct crypto_ahash *tfm, const u8 *key,
+ unsigned int keylen)
+{
+ struct polyval_async_ctx *ctx = crypto_ahash_ctx(tfm);
+ struct crypto_ahash *child = &ctx->cryptd_tfm->base;
+
+ crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
+ crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
+ & CRYPTO_TFM_REQ_MASK);
+ return crypto_ahash_setkey(child, key, keylen);
+}
+
+static int polyval_async_init_tfm(struct crypto_tfm *tfm)
+{
+ struct cryptd_ahash *cryptd_tfm;
+ struct polyval_async_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ cryptd_tfm = cryptd_alloc_ahash("__polyval-ce",
+ CRYPTO_ALG_INTERNAL,
+ CRYPTO_ALG_INTERNAL);
+ if (IS_ERR(cryptd_tfm))
+ return PTR_ERR(cryptd_tfm);
+ ctx->cryptd_tfm = cryptd_tfm;
+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+ sizeof(struct ahash_request) +
+ crypto_ahash_reqsize(&cryptd_tfm->base));
+
+ return 0;
+}
+
+static void polyval_async_exit_tfm(struct crypto_tfm *tfm)
+{
+ struct polyval_async_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ cryptd_free_ahash(ctx->cryptd_tfm);
+}
+
+static struct ahash_alg polyval_async_alg = {
+ .init = polyval_async_init,
+ .update = polyval_async_update,
+ .final = polyval_async_final,
+ .setkey = polyval_async_setkey,
+ .digest = polyval_async_digest,
+ .export = polyval_async_export,
+ .import = polyval_async_import,
+ .halg = {
+ .digestsize = POLYVAL_DIGEST_SIZE,
+ .statesize = sizeof(struct polyval_desc_ctx),
+ .base = {
+ .cra_name = "polyval",
+ .cra_driver_name = "polyval-ce",
+ .cra_priority = 200,
+ .cra_ctxsize = sizeof(struct polyval_async_ctx),
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = POLYVAL_BLOCK_SIZE,
+ .cra_module = THIS_MODULE,
+ .cra_init = polyval_async_init_tfm,
+ .cra_exit = polyval_async_exit_tfm,
+ },
+ },
+};
+
+static int __init polyval_ce_mod_init(void)
+{
+ int err;
+
+ if (!cpu_have_named_feature(ASIMD))
+ return -ENODEV;
+
+ if (!cpu_have_named_feature(PMULL))
+ return -ENODEV;
+
+ err = crypto_register_shash(&polyval_alg);
+ if (err)
+ goto err_out;
+ err = crypto_register_ahash(&polyval_async_alg);
+ if (err)
+ goto err_shash;
+
+ return 0;
+
+err_shash:
+ crypto_unregister_shash(&polyval_alg);
+err_out:
+ return err;
+}
+
+static void __exit polyval_ce_mod_exit(void)
+{
+ crypto_unregister_ahash(&polyval_async_alg);
+ crypto_unregister_shash(&polyval_alg);
+}
+
+static const struct cpu_feature polyval_cpu_feature[] = {
+ { cpu_feature(PMULL) }, { }
+};
+MODULE_DEVICE_TABLE(cpu, polyval_cpu_feature);
+
+module_init(polyval_ce_mod_init);
+module_exit(polyval_ce_mod_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("POLYVAL hash function accelerated by ARMv8 Crypto Extension");
+MODULE_ALIAS_CRYPTO("polyval");
+MODULE_ALIAS_CRYPTO("polyval-ce");
Add hardware accelerated version of POLYVAL for ARM64 CPUs with Crypto Extension support. This implementation is accelerated using PMULL instructions to perform the finite field computations. For added efficiency, 8 blocks of the message are processed simultaneously by precomputing the first 8 powers of the key. Karatsuba multiplication is used instead of Schoolbook multiplication because it was found to be slightly faster on ARM64 CPUs. Montgomery reduction must be used instead of Barrett reduction due to the difference in modulus between POLYVAL's field and other finite fields. Signed-off-by: Nathan Huckleberry <nhuck@google.com> --- arch/arm64/crypto/Kconfig | 7 + arch/arm64/crypto/Makefile | 3 + arch/arm64/crypto/polyval-ce-core.S | 372 ++++++++++++++++++++++++++++ arch/arm64/crypto/polyval-ce-glue.c | 363 +++++++++++++++++++++++++++ 4 files changed, 745 insertions(+) create mode 100644 arch/arm64/crypto/polyval-ce-core.S create mode 100644 arch/arm64/crypto/polyval-ce-glue.c