From patchwork Wed Apr 27 00:37:57 2022 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Nathan Huckleberry X-Patchwork-Id: 12828115 X-Patchwork-Delegate: herbert@gondor.apana.org.au Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by smtp.lore.kernel.org (Postfix) with ESMTP id D1715C43217 for ; Wed, 27 Apr 2022 00:38:32 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1356419AbiD0Ali (ORCPT ); Tue, 26 Apr 2022 20:41:38 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:57428 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1356393AbiD0Ald (ORCPT ); Tue, 26 Apr 2022 20:41:33 -0400 Received: from mail-yw1-x1149.google.com (mail-yw1-x1149.google.com [IPv6:2607:f8b0:4864:20::1149]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id EEEAB396A1 for ; Tue, 26 Apr 2022 17:38:12 -0700 (PDT) Received: by mail-yw1-x1149.google.com with SMTP id 00721157ae682-2f7c322f770so2198127b3.20 for ; Tue, 26 Apr 2022 17:38:12 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=20210112; h=date:in-reply-to:message-id:mime-version:references:subject:from:to :cc; bh=GZMjdilK/h618/Ds9eLeyvRCVVYe9pQ/diwgYm4f1Og=; b=D2C9xvgOy5MUdqzkvwLQ7hj2ZgrxXbbUoz3XvS3IjGTRATdDg1SJBH0TvXrcOx8c5H dxhAMAOtcenppW8RN7BtPQasXmXJb4cytRqV7F+L15bQhoCB9ihIWPWOCLa1u1M4UiTl LPWbWVZIFKDiZ3WhmacBCZztZMmI1E8rieKrAm/MwFVW66omPVrstIiVL4bYxty1lBC3 Wgy44IEndGo2N9isXpU5cBuwnsGNxmMFlxni2BgNo3dFvQXfXO7mFXcIaAIwKxveUPZW Qgn/RSjQ79gveTnptHCGwKE57aIGJAX2SvM7mtqx9MSPHZ8XmXSMbwuFp88k26voMfLV uGFw== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20210112; h=x-gm-message-state:date:in-reply-to:message-id:mime-version :references:subject:from:to:cc; bh=GZMjdilK/h618/Ds9eLeyvRCVVYe9pQ/diwgYm4f1Og=; b=R1DPX7tOKXu0VC+T0J1L+BCncGn9J+T4e3Tp5DthN1/LMF1uiUyKl4BByApcrQ6Dvo LuCZbcVYulL3h39QaJZzek4v+iCks5DI0s/zQbAlvNtMkl4W+GizBWbaYPxSqVVM2ouQ 8I8CpfSw6xrTnXnDxpPxdreACgICHJmIfJ0XOelSbYLTbXyOK2D2G+EOVpRbgjUdvO0o Hey5DkMCJJQwKVUFGefFb43IB/A/mqWcXAfEwf6k4Rly8fYvmqYLrb0wrfi8Tdlm3skp kcQ26h5uMXLgTmuyxkbJEFFLyHlQxb9J/9WkzduImmXCxSue5yB8C+nNXXnxM9622Co9 3JaQ== X-Gm-Message-State: AOAM533T9Po715C8FypFBGbzgfc/vzTaaWQplpKNZVHB7c9XEXHLiOj8 wliQ16lyCjyMm0E/Kk0SKWbm8ERgIp91bKZVf7chgs1tfehtg2ooqITNjuHcsceHiHvbL7W6poN wSiZLpgWMRHnac9t+vWGS1fW4HFEq56vr3IC01zJsc4lQy/dFowjwYG6UW1uUx0fNskk= X-Google-Smtp-Source: ABdhPJwhecWPIRXS9UUTb28287yVVNh6o/MSI7R8wAStMXQsn7VziCJBIv6wPtCJpGooPqSMVQtOKrrwnA== X-Received: from nhuck.c.googlers.com ([fda3:e722:ac3:cc00:14:4d90:c0a8:39cc]) (user=nhuck job=sendgmr) by 2002:a81:1896:0:b0:2f7:c7d3:61a6 with SMTP id 144-20020a811896000000b002f7c7d361a6mr18414186ywy.287.1651019892081; Tue, 26 Apr 2022 17:38:12 -0700 (PDT) Date: Wed, 27 Apr 2022 00:37:57 +0000 In-Reply-To: <20220427003759.1115361-1-nhuck@google.com> Message-Id: <20220427003759.1115361-7-nhuck@google.com> Mime-Version: 1.0 References: <20220427003759.1115361-1-nhuck@google.com> X-Mailer: git-send-email 2.36.0.rc2.479.g8af0fa9b8e-goog Subject: [PATCH v5 6/8] crypto: x86/polyval: Add PCLMULQDQ accelerated implementation of POLYVAL From: Nathan Huckleberry To: linux-crypto@vger.kernel.org Cc: linux-fscrypt.vger.kernel.org@google.com, Herbert Xu , "David S. Miller" , linux-arm-kernel@lists.infradead.org, Paul Crowley , Eric Biggers , Sami Tolvanen , Ard Biesheuvel , Nathan Huckleberry Precedence: bulk List-ID: X-Mailing-List: linux-crypto@vger.kernel.org Add hardware accelerated version of POLYVAL for x86-64 CPUs with PCLMULQDQ support. This implementation is accelerated using PCLMULQDQ instructions to perform the finite field computations. For added efficiency, 8 blocks of the message are processed simultaneously by precomputing the first 8 powers of the key. Schoolbook multiplication is used instead of Karatsuba multiplication because it was found to be slightly faster on x86-64 machines. Montgomery reduction must be used instead of Barrett reduction due to the difference in modulus between POLYVAL's field and other finite fields. More information on POLYVAL can be found in the HCTR2 paper: Length-preserving encryption with HCTR2: https://eprint.iacr.org/2021/1441.pdf Signed-off-by: Nathan Huckleberry Reviewed-by: Ard Biesheuvel --- arch/x86/crypto/Makefile | 3 + arch/x86/crypto/polyval-clmulni_asm.S | 330 +++++++++++++++++++++++++ arch/x86/crypto/polyval-clmulni_glue.c | 200 +++++++++++++++ crypto/Kconfig | 9 + crypto/polyval-generic.c | 43 +++- include/crypto/polyval.h | 9 + 6 files changed, 591 insertions(+), 3 deletions(-) create mode 100644 arch/x86/crypto/polyval-clmulni_asm.S create mode 100644 arch/x86/crypto/polyval-clmulni_glue.c diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile index 2831685adf6f..b9847152acd8 100644 --- a/arch/x86/crypto/Makefile +++ b/arch/x86/crypto/Makefile @@ -69,6 +69,9 @@ libblake2s-x86_64-y := blake2s-core.o blake2s-glue.o obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o +obj-$(CONFIG_CRYPTO_POLYVAL_CLMUL_NI) += polyval-clmulni.o +polyval-clmulni-y := polyval-clmulni_asm.o polyval-clmulni_glue.o + obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o crc32c-intel-y := crc32c-intel_glue.o crc32c-intel-$(CONFIG_64BIT) += crc32c-pcl-intel-asm_64.o diff --git a/arch/x86/crypto/polyval-clmulni_asm.S b/arch/x86/crypto/polyval-clmulni_asm.S new file mode 100644 index 000000000000..5816045dbd47 --- /dev/null +++ b/arch/x86/crypto/polyval-clmulni_asm.S @@ -0,0 +1,330 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright 2021 Google LLC + */ +/* + * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI + * instructions. It works on 8 blocks at a time, by precomputing the first 8 + * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation + * allows us to split finite field multiplication into two steps. + * + * In the first step, we consider h^i, m_i as normal polynomials of degree less + * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication + * is simply polynomial multiplication. + * + * In the second step, we compute the reduction of p(x) modulo the finite field + * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. + * + * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where + * multiplication is finite field multiplication. The advantage is that the + * two-step process only requires 1 finite field reduction for every 8 + * polynomial multiplications. Further parallelism is gained by interleaving the + * multiplications and polynomial reductions. + */ + +#include +#include + +#define STRIDE_BLOCKS 8 + +#define GSTAR %xmm7 +#define PL %xmm8 +#define PH %xmm9 +#define TMP_XMM %xmm11 +#define LO %xmm12 +#define HI %xmm13 +#define MI %xmm14 +#define SUM %xmm15 + +#define KEY_POWERS %rdi +#define MSG %rsi +#define BLOCKS_LEFT %rdx +#define TMP %rax + +.section .rodata.cst16.gstar, "aM", @progbits, 16 +.align 16 + +.Lgstar: + .quad 0xc200000000000000, 0xc200000000000000 + +.text + +/* + * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length + * count pointed to by MSG and KEY_POWERS. + */ +.macro schoolbook1 count + .set i, 0 + .rept (\count) + schoolbook1_iteration i 0 + .set i, (i +1) + .endr +.endm + +/* + * Computes the product of two 128-bit polynomials at the memory locations + * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of the + * 256-bit product into LO, MI, HI. + * + * The multiplication produces four parts: + * LOW: The polynomial given by performing carryless multiplication of the + * bottom 64-bits of each polynomial + * MID1: The polynomial given by performing carryless multiplication of the + * bottom 64-bits of the first polynomial and the top 64-bits of the second + * MID2: The polynomial given by performing carryless multiplication of the + * bottom 64-bits of the second polynomial and the top 64-bits of the first + * HIGH: The polynomial given by performing carryless multiplication of the + * top 64-bits of each polynomial + * + * We compute: + * LO += LOW + * MI += MID1 + MID2 + * HI += HIGH + * + * LO = [LO_1 : LO_0] + * MI = [MI_1 : MI_0] + * HI = [HI_1 : HI_0] + * + * Later, the 256-bit result can be extracted as: + * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] + * This step is done when computing the polynomial reduction for efficiency + * reasons. + * + * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an + * extra multiplication of SUM and h^8. + */ +.macro schoolbook1_iteration i xor_sum + movups (16*\i)(MSG), %xmm0 + .if (\i == 0 && \xor_sum == 1) + pxor SUM, %xmm0 + .endif + vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 + vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 + vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 + vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 + vpxor %xmm2, MI, MI + vpxor %xmm1, LO, LO + vpxor %xmm4, HI, HI + vpxor %xmm3, MI, MI +.endm + +/* + * Performs the same computation as schoolbook1_iteration, except we expect the + * arguments to already be loaded into xmm0 and xmm1 and we set the result + * registers LO, MI, and HI directly rather than XOR'ing into them. + */ +.macro schoolbook1_noload + vpclmulqdq $0x01, %xmm0, %xmm1, MI + vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 + vpclmulqdq $0x00, %xmm0, %xmm1, LO + vpclmulqdq $0x11, %xmm0, %xmm1, HI + vpxor %xmm2, MI, MI +.endm + +/* + * Computes the 256-bit polynomial represented by LO, HI, MI. Stores + * the result in PL, PH. + * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] + */ +.macro schoolbook2 + vpslldq $8, MI, PL + vpsrldq $8, MI, PH + pxor LO, PL + pxor HI, PH +.endm + +/* + * Computes the 128-bit reduction of PH : PL. Stores the result in dest. + * + * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = + * x^128 + x^127 + x^126 + x^121 + 1. + * + * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the product + * of two 128-bit polynomials in Montgomery form. We need to reduce it mod g(x). + * Also, since polynomials in Montgomery form have an "extra" factor of x^128, + * this product has two extra factors of x^128. To get it back into Montgomery + * form, we need to remove one of these factors by dividing by x^128. + * + * To accomplish both of these goals, we add multiples of g(x) that cancel out + * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low + * bits are zero, the polynomial division by x^128 can be done by right shifting. + * + * Since the only nonzero term in the low 64 bits of g(x) is the constant term, + * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can + * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to + * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T + * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. + * + * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits + * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 + * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * + * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : + * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). + * + * So our final computation is: + * T = T_1 : T_0 = g*(x) * P_0 + * V = V_1 : V_0 = g*(x) * (P_1 + T_0) + * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 + * + * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 + * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : + * T1 into dest. This allows us to reuse P_1 + T_0 when computing V. + */ +.macro montgomery_reduction dest + vpclmulqdq $0x00, GSTAR, PL, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) + pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 + pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 + pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 + pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] + vpxor TMP_XMM, PH, \dest +.endm + +/* + * Compute schoolbook multiplication for 8 blocks + * m_0h^8 + ... + m_7h^1 + * + * If reduce is set, also computes the montgomery reduction of the + * previous full_stride call and XORs with the first message block. + * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. + * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. + */ +.macro full_stride reduce + pxor LO, LO + pxor HI, HI + pxor MI, MI + + schoolbook1_iteration 7 0 + .if \reduce + vpclmulqdq $0x00, GSTAR, PL, TMP_XMM + .endif + + schoolbook1_iteration 6 0 + .if \reduce + pshufd $0b01001110, TMP_XMM, TMP_XMM + .endif + + schoolbook1_iteration 5 0 + .if \reduce + pxor PL, TMP_XMM + .endif + + schoolbook1_iteration 4 0 + .if \reduce + pxor TMP_XMM, PH + .endif + + schoolbook1_iteration 3 0 + .if \reduce + pclmulqdq $0x11, GSTAR, TMP_XMM + .endif + + schoolbook1_iteration 2 0 + .if \reduce + vpxor TMP_XMM, PH, SUM + .endif + + schoolbook1_iteration 1 0 + + schoolbook1_iteration 0 1 + + addq $(8*16), MSG + schoolbook2 +.endm + +/* + * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS + */ +.macro partial_stride + mov BLOCKS_LEFT, TMP + shlq $4, TMP + addq $(16*STRIDE_BLOCKS), KEY_POWERS + subq TMP, KEY_POWERS + + movups (MSG), %xmm0 + pxor SUM, %xmm0 + movaps (KEY_POWERS), %xmm1 + schoolbook1_noload + dec BLOCKS_LEFT + addq $16, MSG + addq $16, KEY_POWERS + + test $4, BLOCKS_LEFT + jz .Lpartial4BlocksDone + schoolbook1 4 + addq $(4*16), MSG + addq $(4*16), KEY_POWERS +.Lpartial4BlocksDone: + test $2, BLOCKS_LEFT + jz .Lpartial2BlocksDone + schoolbook1 2 + addq $(2*16), MSG + addq $(2*16), KEY_POWERS +.Lpartial2BlocksDone: + test $1, BLOCKS_LEFT + jz .LpartialDone + schoolbook1 1 +.LpartialDone: + schoolbook2 + montgomery_reduction SUM +.endm + +/* + * Perform montgomery multiplication in GF(2^128) and store result in op1. + * + * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 + * If op1, op2 are in montgomery form, this computes the montgomery + * form of op1*op2. + * + * void clmul_polyval_mul(u8 *op1, const u8 *op2); + */ +SYM_FUNC_START(clmul_polyval_mul) + FRAME_BEGIN + vmovdqa .Lgstar(%rip), GSTAR + movups (%rdi), %xmm0 + movups (%rsi), %xmm1 + schoolbook1_noload + schoolbook2 + montgomery_reduction SUM + movups SUM, (%rdi) + FRAME_END + RET +SYM_FUNC_END(clmul_polyval_mul) + +/* + * Perform polynomial evaluation as specified by POLYVAL. This computes: + * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} + * where n=nblocks, h is the hash key, and m_i are the message blocks. + * + * rdi - pointer to precomputed key powers h^8 ... h^1 + * rsi - pointer to message blocks + * rdx - number of blocks to hash + * rcx - pointer to the accumulator + * + * void clmul_polyval_update(const struct polyval_tfm_ctx *keys, + * const u8 *in, size_t nblocks, u8 *accumulator); + */ +SYM_FUNC_START(clmul_polyval_update) + FRAME_BEGIN + vmovdqa .Lgstar(%rip), GSTAR + movups (%rcx), SUM + subq $STRIDE_BLOCKS, BLOCKS_LEFT + js .LstrideLoopExit + full_stride 0 + subq $STRIDE_BLOCKS, BLOCKS_LEFT + js .LstrideLoopExitReduce +.LstrideLoop: + full_stride 1 + subq $STRIDE_BLOCKS, BLOCKS_LEFT + jns .LstrideLoop +.LstrideLoopExitReduce: + montgomery_reduction SUM +.LstrideLoopExit: + add $STRIDE_BLOCKS, BLOCKS_LEFT + jz .LskipPartial + partial_stride +.LskipPartial: + movups SUM, (%rcx) + FRAME_END + RET +SYM_FUNC_END(clmul_polyval_update) diff --git a/arch/x86/crypto/polyval-clmulni_glue.c b/arch/x86/crypto/polyval-clmulni_glue.c new file mode 100644 index 000000000000..53d145c5bd40 --- /dev/null +++ b/arch/x86/crypto/polyval-clmulni_glue.c @@ -0,0 +1,200 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Accelerated POLYVAL implementation with Intel PCLMULQDQ-NI + * instructions. This file contains glue code. + * + * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen + * Copyright (c) 2009 Intel Corp. + * Author: Huang Ying + * Copyright 2021 Google LLC + */ +/* + * Glue code based on ghash-clmulni-intel_glue.c. + * + * This implementation of POLYVAL uses montgomery multiplication + * accelerated by PCLMULQDQ-NI to implement the finite field + * operations. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define NUM_KEY_POWERS 8 + +struct polyval_tfm_ctx { + /* + * These powers must be in the order h^8, ..., h^1. + */ + u8 key_powers[NUM_KEY_POWERS][POLYVAL_BLOCK_SIZE]; +}; + +struct polyval_desc_ctx { + u8 buffer[POLYVAL_BLOCK_SIZE]; + u32 bytes; +}; + +asmlinkage void clmul_polyval_update(const struct polyval_tfm_ctx *keys, + const u8 *in, size_t nblocks, u8 *accumulator); +asmlinkage void clmul_polyval_mul(u8 *op1, const u8 *op2); + +static void internal_polyval_update(const struct polyval_tfm_ctx *keys, + const u8 *in, size_t nblocks, u8 *accumulator) +{ + if (likely(crypto_simd_usable())) { + kernel_fpu_begin(); + clmul_polyval_update(keys, in, nblocks, accumulator); + kernel_fpu_end(); + } else { + polyval_update_non4k(keys->key_powers[NUM_KEY_POWERS-1], in, + nblocks, accumulator); + } +} + +static void internal_polyval_mul(u8 *op1, const u8 *op2) +{ + if (likely(crypto_simd_usable())) { + kernel_fpu_begin(); + clmul_polyval_mul(op1, op2); + kernel_fpu_end(); + } else { + polyval_mul_non4k(op1, op2); + } +} + +static int polyval_x86_setkey(struct crypto_shash *tfm, + const u8 *key, unsigned int keylen) +{ + struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm); + int i; + + if (keylen != POLYVAL_BLOCK_SIZE) + return -EINVAL; + + memcpy(ctx->key_powers[NUM_KEY_POWERS-1], key, + POLYVAL_BLOCK_SIZE); + + for (i = NUM_KEY_POWERS-2; i >= 0; i--) { + memcpy(ctx->key_powers[i], key, POLYVAL_BLOCK_SIZE); + internal_polyval_mul(ctx->key_powers[i], ctx->key_powers[i+1]); + } + + return 0; +} + +static int polyval_x86_init(struct shash_desc *desc) +{ + struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); + + memset(dctx, 0, sizeof(*dctx)); + + return 0; +} + +static int polyval_x86_update(struct shash_desc *desc, + const u8 *src, unsigned int srclen) +{ + struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); + const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); + u8 *pos; + unsigned int nblocks; + int n; + + if (dctx->bytes) { + n = min(srclen, dctx->bytes); + pos = dctx->buffer + POLYVAL_BLOCK_SIZE - dctx->bytes; + + dctx->bytes -= n; + srclen -= n; + + while (n--) + *pos++ ^= *src++; + + if (!dctx->bytes) + internal_polyval_mul(dctx->buffer, + ctx->key_powers[NUM_KEY_POWERS-1]); + } + + nblocks = srclen/POLYVAL_BLOCK_SIZE; + internal_polyval_update(ctx, src, nblocks, dctx->buffer); + srclen -= nblocks*POLYVAL_BLOCK_SIZE; + + if (srclen) { + dctx->bytes = POLYVAL_BLOCK_SIZE - srclen; + src += nblocks*POLYVAL_BLOCK_SIZE; + pos = dctx->buffer; + while (srclen--) + *pos++ ^= *src++; + } + + return 0; +} + +static int polyval_x86_final(struct shash_desc *desc, u8 *dst) +{ + struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); + const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); + + if (dctx->bytes) { + internal_polyval_mul(dctx->buffer, + ctx->key_powers[NUM_KEY_POWERS-1]); + } + + dctx->bytes = 0; + memcpy(dst, dctx->buffer, POLYVAL_BLOCK_SIZE); + + return 0; +} + +static struct shash_alg polyval_alg = { + .digestsize = POLYVAL_DIGEST_SIZE, + .init = polyval_x86_init, + .update = polyval_x86_update, + .final = polyval_x86_final, + .setkey = polyval_x86_setkey, + .descsize = sizeof(struct polyval_desc_ctx), + .base = { + .cra_name = "polyval", + .cra_driver_name = "polyval-clmulni", + .cra_priority = 200, + .cra_blocksize = POLYVAL_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct polyval_tfm_ctx), + .cra_module = THIS_MODULE, + }, +}; + +static const struct x86_cpu_id pcmul_cpu_id[] = { + X86_MATCH_FEATURE(X86_FEATURE_PCLMULQDQ, NULL), /* Pickle-Mickle-Duck */ + {} +}; +MODULE_DEVICE_TABLE(x86cpu, pcmul_cpu_id); + +static int __init polyval_clmulni_mod_init(void) +{ + if (!x86_match_cpu(pcmul_cpu_id)) + return -ENODEV; + + return crypto_register_shash(&polyval_alg); +} + +static void __exit polyval_clmulni_mod_exit(void) +{ + crypto_unregister_shash(&polyval_alg); +} + +module_init(polyval_clmulni_mod_init); +module_exit(polyval_clmulni_mod_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("POLYVAL hash function accelerated by PCLMULQDQ-NI"); +MODULE_ALIAS_CRYPTO("polyval"); +MODULE_ALIAS_CRYPTO("polyval-clmulni"); diff --git a/crypto/Kconfig b/crypto/Kconfig index aa06af0e0ebe..e5ccc43b6775 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -787,6 +787,15 @@ config CRYPTO_POLYVAL POLYVAL is the hash function used in HCTR2. It is not a general-purpose cryptographic hash function. +config CRYPTO_POLYVAL_CLMUL_NI + tristate "POLYVAL hash function (CLMUL-NI accelerated)" + depends on X86 && 64BIT + select CRYPTO_POLYVAL + help + This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is + used to efficiently implement HCTR2 on x86-64 processors that support + carry-less multiplication instructions. + config CRYPTO_POLY1305 tristate "Poly1305 authenticator algorithm" select CRYPTO_HASH diff --git a/crypto/polyval-generic.c b/crypto/polyval-generic.c index bf2b03b7bfc0..4f712b480cdd 100644 --- a/crypto/polyval-generic.c +++ b/crypto/polyval-generic.c @@ -46,7 +46,6 @@ #include #include -#include #include #include #include @@ -66,8 +65,8 @@ struct polyval_desc_ctx { u32 bytes; }; -static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], - const u8 src[POLYVAL_BLOCK_SIZE]) +void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], + const u8 src[POLYVAL_BLOCK_SIZE]) { u64 a = get_unaligned((const u64 *)&src[0]); u64 b = get_unaligned((const u64 *)&src[8]); @@ -76,6 +75,44 @@ static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], put_unaligned(swab64(b), (u64 *)&dst[0]); } +/* + * Performs multiplication in the POLYVAL field using the GHASH field as a + * subroutine. This function is used as a fallback for hardware accelerated + * implementations when simd registers are unavailable. + * + * Note: This function is not used for polyval-generic, instead we use the 4k + * lookup table implementation for finite field multiplication. + */ +void polyval_mul_non4k(u8 *op1, const u8 *op2) +{ + be128 a, b; + + // Assume one argument is in Montgomery form and one is not. + copy_and_reverse((u8 *)&a, op1); + copy_and_reverse((u8 *)&b, op2); + gf128mul_x_lle(&a, &a); + gf128mul_lle(&a, &b); + copy_and_reverse(op1, (u8 *)&a); +} + +/* + * Perform a POLYVAL update using non4k multiplication. This function is used + * as a fallback for hardware accelerated implementations when simd registers + * are unavailable. + * + * Note: This function is not used for polyval-generic, instead we use the 4k + * lookup table implementation of finite field multiplication. + */ +void polyval_update_non4k(const u8 *key, const u8 *in, + size_t nblocks, u8 *accumulator) +{ + while (nblocks--) { + crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE); + polyval_mul_non4k(accumulator, key); + in += POLYVAL_BLOCK_SIZE; + } +} + static int polyval_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { diff --git a/include/crypto/polyval.h b/include/crypto/polyval.h index b14c38aa9166..bf64fb6c665f 100644 --- a/include/crypto/polyval.h +++ b/include/crypto/polyval.h @@ -8,10 +8,19 @@ #ifndef _CRYPTO_POLYVAL_H #define _CRYPTO_POLYVAL_H +#include #include #include #define POLYVAL_BLOCK_SIZE 16 #define POLYVAL_DIGEST_SIZE 16 +void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], + const u8 src[POLYVAL_BLOCK_SIZE]); + +void polyval_mul_non4k(u8 *op1, const u8 *op2); + +void polyval_update_non4k(const u8 *key, const u8 *in, + size_t nblocks, u8 *accumulator); + #endif