@@ -46,11 +46,11 @@ obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha-x86_64.o
chacha-x86_64-y := chacha-avx2-x86_64.o chacha-ssse3-x86_64.o chacha_glue.o
chacha-x86_64-$(CONFIG_AS_AVX512) += chacha-avx512vl-x86_64.o
obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o
-aesni-intel-$(CONFIG_64BIT) += aes_ctrby8_avx-x86_64.o \
+aesni-intel-$(CONFIG_64BIT) += aes-ctr-avx-x86_64.o \
aes-gcm-aesni-x86_64.o \
aes-xts-avx-x86_64.o
ifeq ($(CONFIG_AS_VAES)$(CONFIG_AS_VPCLMULQDQ),yy)
aesni-intel-$(CONFIG_64BIT) += aes-gcm-avx10-x86_64.o
endif
new file mode 100644
@@ -0,0 +1,556 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+//
+// Copyright 2025 Google LLC
+//
+// Author: Eric Biggers <ebiggers@google.com>
+//
+// This file contains x86_64 assembly implementations of AES-CTR and AES-XCTR
+// using the following sets of CPU features:
+// - AES-NI && AVX
+// - VAES && AVX2
+// - VAES && (AVX10/256 || (AVX512BW && AVX512VL)) && BMI2
+// - VAES && (AVX10/512 || (AVX512BW && AVX512VL)) && BMI2
+//
+// See the function definitions at the bottom of the file for more information.
+
+#include <linux/linkage.h>
+#include <linux/cfi_types.h>
+
+.section .rodata
+.p2align 4
+
+.Lbswap_mask:
+ .octa 0x000102030405060708090a0b0c0d0e0f
+
+.Lctr_pattern:
+ .quad 0, 0
+.Lone:
+ .quad 1, 0
+.Ltwo:
+ .quad 2, 0
+ .quad 3, 0
+
+.Lfour:
+ .quad 4, 0
+
+.text
+
+// Move a vector between memory and a register.
+// The register operand must be in the first 16 vector registers.
+.macro _vmovdqu src, dst
+.if VL < 64
+ vmovdqu \src, \dst
+.else
+ vmovdqu8 \src, \dst
+.endif
+.endm
+
+// Move a vector between registers.
+// The registers must be in the first 16 vector registers.
+.macro _vmovdqa src, dst
+.if VL < 64
+ vmovdqa \src, \dst
+.else
+ vmovdqa64 \src, \dst
+.endif
+.endm
+
+// Broadcast a 128-bit value from memory to all 128-bit lanes of a vector
+// register. The register operand must be in the first 16 vector registers.
+.macro _vbroadcast128 src, dst
+.if VL == 16
+ vmovdqu \src, \dst
+.elseif VL == 32
+ vbroadcasti128 \src, \dst
+.else
+ vbroadcasti32x4 \src, \dst
+.endif
+.endm
+
+// XOR two vectors together.
+// Any register operands must be in the first 16 vector registers.
+.macro _vpxor src1, src2, dst
+.if VL < 64
+ vpxor \src1, \src2, \dst
+.else
+ vpxord \src1, \src2, \dst
+.endif
+.endm
+
+// Load 1 <= %ecx <= 15 bytes from the pointer \src into the xmm register \dst
+// and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}.
+.macro _load_partial_block src, dst, tmp64, tmp32
+ sub $8, %ecx // LEN - 8
+ jle .Lle8\@
+
+ // Load 9 <= LEN <= 15 bytes.
+ vmovq (\src), \dst // Load first 8 bytes
+ mov (\src, %rcx), %rax // Load last 8 bytes
+ neg %ecx
+ shl $3, %ecx
+ shr %cl, %rax // Discard overlapping bytes
+ vpinsrq $1, %rax, \dst, \dst
+ jmp .Ldone\@
+
+.Lle8\@:
+ add $4, %ecx // LEN - 4
+ jl .Llt4\@
+
+ // Load 4 <= LEN <= 8 bytes.
+ mov (\src), %eax // Load first 4 bytes
+ mov (\src, %rcx), \tmp32 // Load last 4 bytes
+ jmp .Lcombine\@
+
+.Llt4\@:
+ // Load 1 <= LEN <= 3 bytes.
+ add $2, %ecx // LEN - 2
+ movzbl (\src), %eax // Load first byte
+ jl .Lmovq\@
+ movzwl (\src, %rcx), \tmp32 // Load last 2 bytes
+.Lcombine\@:
+ shl $3, %ecx
+ shl %cl, \tmp64
+ or \tmp64, %rax // Combine the two parts
+.Lmovq\@:
+ vmovq %rax, \dst
+.Ldone\@:
+.endm
+
+// Store 1 <= %ecx <= 15 bytes from the xmm register \src to the pointer \dst.
+// Clobbers %rax, %rcx, and \tmp{64,32}.
+.macro _store_partial_block src, dst, tmp64, tmp32
+ sub $8, %ecx // LEN - 8
+ jl .Llt8\@
+
+ // Store 8 <= LEN <= 15 bytes.
+ vpextrq $1, \src, %rax
+ mov %ecx, \tmp32
+ shl $3, %ecx
+ ror %cl, %rax
+ mov %rax, (\dst, \tmp64) // Store last LEN - 8 bytes
+ vmovq \src, (\dst) // Store first 8 bytes
+ jmp .Ldone\@
+
+.Llt8\@:
+ add $4, %ecx // LEN - 4
+ jl .Llt4\@
+
+ // Store 4 <= LEN <= 7 bytes.
+ vpextrd $1, \src, %eax
+ mov %ecx, \tmp32
+ shl $3, %ecx
+ ror %cl, %eax
+ mov %eax, (\dst, \tmp64) // Store last LEN - 4 bytes
+ vmovd \src, (\dst) // Store first 4 bytes
+ jmp .Ldone\@
+
+.Llt4\@:
+ // Store 1 <= LEN <= 3 bytes.
+ vpextrb $0, \src, 0(\dst)
+ cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2?
+ jl .Ldone\@
+ vpextrb $1, \src, 1(\dst)
+ je .Ldone\@
+ vpextrb $2, \src, 2(\dst)
+.Ldone\@:
+.endm
+
+// Prepare the next two vectors of AES inputs in AESDATA\i0 and AESDATA\i1 and
+// XOR each with the zero-th round key. Also update LE_CTR if !\final.
+.macro _prepare_2_ctr_vecs is_xctr, i0, i1, final=0
+.if \is_xctr
+ .if USE_AVX10
+ _vmovdqa LE_CTR, AESDATA\i0
+ vpternlogd $0x96, XCTR_IV, RNDKEY0, AESDATA\i0
+ .else
+ vpxor XCTR_IV, LE_CTR, AESDATA\i0
+ vpxor RNDKEY0, AESDATA\i0, AESDATA\i0
+ .endif
+ vpaddq LE_CTR_INC1, LE_CTR, AESDATA\i1
+
+ .if USE_AVX10
+ vpternlogd $0x96, XCTR_IV, RNDKEY0, AESDATA\i1
+ .else
+ vpxor XCTR_IV, AESDATA\i1, AESDATA\i1
+ vpxor RNDKEY0, AESDATA\i1, AESDATA\i1
+ .endif
+.else
+ vpshufb BSWAP_MASK, LE_CTR, AESDATA\i0
+ _vpxor RNDKEY0, AESDATA\i0, AESDATA\i0
+ vpaddq LE_CTR_INC1, LE_CTR, AESDATA\i1
+ vpshufb BSWAP_MASK, AESDATA\i1, AESDATA\i1
+ _vpxor RNDKEY0, AESDATA\i1, AESDATA\i1
+.endif
+.if !\final
+ vpaddq LE_CTR_INC2, LE_CTR, LE_CTR
+.endif
+.endm
+
+// Do all AES rounds on the data in the given AESDATA vectors, excluding the
+// zero-th and last round.
+.macro _aesenc_loop vecs
+ mov KEY, %rax
+1:
+ _vbroadcast128 (%rax), RNDKEY
+.irp i, \vecs
+ vaesenc RNDKEY, AESDATA\i, AESDATA\i
+.endr
+ add $16, %rax
+ cmp %rax, RNDKEYLAST_PTR
+ jne 1b
+.endm
+
+// Finalize the keystream blocks in the given AESDATA vectors by doing the last
+// AES round, then XOR those keystream blocks with the corresponding data.
+// Reduce latency by doing the XOR before the vaesenclast, utilizing the
+// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
+.macro _aesenclast_and_xor vecs
+.irp i, \vecs
+ _vpxor \i*VL(SRC), RNDKEYLAST, RNDKEY
+ vaesenclast RNDKEY, AESDATA\i, AESDATA\i
+.endr
+.irp i, \vecs
+ _vmovdqu AESDATA\i, \i*VL(DST)
+.endr
+.endm
+
+// XOR the keystream blocks in the specified AESDATA vectors with the
+// corresponding data.
+.macro _xor_data vecs
+.irp i, \vecs
+ _vpxor \i*VL(SRC), AESDATA\i, AESDATA\i
+.endr
+.irp i, \vecs
+ _vmovdqu AESDATA\i, \i*VL(DST)
+.endr
+.endm
+
+.macro _aes_ctr_crypt is_xctr
+
+ // Define register aliases V0-V15 that map to the xmm, ymm, or zmm
+ // registers according to the selected Vector Length (VL).
+.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
+ .if VL == 16
+ .set V\i, %xmm\i
+ .elseif VL == 32
+ .set V\i, %ymm\i
+ .elseif VL == 64
+ .set V\i, %zmm\i
+ .else
+ .error "Unsupported Vector Length (VL)"
+ .endif
+.endr
+
+ // Function arguments
+ .set KEY, %rdi // Initially points to the start of the
+ // crypto_aes_ctx, then is advanced to
+ // point to the index 1 round key
+ .set KEY32, %edi // Available as temp register after all
+ // keystream blocks have been generated
+ .set SRC, %rsi // Pointer to next source data
+ .set DST, %rdx // Pointer to next destination data
+ .set LEN, %ecx // Remaining length in bytes.
+ // Note: _load_partial_block relies on
+ // this being in %ecx.
+ .set LEN64, %rcx // Zero-extend LEN before using!
+ .set LEN8, %cl
+.if \is_xctr
+ .set XCTR_IV_PTR, %r8 // const u8 iv[AES_BLOCK_SIZE];
+ .set XCTR_CTR, %r9 // u64 ctr;
+ .set LE_CTR_PTR, nil
+.else
+ .set LE_CTR_PTR, %r8 // const u64 le_ctr[2];
+ .set XCTR_IV_PTR, nil
+ .set XCTR_CTR, nil
+.endif
+
+ // Additional local variables
+ .set RNDKEYLAST_PTR, %r10
+ .set AESDATA0, V0
+ .set AESDATA0_XMM, %xmm0
+ .set AESDATA1, V1
+ .set AESDATA1_XMM, %xmm1
+ .set AESDATA2, V2
+ .set AESDATA3, V3
+ .set AESDATA4, V4
+ .set AESDATA5, V5
+ .set AESDATA6, V6
+ .set AESDATA7, V7
+.if \is_xctr
+ .set XCTR_IV, V8
+ .set BSWAP_MASK, nil
+.else
+ .set BSWAP_MASK, V8
+.endif
+ .set LE_CTR, V9
+ .set LE_CTR_XMM, %xmm9
+ .set LE_CTR_INC1, V10
+ .set LE_CTR_INC2, V11
+ .set RNDKEY0, V12
+ .set RNDKEYLAST, V13
+ .set RNDKEY, V14
+
+ // Create the first vector of counters.
+.if \is_xctr
+ .if VL == 16
+ vmovq XCTR_CTR, LE_CTR
+ .elseif VL == 32
+ vmovq XCTR_CTR, LE_CTR_XMM
+ inc XCTR_CTR
+ vmovq XCTR_CTR, AESDATA0_XMM
+ vinserti128 $1, AESDATA0_XMM, LE_CTR, LE_CTR
+ .else
+ vpbroadcastq XCTR_CTR, LE_CTR
+ vpsrldq $8, LE_CTR, LE_CTR
+ vpaddq .Lctr_pattern(%rip), LE_CTR, LE_CTR
+ .endif
+ _vbroadcast128 (XCTR_IV_PTR), XCTR_IV
+.else
+ _vbroadcast128 (LE_CTR_PTR), LE_CTR
+ .if VL > 16
+ vpaddq .Lctr_pattern(%rip), LE_CTR, LE_CTR
+ .endif
+ _vbroadcast128 .Lbswap_mask(%rip), BSWAP_MASK
+.endif
+
+.if VL == 16
+ _vbroadcast128 .Lone(%rip), LE_CTR_INC1
+.elseif VL == 32
+ _vbroadcast128 .Ltwo(%rip), LE_CTR_INC1
+.else
+ _vbroadcast128 .Lfour(%rip), LE_CTR_INC1
+.endif
+ vpsllq $1, LE_CTR_INC1, LE_CTR_INC2
+
+ // Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
+ movl 480(KEY), %eax
+
+ // Compute the pointer to the last round key.
+ lea 6*16(KEY, %rax, 4), RNDKEYLAST_PTR
+
+ // Load the zero-th and last round keys.
+ _vbroadcast128 (KEY), RNDKEY0
+ _vbroadcast128 (RNDKEYLAST_PTR), RNDKEYLAST
+
+ // Make KEY point to the first round key.
+ add $16, KEY
+
+ // This is the main loop, which encrypts 8 vectors of data at a time.
+ add $-8*VL, LEN
+ jl .Lloop_8x_done\@
+.Lloop_8x\@:
+ _prepare_2_ctr_vecs \is_xctr, 0, 1
+ _prepare_2_ctr_vecs \is_xctr, 2, 3
+ _prepare_2_ctr_vecs \is_xctr, 4, 5
+ _prepare_2_ctr_vecs \is_xctr, 6, 7
+ _aesenc_loop "0,1,2,3,4,5,6,7"
+ _aesenclast_and_xor "0,1,2,3,4,5,6,7"
+ sub $-8*VL, SRC
+ sub $-8*VL, DST
+ add $-8*VL, LEN
+ jge .Lloop_8x\@
+.Lloop_8x_done\@:
+ sub $-8*VL, LEN
+ jz .Ldone\@
+
+ // 1 <= LEN < 8*VL. Generate 2, 4, 8 more vectors of keystream blocks,
+ // depending on the remaining LEN.
+
+ _prepare_2_ctr_vecs \is_xctr, 0, 1
+ _prepare_2_ctr_vecs \is_xctr, 2, 3
+ cmp $4*VL, LEN
+ jle .Lenc_tail_atmost4vecs\@
+
+ // 4*VL < LEN < 8*VL. Generate 8 vectors of keystream blocks. Use the
+ // first 4 to XOR 4 full vectors of data. Then XOR the remaining data.
+ _prepare_2_ctr_vecs \is_xctr, 4, 5
+ _prepare_2_ctr_vecs \is_xctr, 6, 7, final=1
+ _aesenc_loop "0,1,2,3,4,5,6,7"
+ _aesenclast_and_xor "0,1,2,3"
+ vaesenclast RNDKEYLAST, AESDATA4, AESDATA0
+ vaesenclast RNDKEYLAST, AESDATA5, AESDATA1
+ vaesenclast RNDKEYLAST, AESDATA6, AESDATA2
+ vaesenclast RNDKEYLAST, AESDATA7, AESDATA3
+ sub $-4*VL, SRC
+ sub $-4*VL, DST
+ add $-4*VL, LEN
+ cmp $1*VL-1, LEN
+ jle .Lxor_tail_partial_vec_0\@
+ _xor_data "0"
+ cmp $2*VL-1, LEN
+ jle .Lxor_tail_partial_vec_1\@
+ _xor_data "1"
+ cmp $3*VL-1, LEN
+ jle .Lxor_tail_partial_vec_2\@
+ _xor_data "2"
+ cmp $4*VL-1, LEN
+ jle .Lxor_tail_partial_vec_3\@
+ _xor_data "3"
+ jmp .Ldone\@
+
+.Lenc_tail_atmost4vecs\@:
+ cmp $2*VL, LEN
+ jle .Lenc_tail_atmost2vecs\@
+
+ // 2*VL < LEN <= 4*VL. Generate 4 vectors of keystream blocks. Use the
+ // first 2 to XOR 2 full vectors of data. Then XOR the remaining data.
+ _aesenc_loop "0,1,2,3"
+ _aesenclast_and_xor "0,1"
+ vaesenclast RNDKEYLAST, AESDATA2, AESDATA0
+ vaesenclast RNDKEYLAST, AESDATA3, AESDATA1
+ sub $-2*VL, SRC
+ sub $-2*VL, DST
+ add $-2*VL, LEN
+ jmp .Lxor_tail_upto2vecs\@
+
+.Lenc_tail_atmost2vecs\@:
+ // 1 <= LEN <= 2*VL. Generate 2 vectors of keystream blocks. Then XOR
+ // the remaining data.
+ _aesenc_loop "0,1"
+.irp i, 0,1
+ vaesenclast RNDKEYLAST, AESDATA\i, AESDATA\i
+.endr
+
+.Lxor_tail_upto2vecs\@:
+ cmp $1*VL-1, LEN
+ jle .Lxor_tail_partial_vec_0\@
+ _xor_data "0"
+ cmp $2*VL-1, LEN
+ jle .Lxor_tail_partial_vec_1\@
+ _xor_data "1"
+ jmp .Ldone\@
+
+.Lxor_tail_partial_vec_1\@:
+ add $-1*VL, LEN
+ jz .Ldone\@
+ sub $-1*VL, SRC
+ sub $-1*VL, DST
+ _vmovdqa AESDATA1, AESDATA0
+ jmp .Lxor_tail_partial_vec_0\@
+
+.Lxor_tail_partial_vec_2\@:
+ add $-2*VL, LEN
+ jz .Ldone\@
+ sub $-2*VL, SRC
+ sub $-2*VL, DST
+ _vmovdqa AESDATA2, AESDATA0
+ jmp .Lxor_tail_partial_vec_0\@
+
+.Lxor_tail_partial_vec_3\@:
+ add $-3*VL, LEN
+ jz .Ldone\@
+ sub $-3*VL, SRC
+ sub $-3*VL, DST
+ _vmovdqa AESDATA3, AESDATA0
+
+.Lxor_tail_partial_vec_0\@:
+ // XOR the remaining 1 <= LEN < VL bytes. It's easy if masked
+ // loads/stores are available; otherwise it's a bit harder...
+.if USE_AVX10
+ .if VL <= 32
+ mov $-1, %eax
+ bzhi LEN, %eax, %eax
+ kmovd %eax, %k1
+ .else
+ mov $-1, %rax
+ bzhi LEN64, %rax, %rax
+ kmovq %rax, %k1
+ .endif
+ vmovdqu8 (SRC), AESDATA1{%k1}{z}
+ _vpxor AESDATA1, AESDATA0, AESDATA0
+ vmovdqu8 AESDATA0, (DST){%k1}
+.else
+ .if VL == 32
+ cmp $16, LEN
+ jl 1f
+ vpxor (SRC), AESDATA0_XMM, AESDATA1_XMM
+ vmovdqu AESDATA1_XMM, (DST)
+ add $16, SRC
+ add $16, DST
+ sub $16, LEN
+ jz .Ldone\@
+ vextracti128 $1, AESDATA0, AESDATA0_XMM
+1:
+ .endif
+ mov LEN, %r10d
+ _load_partial_block SRC, AESDATA1_XMM, KEY, KEY32
+ vpxor AESDATA1_XMM, AESDATA0_XMM, AESDATA0_XMM
+ mov %r10d, %ecx
+ _store_partial_block AESDATA0_XMM, DST, KEY, KEY32
+.endif
+
+.Ldone\@:
+.if VL > 16
+ vzeroupper
+.endif
+ RET
+.endm
+
+// Below are the definitions of the functions generated by the above macro.
+// They have the following prototypes:
+//
+//
+// void aes_ctr64_crypt_##suffix(const struct crypto_aes_ctx *key,
+// const u8 *src, u8 *dst, int len,
+// const u64 le_ctr[2]);
+//
+// void aes_xctr_crypt_##suffix(const struct crypto_aes_ctx *key,
+// const u8 *src, u8 *dst, int len,
+// const u8 iv[AES_BLOCK_SIZE], u64 ctr);
+//
+// Both functions generate |len| bytes of keystream, XOR it with the data from
+// |src|, and write the result to |dst|. On non-final calls, |len| must be a
+// multiple of 16. On the final call, |len| can be any value.
+//
+// aes_ctr64_crypt_* implement "regular" CTR, where the keystream is generated
+// from a 128-bit big endian block counter. HOWEVER, to keep the assembly code
+// simple, some of the counter management is left to the caller.
+// aes_ctr64_crypt_* take the counter in little endian form, only increment the
+// low 64 bits internally, and don't write the updated counter back to memory.
+// The caller is responsible for converting the starting IV to the little endian
+// le_ctr, detecting the (very rare) case of a carry out of the low 64 bits
+// being needed and splitting at that point with a carry done in between, and
+// updating le_ctr after each part if the message is multi-part.
+//
+// aes_xctr_crypt_* implement XCTR as specified in "Length-preserving encryption
+// with HCTR2" (https://eprint.iacr.org/2021/1441.pdf). XCTR is an
+// easier-to-implement variant of CTR that uses little endian byte order and
+// eliminates carries. |ctr| is the per-message block counter starting at 1.
+
+.set VL, 16
+.set USE_AVX10, 0
+SYM_TYPED_FUNC_START(aes_ctr64_crypt_aesni_avx)
+ _aes_ctr_crypt 0
+SYM_FUNC_END(aes_ctr64_crypt_aesni_avx)
+SYM_TYPED_FUNC_START(aes_xctr_crypt_aesni_avx)
+ _aes_ctr_crypt 1
+SYM_FUNC_END(aes_xctr_crypt_aesni_avx)
+
+#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
+.set VL, 32
+.set USE_AVX10, 0
+SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx2)
+ _aes_ctr_crypt 0
+SYM_FUNC_END(aes_ctr64_crypt_vaes_avx2)
+SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx2)
+ _aes_ctr_crypt 1
+SYM_FUNC_END(aes_xctr_crypt_vaes_avx2)
+
+.set VL, 32
+.set USE_AVX10, 1
+SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx10_256)
+ _aes_ctr_crypt 0
+SYM_FUNC_END(aes_ctr64_crypt_vaes_avx10_256)
+SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx10_256)
+ _aes_ctr_crypt 1
+SYM_FUNC_END(aes_xctr_crypt_vaes_avx10_256)
+
+.set VL, 64
+.set USE_AVX10, 1
+SYM_TYPED_FUNC_START(aes_ctr64_crypt_vaes_avx10_512)
+ _aes_ctr_crypt 0
+SYM_FUNC_END(aes_ctr64_crypt_vaes_avx10_512)
+SYM_TYPED_FUNC_START(aes_xctr_crypt_vaes_avx10_512)
+ _aes_ctr_crypt 1
+SYM_FUNC_END(aes_xctr_crypt_vaes_avx10_512)
+#endif // CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ
deleted file mode 100644
@@ -1,597 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause */
-/*
- * AES CTR mode by8 optimization with AVX instructions. (x86_64)
- *
- * Copyright(c) 2014 Intel Corporation.
- *
- * Contact Information:
- * James Guilford <james.guilford@intel.com>
- * Sean Gulley <sean.m.gulley@intel.com>
- * Chandramouli Narayanan <mouli@linux.intel.com>
- */
-/*
- * This is AES128/192/256 CTR mode optimization implementation. It requires
- * the support of Intel(R) AESNI and AVX instructions.
- *
- * This work was inspired by the AES CTR mode optimization published
- * in Intel Optimized IPSEC Cryptographic library.
- * Additional information on it can be found at:
- * https://github.com/intel/intel-ipsec-mb
- */
-
-#include <linux/linkage.h>
-
-#define VMOVDQ vmovdqu
-
-/*
- * Note: the "x" prefix in these aliases means "this is an xmm register". The
- * alias prefixes have no relation to XCTR where the "X" prefix means "XOR
- * counter".
- */
-#define xdata0 %xmm0
-#define xdata1 %xmm1
-#define xdata2 %xmm2
-#define xdata3 %xmm3
-#define xdata4 %xmm4
-#define xdata5 %xmm5
-#define xdata6 %xmm6
-#define xdata7 %xmm7
-#define xcounter %xmm8 // CTR mode only
-#define xiv %xmm8 // XCTR mode only
-#define xbyteswap %xmm9 // CTR mode only
-#define xtmp %xmm9 // XCTR mode only
-#define xkey0 %xmm10
-#define xkey4 %xmm11
-#define xkey8 %xmm12
-#define xkey12 %xmm13
-#define xkeyA %xmm14
-#define xkeyB %xmm15
-
-#define p_in %rdi
-#define p_iv %rsi
-#define p_keys %rdx
-#define p_out %rcx
-#define num_bytes %r8
-#define counter %r9 // XCTR mode only
-#define tmp %r10
-#define DDQ_DATA 0
-#define XDATA 1
-#define KEY_128 1
-#define KEY_192 2
-#define KEY_256 3
-
-.section .rodata
-.align 16
-
-byteswap_const:
- .octa 0x000102030405060708090A0B0C0D0E0F
-ddq_low_msk:
- .octa 0x0000000000000000FFFFFFFFFFFFFFFF
-ddq_high_add_1:
- .octa 0x00000000000000010000000000000000
-ddq_add_1:
- .octa 0x00000000000000000000000000000001
-ddq_add_2:
- .octa 0x00000000000000000000000000000002
-ddq_add_3:
- .octa 0x00000000000000000000000000000003
-ddq_add_4:
- .octa 0x00000000000000000000000000000004
-ddq_add_5:
- .octa 0x00000000000000000000000000000005
-ddq_add_6:
- .octa 0x00000000000000000000000000000006
-ddq_add_7:
- .octa 0x00000000000000000000000000000007
-ddq_add_8:
- .octa 0x00000000000000000000000000000008
-
-.text
-
-/* generate a unique variable for ddq_add_x */
-
-/* generate a unique variable for xmm register */
-.macro setxdata n
- var_xdata = %xmm\n
-.endm
-
-/* club the numeric 'id' to the symbol 'name' */
-
-.macro club name, id
-.altmacro
- .if \name == XDATA
- setxdata %\id
- .endif
-.noaltmacro
-.endm
-
-/*
- * do_aes num_in_par load_keys key_len
- * This increments p_in, but not p_out
- */
-.macro do_aes b, k, key_len, xctr
- .set by, \b
- .set load_keys, \k
- .set klen, \key_len
-
- .if (load_keys)
- vmovdqa 0*16(p_keys), xkey0
- .endif
-
- .if \xctr
- movq counter, xtmp
- .set i, 0
- .rept (by)
- club XDATA, i
- vpaddq (ddq_add_1 + 16 * i)(%rip), xtmp, var_xdata
- .set i, (i +1)
- .endr
- .set i, 0
- .rept (by)
- club XDATA, i
- vpxor xiv, var_xdata, var_xdata
- .set i, (i +1)
- .endr
- .else
- vpshufb xbyteswap, xcounter, xdata0
- .set i, 1
- .rept (by - 1)
- club XDATA, i
- vpaddq (ddq_add_1 + 16 * (i - 1))(%rip), xcounter, var_xdata
- vptest ddq_low_msk(%rip), var_xdata
- jnz 1f
- vpaddq ddq_high_add_1(%rip), var_xdata, var_xdata
- vpaddq ddq_high_add_1(%rip), xcounter, xcounter
- 1:
- vpshufb xbyteswap, var_xdata, var_xdata
- .set i, (i +1)
- .endr
- .endif
-
- vmovdqa 1*16(p_keys), xkeyA
-
- vpxor xkey0, xdata0, xdata0
- .if \xctr
- add $by, counter
- .else
- vpaddq (ddq_add_1 + 16 * (by - 1))(%rip), xcounter, xcounter
- vptest ddq_low_msk(%rip), xcounter
- jnz 1f
- vpaddq ddq_high_add_1(%rip), xcounter, xcounter
- 1:
- .endif
-
- .set i, 1
- .rept (by - 1)
- club XDATA, i
- vpxor xkey0, var_xdata, var_xdata
- .set i, (i +1)
- .endr
-
- vmovdqa 2*16(p_keys), xkeyB
-
- .set i, 0
- .rept by
- club XDATA, i
- vaesenc xkeyA, var_xdata, var_xdata /* key 1 */
- .set i, (i +1)
- .endr
-
- .if (klen == KEY_128)
- .if (load_keys)
- vmovdqa 3*16(p_keys), xkey4
- .endif
- .else
- vmovdqa 3*16(p_keys), xkeyA
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- vaesenc xkeyB, var_xdata, var_xdata /* key 2 */
- .set i, (i +1)
- .endr
-
- add $(16*by), p_in
-
- .if (klen == KEY_128)
- vmovdqa 4*16(p_keys), xkeyB
- .else
- .if (load_keys)
- vmovdqa 4*16(p_keys), xkey4
- .endif
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 3 */
- .if (klen == KEY_128)
- vaesenc xkey4, var_xdata, var_xdata
- .else
- vaesenc xkeyA, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- vmovdqa 5*16(p_keys), xkeyA
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 4 */
- .if (klen == KEY_128)
- vaesenc xkeyB, var_xdata, var_xdata
- .else
- vaesenc xkey4, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- .if (klen == KEY_128)
- .if (load_keys)
- vmovdqa 6*16(p_keys), xkey8
- .endif
- .else
- vmovdqa 6*16(p_keys), xkeyB
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- vaesenc xkeyA, var_xdata, var_xdata /* key 5 */
- .set i, (i +1)
- .endr
-
- vmovdqa 7*16(p_keys), xkeyA
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 6 */
- .if (klen == KEY_128)
- vaesenc xkey8, var_xdata, var_xdata
- .else
- vaesenc xkeyB, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- .if (klen == KEY_128)
- vmovdqa 8*16(p_keys), xkeyB
- .else
- .if (load_keys)
- vmovdqa 8*16(p_keys), xkey8
- .endif
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- vaesenc xkeyA, var_xdata, var_xdata /* key 7 */
- .set i, (i +1)
- .endr
-
- .if (klen == KEY_128)
- .if (load_keys)
- vmovdqa 9*16(p_keys), xkey12
- .endif
- .else
- vmovdqa 9*16(p_keys), xkeyA
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 8 */
- .if (klen == KEY_128)
- vaesenc xkeyB, var_xdata, var_xdata
- .else
- vaesenc xkey8, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- vmovdqa 10*16(p_keys), xkeyB
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 9 */
- .if (klen == KEY_128)
- vaesenc xkey12, var_xdata, var_xdata
- .else
- vaesenc xkeyA, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- .if (klen != KEY_128)
- vmovdqa 11*16(p_keys), xkeyA
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 10 */
- .if (klen == KEY_128)
- vaesenclast xkeyB, var_xdata, var_xdata
- .else
- vaesenc xkeyB, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- .if (klen != KEY_128)
- .if (load_keys)
- vmovdqa 12*16(p_keys), xkey12
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- vaesenc xkeyA, var_xdata, var_xdata /* key 11 */
- .set i, (i +1)
- .endr
-
- .if (klen == KEY_256)
- vmovdqa 13*16(p_keys), xkeyA
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- .if (klen == KEY_256)
- /* key 12 */
- vaesenc xkey12, var_xdata, var_xdata
- .else
- vaesenclast xkey12, var_xdata, var_xdata
- .endif
- .set i, (i +1)
- .endr
-
- .if (klen == KEY_256)
- vmovdqa 14*16(p_keys), xkeyB
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 13 */
- vaesenc xkeyA, var_xdata, var_xdata
- .set i, (i +1)
- .endr
-
- .set i, 0
- .rept by
- club XDATA, i
- /* key 14 */
- vaesenclast xkeyB, var_xdata, var_xdata
- .set i, (i +1)
- .endr
- .endif
- .endif
-
- .set i, 0
- .rept (by / 2)
- .set j, (i+1)
- VMOVDQ (i*16 - 16*by)(p_in), xkeyA
- VMOVDQ (j*16 - 16*by)(p_in), xkeyB
- club XDATA, i
- vpxor xkeyA, var_xdata, var_xdata
- club XDATA, j
- vpxor xkeyB, var_xdata, var_xdata
- .set i, (i+2)
- .endr
-
- .if (i < by)
- VMOVDQ (i*16 - 16*by)(p_in), xkeyA
- club XDATA, i
- vpxor xkeyA, var_xdata, var_xdata
- .endif
-
- .set i, 0
- .rept by
- club XDATA, i
- VMOVDQ var_xdata, i*16(p_out)
- .set i, (i+1)
- .endr
-.endm
-
-.macro do_aes_load val, key_len, xctr
- do_aes \val, 1, \key_len, \xctr
-.endm
-
-.macro do_aes_noload val, key_len, xctr
- do_aes \val, 0, \key_len, \xctr
-.endm
-
-/* main body of aes ctr load */
-
-.macro do_aes_ctrmain key_len, xctr
- cmp $16, num_bytes
- jb .Ldo_return2\xctr\key_len
-
- .if \xctr
- shr $4, counter
- vmovdqu (p_iv), xiv
- .else
- vmovdqa byteswap_const(%rip), xbyteswap
- vmovdqu (p_iv), xcounter
- vpshufb xbyteswap, xcounter, xcounter
- .endif
-
- mov num_bytes, tmp
- and $(7*16), tmp
- jz .Lmult_of_8_blks\xctr\key_len
-
- /* 1 <= tmp <= 7 */
- cmp $(4*16), tmp
- jg .Lgt4\xctr\key_len
- je .Leq4\xctr\key_len
-
-.Llt4\xctr\key_len:
- cmp $(2*16), tmp
- jg .Leq3\xctr\key_len
- je .Leq2\xctr\key_len
-
-.Leq1\xctr\key_len:
- do_aes_load 1, \key_len, \xctr
- add $(1*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-.Leq2\xctr\key_len:
- do_aes_load 2, \key_len, \xctr
- add $(2*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-
-.Leq3\xctr\key_len:
- do_aes_load 3, \key_len, \xctr
- add $(3*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-.Leq4\xctr\key_len:
- do_aes_load 4, \key_len, \xctr
- add $(4*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-.Lgt4\xctr\key_len:
- cmp $(6*16), tmp
- jg .Leq7\xctr\key_len
- je .Leq6\xctr\key_len
-
-.Leq5\xctr\key_len:
- do_aes_load 5, \key_len, \xctr
- add $(5*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-.Leq6\xctr\key_len:
- do_aes_load 6, \key_len, \xctr
- add $(6*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-.Leq7\xctr\key_len:
- do_aes_load 7, \key_len, \xctr
- add $(7*16), p_out
- and $(~7*16), num_bytes
- jz .Ldo_return2\xctr\key_len
- jmp .Lmain_loop2\xctr\key_len
-
-.Lmult_of_8_blks\xctr\key_len:
- .if (\key_len != KEY_128)
- vmovdqa 0*16(p_keys), xkey0
- vmovdqa 4*16(p_keys), xkey4
- vmovdqa 8*16(p_keys), xkey8
- vmovdqa 12*16(p_keys), xkey12
- .else
- vmovdqa 0*16(p_keys), xkey0
- vmovdqa 3*16(p_keys), xkey4
- vmovdqa 6*16(p_keys), xkey8
- vmovdqa 9*16(p_keys), xkey12
- .endif
-.align 16
-.Lmain_loop2\xctr\key_len:
- /* num_bytes is a multiple of 8 and >0 */
- do_aes_noload 8, \key_len, \xctr
- add $(8*16), p_out
- sub $(8*16), num_bytes
- jne .Lmain_loop2\xctr\key_len
-
-.Ldo_return2\xctr\key_len:
- .if !\xctr
- /* return updated IV */
- vpshufb xbyteswap, xcounter, xcounter
- vmovdqu xcounter, (p_iv)
- .endif
- RET
-.endm
-
-/*
- * routine to do AES128 CTR enc/decrypt "by8"
- * XMM registers are clobbered.
- * Saving/restoring must be done at a higher level
- * aes_ctr_enc_128_avx_by8(void *in, void *iv, void *keys, void *out,
- * unsigned int num_bytes)
- */
-SYM_FUNC_START(aes_ctr_enc_128_avx_by8)
- /* call the aes main loop */
- do_aes_ctrmain KEY_128 0
-
-SYM_FUNC_END(aes_ctr_enc_128_avx_by8)
-
-/*
- * routine to do AES192 CTR enc/decrypt "by8"
- * XMM registers are clobbered.
- * Saving/restoring must be done at a higher level
- * aes_ctr_enc_192_avx_by8(void *in, void *iv, void *keys, void *out,
- * unsigned int num_bytes)
- */
-SYM_FUNC_START(aes_ctr_enc_192_avx_by8)
- /* call the aes main loop */
- do_aes_ctrmain KEY_192 0
-
-SYM_FUNC_END(aes_ctr_enc_192_avx_by8)
-
-/*
- * routine to do AES256 CTR enc/decrypt "by8"
- * XMM registers are clobbered.
- * Saving/restoring must be done at a higher level
- * aes_ctr_enc_256_avx_by8(void *in, void *iv, void *keys, void *out,
- * unsigned int num_bytes)
- */
-SYM_FUNC_START(aes_ctr_enc_256_avx_by8)
- /* call the aes main loop */
- do_aes_ctrmain KEY_256 0
-
-SYM_FUNC_END(aes_ctr_enc_256_avx_by8)
-
-/*
- * routine to do AES128 XCTR enc/decrypt "by8"
- * XMM registers are clobbered.
- * Saving/restoring must be done at a higher level
- * aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv, const void *keys,
- * u8* out, unsigned int num_bytes, unsigned int byte_ctr)
- */
-SYM_FUNC_START(aes_xctr_enc_128_avx_by8)
- /* call the aes main loop */
- do_aes_ctrmain KEY_128 1
-
-SYM_FUNC_END(aes_xctr_enc_128_avx_by8)
-
-/*
- * routine to do AES192 XCTR enc/decrypt "by8"
- * XMM registers are clobbered.
- * Saving/restoring must be done at a higher level
- * aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv, const void *keys,
- * u8* out, unsigned int num_bytes, unsigned int byte_ctr)
- */
-SYM_FUNC_START(aes_xctr_enc_192_avx_by8)
- /* call the aes main loop */
- do_aes_ctrmain KEY_192 1
-
-SYM_FUNC_END(aes_xctr_enc_192_avx_by8)
-
-/*
- * routine to do AES256 XCTR enc/decrypt "by8"
- * XMM registers are clobbered.
- * Saving/restoring must be done at a higher level
- * aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv, const void *keys,
- * u8* out, unsigned int num_bytes, unsigned int byte_ctr)
- */
-SYM_FUNC_START(aes_xctr_enc_256_avx_by8)
- /* call the aes main loop */
- do_aes_ctrmain KEY_256 1
-
-SYM_FUNC_END(aes_xctr_enc_256_avx_by8)
@@ -21,11 +21,10 @@
#include <linux/types.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
-#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/simd.h>
@@ -79,37 +78,10 @@ asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
-#ifdef CONFIG_X86_64
-
-asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
- const u8 *in, unsigned int len, u8 *iv);
-DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
-
-asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
- void *keys, u8 *out, unsigned int num_bytes);
-asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
- void *keys, u8 *out, unsigned int num_bytes);
-asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
- void *keys, u8 *out, unsigned int num_bytes);
-
-
-asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv,
- const void *keys, u8 *out, unsigned int num_bytes,
- unsigned int byte_ctr);
-
-asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv,
- const void *keys, u8 *out, unsigned int num_bytes,
- unsigned int byte_ctr);
-
-asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv,
- const void *keys, u8 *out, unsigned int num_bytes,
- unsigned int byte_ctr);
-#endif
-
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
return aes_align_addr(raw_ctx);
}
@@ -373,116 +345,10 @@ static int cts_cbc_decrypt(struct skcipher_request *req)
kernel_fpu_end();
return skcipher_walk_done(&walk, 0);
}
-#ifdef CONFIG_X86_64
-static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
- const u8 *in, unsigned int len, u8 *iv)
-{
- /*
- * based on key length, override with the by8 version
- * of ctr mode encryption/decryption for improved performance
- * aes_set_key_common() ensures that key length is one of
- * {128,192,256}
- */
- if (ctx->key_length == AES_KEYSIZE_128)
- aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
- else if (ctx->key_length == AES_KEYSIZE_192)
- aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
- else
- aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
-}
-
-static int ctr_crypt(struct skcipher_request *req)
-{
- struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
- struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
- u8 keystream[AES_BLOCK_SIZE];
- struct skcipher_walk walk;
- unsigned int nbytes;
- int err;
-
- err = skcipher_walk_virt(&walk, req, false);
-
- while ((nbytes = walk.nbytes) > 0) {
- kernel_fpu_begin();
- if (nbytes & AES_BLOCK_MASK)
- static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
- walk.src.virt.addr,
- nbytes & AES_BLOCK_MASK,
- walk.iv);
- nbytes &= ~AES_BLOCK_MASK;
-
- if (walk.nbytes == walk.total && nbytes > 0) {
- aesni_enc(ctx, keystream, walk.iv);
- crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
- walk.src.virt.addr + walk.nbytes - nbytes,
- keystream, nbytes);
- crypto_inc(walk.iv, AES_BLOCK_SIZE);
- nbytes = 0;
- }
- kernel_fpu_end();
- err = skcipher_walk_done(&walk, nbytes);
- }
- return err;
-}
-
-static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
- const u8 *in, unsigned int len, u8 *iv,
- unsigned int byte_ctr)
-{
- if (ctx->key_length == AES_KEYSIZE_128)
- aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len,
- byte_ctr);
- else if (ctx->key_length == AES_KEYSIZE_192)
- aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len,
- byte_ctr);
- else
- aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len,
- byte_ctr);
-}
-
-static int xctr_crypt(struct skcipher_request *req)
-{
- struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
- struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
- u8 keystream[AES_BLOCK_SIZE];
- struct skcipher_walk walk;
- unsigned int nbytes;
- unsigned int byte_ctr = 0;
- int err;
- __le32 block[AES_BLOCK_SIZE / sizeof(__le32)];
-
- err = skcipher_walk_virt(&walk, req, false);
-
- while ((nbytes = walk.nbytes) > 0) {
- kernel_fpu_begin();
- if (nbytes & AES_BLOCK_MASK)
- aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr,
- walk.src.virt.addr, nbytes & AES_BLOCK_MASK,
- walk.iv, byte_ctr);
- nbytes &= ~AES_BLOCK_MASK;
- byte_ctr += walk.nbytes - nbytes;
-
- if (walk.nbytes == walk.total && nbytes > 0) {
- memcpy(block, walk.iv, AES_BLOCK_SIZE);
- block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE);
- aesni_enc(ctx, keystream, (u8 *)block);
- crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes -
- nbytes, walk.src.virt.addr + walk.nbytes
- - nbytes, keystream, nbytes);
- byte_ctr += nbytes;
- nbytes = 0;
- }
- kernel_fpu_end();
- err = skcipher_walk_done(&walk, nbytes);
- }
- return err;
-}
-#endif
-
static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
int err;
@@ -713,29 +579,10 @@ static struct skcipher_alg aesni_skciphers[] = {
.ivsize = AES_BLOCK_SIZE,
.walksize = 2 * AES_BLOCK_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = cts_cbc_encrypt,
.decrypt = cts_cbc_decrypt,
-#ifdef CONFIG_X86_64
- }, {
- .base = {
- .cra_name = "__ctr(aes)",
- .cra_driver_name = "__ctr-aes-aesni",
- .cra_priority = 400,
- .cra_flags = CRYPTO_ALG_INTERNAL,
- .cra_blocksize = 1,
- .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
- .cra_module = THIS_MODULE,
- },
- .min_keysize = AES_MIN_KEY_SIZE,
- .max_keysize = AES_MAX_KEY_SIZE,
- .ivsize = AES_BLOCK_SIZE,
- .chunksize = AES_BLOCK_SIZE,
- .setkey = aesni_skcipher_setkey,
- .encrypt = ctr_crypt,
- .decrypt = ctr_crypt,
-#endif
}, {
.base = {
.cra_name = "__xts(aes)",
.cra_driver_name = "__xts-aes-aesni",
.cra_priority = 401,
@@ -756,39 +603,109 @@ static struct skcipher_alg aesni_skciphers[] = {
static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
#ifdef CONFIG_X86_64
-/*
- * XCTR does not have a non-AVX implementation, so it must be enabled
- * conditionally.
- */
-static struct skcipher_alg aesni_xctr = {
- .base = {
- .cra_name = "__xctr(aes)",
- .cra_driver_name = "__xctr-aes-aesni",
- .cra_priority = 400,
- .cra_flags = CRYPTO_ALG_INTERNAL,
- .cra_blocksize = 1,
- .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
- .cra_module = THIS_MODULE,
- },
- .min_keysize = AES_MIN_KEY_SIZE,
- .max_keysize = AES_MAX_KEY_SIZE,
- .ivsize = AES_BLOCK_SIZE,
- .chunksize = AES_BLOCK_SIZE,
- .setkey = aesni_skcipher_setkey,
- .encrypt = xctr_crypt,
- .decrypt = xctr_crypt,
-};
-
-static struct simd_skcipher_alg *aesni_simd_xctr;
-
asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
u8 iv[AES_BLOCK_SIZE]);
-#define DEFINE_XTS_ALG(suffix, driver_name, priority) \
+/* __always_inline to avoid indirect call */
+static __always_inline int
+ctr_crypt(struct skcipher_request *req,
+ void (*ctr64_func)(const struct crypto_aes_ctx *key,
+ const u8 *src, u8 *dst, int len,
+ const u64 le_ctr[2]))
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *key = aes_ctx(crypto_skcipher_ctx(tfm));
+ unsigned int nbytes, p1_nbytes, nblocks;
+ struct skcipher_walk walk;
+ u64 le_ctr[2];
+ u64 ctr64;
+ int err;
+
+ ctr64 = le_ctr[0] = get_unaligned_be64(&req->iv[8]);
+ le_ctr[1] = get_unaligned_be64(&req->iv[0]);
+
+ err = skcipher_walk_virt(&walk, req, false);
+
+ while ((nbytes = walk.nbytes) != 0) {
+ if (nbytes < walk.total) {
+ /* Not the end yet, so keep the length block-aligned. */
+ nbytes = round_down(nbytes, AES_BLOCK_SIZE);
+ nblocks = nbytes / AES_BLOCK_SIZE;
+ } else {
+ /* It's the end, so include any final partial block. */
+ nblocks = DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
+ }
+ ctr64 += nblocks;
+
+ kernel_fpu_begin();
+ if (likely(ctr64 >= nblocks)) {
+ /* The low 64 bits of the counter won't overflow. */
+ (*ctr64_func)(key, walk.src.virt.addr,
+ walk.dst.virt.addr, nbytes, le_ctr);
+ } else {
+ /*
+ * The low 64 bits of the counter will overflow. The
+ * assembly doesn't handle this case, so split the
+ * operation into two at the point where the overflow
+ * will occur. After the first part, add the carry bit.
+ */
+ p1_nbytes = min_t(unsigned int, nbytes,
+ (nblocks - ctr64) * AES_BLOCK_SIZE);
+ (*ctr64_func)(key, walk.src.virt.addr,
+ walk.dst.virt.addr, p1_nbytes, le_ctr);
+ le_ctr[0] = 0;
+ le_ctr[1]++;
+ (*ctr64_func)(key, walk.src.virt.addr + p1_nbytes,
+ walk.dst.virt.addr + p1_nbytes,
+ nbytes - p1_nbytes, le_ctr);
+ }
+ kernel_fpu_end();
+ le_ctr[0] = ctr64;
+
+ err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
+ }
+
+ put_unaligned_be64(ctr64, &req->iv[8]);
+ put_unaligned_be64(le_ctr[1], &req->iv[0]);
+
+ return err;
+}
+
+/* __always_inline to avoid indirect call */
+static __always_inline int
+xctr_crypt(struct skcipher_request *req,
+ void (*xctr_func)(const struct crypto_aes_ctx *key,
+ const u8 *src, u8 *dst, int len,
+ const u8 iv[AES_BLOCK_SIZE], u64 ctr))
+{
+ struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+ const struct crypto_aes_ctx *key = aes_ctx(crypto_skcipher_ctx(tfm));
+ struct skcipher_walk walk;
+ unsigned int nbytes;
+ u64 ctr = 1;
+ int err;
+
+ err = skcipher_walk_virt(&walk, req, false);
+ while ((nbytes = walk.nbytes) != 0) {
+ if (nbytes < walk.total)
+ nbytes = round_down(nbytes, AES_BLOCK_SIZE);
+
+ kernel_fpu_begin();
+ (*xctr_func)(key, walk.src.virt.addr, walk.dst.virt.addr,
+ nbytes, req->iv, ctr);
+ kernel_fpu_end();
+
+ ctr += DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
+ err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
+ }
+ return err;
+}
+
+#define DEFINE_AVX_SKCIPHER_ALGS(suffix, driver_name_suffix, priority) \
\
asmlinkage void \
aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \
u8 *dst, int len, u8 tweak[AES_BLOCK_SIZE]); \
asmlinkage void \
@@ -803,36 +720,84 @@ static int xts_encrypt_##suffix(struct skcipher_request *req) \
static int xts_decrypt_##suffix(struct skcipher_request *req) \
{ \
return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix); \
} \
\
-static struct skcipher_alg aes_xts_alg_##suffix = { \
- .base = { \
- .cra_name = "__xts(aes)", \
- .cra_driver_name = "__" driver_name, \
- .cra_priority = priority, \
- .cra_flags = CRYPTO_ALG_INTERNAL, \
- .cra_blocksize = AES_BLOCK_SIZE, \
- .cra_ctxsize = XTS_AES_CTX_SIZE, \
- .cra_module = THIS_MODULE, \
- }, \
- .min_keysize = 2 * AES_MIN_KEY_SIZE, \
- .max_keysize = 2 * AES_MAX_KEY_SIZE, \
- .ivsize = AES_BLOCK_SIZE, \
- .walksize = 2 * AES_BLOCK_SIZE, \
- .setkey = xts_setkey_aesni, \
- .encrypt = xts_encrypt_##suffix, \
- .decrypt = xts_decrypt_##suffix, \
-}; \
+asmlinkage void \
+aes_ctr64_crypt_##suffix(const struct crypto_aes_ctx *key, \
+ const u8 *src, u8 *dst, int len, const u64 le_ctr[2]);\
+ \
+static int ctr_crypt_##suffix(struct skcipher_request *req) \
+{ \
+ return ctr_crypt(req, aes_ctr64_crypt_##suffix); \
+} \
+ \
+asmlinkage void \
+aes_xctr_crypt_##suffix(const struct crypto_aes_ctx *key, \
+ const u8 *src, u8 *dst, int len, \
+ const u8 iv[AES_BLOCK_SIZE], u64 ctr); \
\
-static struct simd_skcipher_alg *aes_xts_simdalg_##suffix
+static int xctr_crypt_##suffix(struct skcipher_request *req) \
+{ \
+ return xctr_crypt(req, aes_xctr_crypt_##suffix); \
+} \
+ \
+static struct skcipher_alg skcipher_algs_##suffix[] = {{ \
+ .base.cra_name = "__xts(aes)", \
+ .base.cra_driver_name = "__xts-aes-" driver_name_suffix, \
+ .base.cra_priority = priority, \
+ .base.cra_flags = CRYPTO_ALG_INTERNAL, \
+ .base.cra_blocksize = AES_BLOCK_SIZE, \
+ .base.cra_ctxsize = XTS_AES_CTX_SIZE, \
+ .base.cra_module = THIS_MODULE, \
+ .min_keysize = 2 * AES_MIN_KEY_SIZE, \
+ .max_keysize = 2 * AES_MAX_KEY_SIZE, \
+ .ivsize = AES_BLOCK_SIZE, \
+ .walksize = 2 * AES_BLOCK_SIZE, \
+ .setkey = xts_setkey_aesni, \
+ .encrypt = xts_encrypt_##suffix, \
+ .decrypt = xts_decrypt_##suffix, \
+}, { \
+ .base.cra_name = "__ctr(aes)", \
+ .base.cra_driver_name = "__ctr-aes-" driver_name_suffix, \
+ .base.cra_priority = priority, \
+ .base.cra_flags = CRYPTO_ALG_INTERNAL, \
+ .base.cra_blocksize = 1, \
+ .base.cra_ctxsize = CRYPTO_AES_CTX_SIZE, \
+ .base.cra_module = THIS_MODULE, \
+ .min_keysize = AES_MIN_KEY_SIZE, \
+ .max_keysize = AES_MAX_KEY_SIZE, \
+ .ivsize = AES_BLOCK_SIZE, \
+ .chunksize = AES_BLOCK_SIZE, \
+ .setkey = aesni_skcipher_setkey, \
+ .encrypt = ctr_crypt_##suffix, \
+ .decrypt = ctr_crypt_##suffix, \
+}, { \
+ .base.cra_name = "__xctr(aes)", \
+ .base.cra_driver_name = "__xctr-aes-" driver_name_suffix, \
+ .base.cra_priority = priority, \
+ .base.cra_flags = CRYPTO_ALG_INTERNAL, \
+ .base.cra_blocksize = 1, \
+ .base.cra_ctxsize = CRYPTO_AES_CTX_SIZE, \
+ .base.cra_module = THIS_MODULE, \
+ .min_keysize = AES_MIN_KEY_SIZE, \
+ .max_keysize = AES_MAX_KEY_SIZE, \
+ .ivsize = AES_BLOCK_SIZE, \
+ .chunksize = AES_BLOCK_SIZE, \
+ .setkey = aesni_skcipher_setkey, \
+ .encrypt = xctr_crypt_##suffix, \
+ .decrypt = xctr_crypt_##suffix, \
+}}; \
+ \
+static struct simd_skcipher_alg * \
+simd_skcipher_algs_##suffix[ARRAY_SIZE(skcipher_algs_##suffix)]
-DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500);
+DEFINE_AVX_SKCIPHER_ALGS(aesni_avx, "aesni-avx", 500);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
-DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600);
-DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700);
-DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800);
+DEFINE_AVX_SKCIPHER_ALGS(vaes_avx2, "vaes-avx2", 600);
+DEFINE_AVX_SKCIPHER_ALGS(vaes_avx10_256, "vaes-avx10_256", 700);
+DEFINE_AVX_SKCIPHER_ALGS(vaes_avx10_512, "vaes-avx10_512", 800);
#endif
/* The common part of the x86_64 AES-GCM key struct */
struct aes_gcm_key {
/* Expanded AES key and the AES key length in bytes */
@@ -1560,40 +1525,49 @@ static int __init register_avx_algs(void)
{
int err;
if (!boot_cpu_has(X86_FEATURE_AVX))
return 0;
- err = simd_register_skciphers_compat(&aes_xts_alg_aesni_avx, 1,
- &aes_xts_simdalg_aesni_avx);
+ err = simd_register_skciphers_compat(skcipher_algs_aesni_avx,
+ ARRAY_SIZE(skcipher_algs_aesni_avx),
+ simd_skcipher_algs_aesni_avx);
if (err)
return err;
err = simd_register_aeads_compat(aes_gcm_algs_aesni_avx,
ARRAY_SIZE(aes_gcm_algs_aesni_avx),
aes_gcm_simdalgs_aesni_avx);
if (err)
return err;
+ /*
+ * Note: not all the algorithms registered below actually require
+ * VPCLMULQDQ. But in practice every CPU with VAES also has VPCLMULQDQ.
+ * Similarly, the assembler support was added at about the same time.
+ * For simplicity, just always check for VAES and VPCLMULQDQ together.
+ */
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
if (!boot_cpu_has(X86_FEATURE_AVX2) ||
!boot_cpu_has(X86_FEATURE_VAES) ||
!boot_cpu_has(X86_FEATURE_VPCLMULQDQ) ||
!boot_cpu_has(X86_FEATURE_PCLMULQDQ) ||
!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL))
return 0;
- err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1,
- &aes_xts_simdalg_vaes_avx2);
+ err = simd_register_skciphers_compat(skcipher_algs_vaes_avx2,
+ ARRAY_SIZE(skcipher_algs_vaes_avx2),
+ simd_skcipher_algs_vaes_avx2);
if (err)
return err;
if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
!boot_cpu_has(X86_FEATURE_AVX512VL) ||
!boot_cpu_has(X86_FEATURE_BMI2) ||
!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
XFEATURE_MASK_AVX512, NULL))
return 0;
- err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1,
- &aes_xts_simdalg_vaes_avx10_256);
+ err = simd_register_skciphers_compat(skcipher_algs_vaes_avx10_256,
+ ARRAY_SIZE(skcipher_algs_vaes_avx10_256),
+ simd_skcipher_algs_vaes_avx10_256);
if (err)
return err;
err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_256,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
aes_gcm_simdalgs_vaes_avx10_256);
@@ -1601,17 +1575,19 @@ static int __init register_avx_algs(void)
return err;
if (x86_match_cpu(zmm_exclusion_list)) {
int i;
- aes_xts_alg_vaes_avx10_512.base.cra_priority = 1;
+ for (i = 0; i < ARRAY_SIZE(skcipher_algs_vaes_avx10_512); i++)
+ skcipher_algs_vaes_avx10_512[i].base.cra_priority = 1;
for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512); i++)
aes_gcm_algs_vaes_avx10_512[i].base.cra_priority = 1;
}
- err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1,
- &aes_xts_simdalg_vaes_avx10_512);
+ err = simd_register_skciphers_compat(skcipher_algs_vaes_avx10_512,
+ ARRAY_SIZE(skcipher_algs_vaes_avx10_512),
+ simd_skcipher_algs_vaes_avx10_512);
if (err)
return err;
err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_512,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
aes_gcm_simdalgs_vaes_avx10_512);
@@ -1621,31 +1597,35 @@ static int __init register_avx_algs(void)
return 0;
}
static void unregister_avx_algs(void)
{
- if (aes_xts_simdalg_aesni_avx)
- simd_unregister_skciphers(&aes_xts_alg_aesni_avx, 1,
- &aes_xts_simdalg_aesni_avx);
+ if (simd_skcipher_algs_aesni_avx[0])
+ simd_unregister_skciphers(skcipher_algs_aesni_avx,
+ ARRAY_SIZE(skcipher_algs_aesni_avx),
+ simd_skcipher_algs_aesni_avx);
if (aes_gcm_simdalgs_aesni_avx[0])
simd_unregister_aeads(aes_gcm_algs_aesni_avx,
ARRAY_SIZE(aes_gcm_algs_aesni_avx),
aes_gcm_simdalgs_aesni_avx);
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
- if (aes_xts_simdalg_vaes_avx2)
- simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1,
- &aes_xts_simdalg_vaes_avx2);
- if (aes_xts_simdalg_vaes_avx10_256)
- simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1,
- &aes_xts_simdalg_vaes_avx10_256);
+ if (simd_skcipher_algs_vaes_avx2[0])
+ simd_unregister_skciphers(skcipher_algs_vaes_avx2,
+ ARRAY_SIZE(skcipher_algs_vaes_avx2),
+ simd_skcipher_algs_vaes_avx2);
+ if (simd_skcipher_algs_vaes_avx10_256[0])
+ simd_unregister_skciphers(skcipher_algs_vaes_avx10_256,
+ ARRAY_SIZE(skcipher_algs_vaes_avx10_256),
+ simd_skcipher_algs_vaes_avx10_256);
if (aes_gcm_simdalgs_vaes_avx10_256[0])
simd_unregister_aeads(aes_gcm_algs_vaes_avx10_256,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
aes_gcm_simdalgs_vaes_avx10_256);
- if (aes_xts_simdalg_vaes_avx10_512)
- simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1,
- &aes_xts_simdalg_vaes_avx10_512);
+ if (simd_skcipher_algs_vaes_avx10_512[0])
+ simd_unregister_skciphers(skcipher_algs_vaes_avx10_512,
+ ARRAY_SIZE(skcipher_algs_vaes_avx10_512),
+ simd_skcipher_algs_vaes_avx10_512);
if (aes_gcm_simdalgs_vaes_avx10_512[0])
simd_unregister_aeads(aes_gcm_algs_vaes_avx10_512,
ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
aes_gcm_simdalgs_vaes_avx10_512);
#endif
@@ -1674,17 +1654,10 @@ static int __init aesni_init(void)
{
int err;
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
-#ifdef CONFIG_X86_64
- if (boot_cpu_has(X86_FEATURE_AVX)) {
- /* optimize performance of ctr mode encryption transform */
- static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
- pr_info("AES CTR mode by8 optimization enabled\n");
- }
-#endif /* CONFIG_X86_64 */
err = crypto_register_alg(&aesni_cipher_alg);
if (err)
return err;
@@ -1698,31 +1671,18 @@ static int __init aesni_init(void)
ARRAY_SIZE(aes_gcm_algs_aesni),
aes_gcm_simdalgs_aesni);
if (err)
goto unregister_skciphers;
-#ifdef CONFIG_X86_64
- if (boot_cpu_has(X86_FEATURE_AVX))
- err = simd_register_skciphers_compat(&aesni_xctr, 1,
- &aesni_simd_xctr);
- if (err)
- goto unregister_aeads;
-#endif /* CONFIG_X86_64 */
-
err = register_avx_algs();
if (err)
goto unregister_avx;
return 0;
unregister_avx:
unregister_avx_algs();
-#ifdef CONFIG_X86_64
- if (aesni_simd_xctr)
- simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
-unregister_aeads:
-#endif /* CONFIG_X86_64 */
simd_unregister_aeads(aes_gcm_algs_aesni,
ARRAY_SIZE(aes_gcm_algs_aesni),
aes_gcm_simdalgs_aesni);
unregister_skciphers:
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
@@ -1738,14 +1698,10 @@ static void __exit aesni_exit(void)
ARRAY_SIZE(aes_gcm_algs_aesni),
aes_gcm_simdalgs_aesni);
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
aesni_simd_skciphers);
crypto_unregister_alg(&aesni_cipher_alg);
-#ifdef CONFIG_X86_64
- if (boot_cpu_has(X86_FEATURE_AVX))
- simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
-#endif /* CONFIG_X86_64 */
unregister_avx_algs();
}
module_init(aesni_init);
module_exit(aesni_exit);