@@ -100,6 +100,17 @@ config FSL_DMA
EloPlus is on mpc85xx and mpc86xx and Pxxx parts, and the Elo3 is on
some Txxx and Bxxx parts.
+config FSL_RAID
+ tristate "Freescale RAID engine Support"
+ depends on FSL_SOC && !FSL_DMA
+ select DMA_ENGINE
+ select DMA_ENGINE_RAID
+ ---help---
+ Enable support for Freescale RAID Engine. RAID Engine is
+ available on some QorIQ SoCs (like P5020). It has
+ the capability to offload memcpy, xor and pq computation
+ for raid5/6.
+
config MPC512X_DMA
tristate "Freescale MPC512x built-in DMA engine support"
depends on PPC_MPC512x || PPC_MPC831x
@@ -44,3 +44,4 @@ obj-$(CONFIG_DMA_JZ4740) += dma-jz4740.o
obj-$(CONFIG_TI_CPPI41) += cppi41.o
obj-$(CONFIG_K3_DMA) += k3dma.o
obj-$(CONFIG_MOXART_DMA) += moxart-dma.o
+obj-$(CONFIG_FSL_RAID) += fsl_raid.o
new file mode 100644
@@ -0,0 +1,894 @@
+/*
+ * drivers/dma/fsl_raid.c
+ *
+ * Freescale RAID Engine device driver
+ *
+ * Author:
+ * Harninder Rai <harninder.rai@freescale.com>
+ * Naveen Burmi <naveenburmi@freescale.com>
+ *
+ * Rewrite:
+ * Xuelin Shi <xuelin.shi@freescale.com>
+ *
+ * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Freescale Semiconductor nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * ALTERNATIVELY, this software may be distributed under the terms of the
+ * GNU General Public License ("GPL") as published by the Free Software
+ * Foundation, either version 2 of that License or (at your option) any
+ * later version.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Theory of operation:
+ *
+ * General capabilities:
+ * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
+ * calculations required in RAID5 and RAID6 operations. RE driver
+ * registers with Linux's ASYNC layer as dma driver. RE hardware
+ * maintains strict ordering of the requests through chained
+ * command queueing.
+ *
+ * Data flow:
+ * Software RAID layer of Linux (MD layer) maintains RAID partitions,
+ * strips, stripes etc. It sends requests to the underlying AYSNC layer
+ * which further passes it to RE driver. ASYNC layer decides which request
+ * goes to which job ring of RE hardware. For every request processed by
+ * RAID Engine, driver gets an interrupt unless coalescing is set. The
+ * per job ring interrupt handler checks the status register for errors,
+ * clears the interrupt and schedules a tasklet. Main request processing
+ * is done in tasklet. A software shadow copy of the HW ring is kept to
+ * maintain virtual to physical translation. Based on the internal indexes
+ * maintained, the tasklet picks the descriptor address from shadow copy,
+ * updates the corresponding cookie, updates the outbound ring job removed
+ * register in RE hardware and eventually calls the callback function. This
+ * callback function gets passed as part of request from MD layer.
+ */
+
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/of_irq.h>
+#include <linux/of_address.h>
+#include <linux/of_platform.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmapool.h>
+#include <linux/dmaengine.h>
+#include <linux/io.h>
+#include <linux/spinlock.h>
+#include <linux/slab.h>
+
+#include "dmaengine.h"
+#include "fsl_raid.h"
+
+#define MAX_XOR_SRCS 16
+#define MAX_PQ_SRCS 16
+#define MAX_INITIAL_DESCS 256
+#define MAX_DESCS_LIMIT (MAX_INITIAL_DESCS * 4)
+#define FRAME_FORMAT 0x1
+#define MAX_DATA_LENGTH (1024*1024)
+
+#define to_fsl_re_dma_desc(tx) container_of(tx, \
+ struct fsl_re_dma_async_tx_desc, async_tx)
+
+/* Add descriptors into per jr software queue - submit_q */
+static dma_cookie_t re_jr_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+ struct fsl_re_dma_async_tx_desc *desc;
+ struct re_jr *jr;
+ dma_cookie_t cookie;
+ unsigned long flags;
+
+ desc = to_fsl_re_dma_desc(tx);
+ jr = container_of(tx->chan, struct re_jr, chan);
+
+ spin_lock_irqsave(&jr->desc_lock, flags);
+ cookie = dma_cookie_assign(tx);
+ list_add_tail(&desc->node, &jr->submit_q);
+ spin_unlock_irqrestore(&jr->desc_lock, flags);
+
+ return cookie;
+}
+
+static void re_jr_desc_done(struct fsl_re_dma_async_tx_desc *desc)
+{
+ struct dma_chan *chan = &desc->jr->chan;
+ dma_async_tx_callback callback;
+ void *callback_param;
+ unsigned long flags;
+
+ spin_lock_irqsave(&desc->jr->desc_lock, flags);
+ if (chan->completed_cookie < desc->async_tx.cookie) {
+ chan->completed_cookie = desc->async_tx.cookie;
+ if (chan->completed_cookie == DMA_MAX_COOKIE)
+ chan->completed_cookie = DMA_MIN_COOKIE;
+ }
+ spin_unlock_irqrestore(&desc->jr->desc_lock, flags);
+
+ callback = desc->async_tx.callback;
+ callback_param = desc->async_tx.callback_param;
+
+ if (callback)
+ callback(callback_param);
+
+ dma_descriptor_unmap(&desc->async_tx);
+
+ dma_run_dependencies(&desc->async_tx);
+}
+
+static void re_jr_cleanup_descs(struct re_jr *jr)
+{
+ struct fsl_re_dma_async_tx_desc *desc, *_desc;
+ unsigned long flags;
+
+ list_for_each_entry_safe(desc, _desc, &jr->ack_q, node) {
+ spin_lock_irqsave(&jr->desc_lock, flags);
+ if (async_tx_test_ack(&desc->async_tx))
+ list_move_tail(&desc->node, &jr->free_q);
+ spin_unlock_irqrestore(&jr->desc_lock, flags);
+ }
+}
+
+static irqreturn_t re_jr_isr_thread(int this_irq, void *data)
+{
+ struct re_jr *jr;
+ struct fsl_re_dma_async_tx_desc *desc, *_desc;
+ struct jr_hw_desc *hwdesc;
+ unsigned long flags;
+ unsigned int count;
+ u32 sw_high, done_high;
+
+ jr = (struct re_jr *)data;
+
+ spin_lock_bh(&jr->oub_lock);
+ count = RE_JR_OUB_SLOT_FULL(in_be32(&jr->jrregs->oubring_slot_full));
+ while (count--) {
+ hwdesc = &jr->oub_ring_virt_addr[jr->oub_count];
+ list_for_each_entry_safe(desc, _desc, &jr->active_q, node) {
+ /* compare the hw dma addr to find the completed */
+ sw_high = desc->hwdesc.lbea32 & HWDESC_ADDR_HIGH_MASK;
+ done_high = hwdesc->lbea32 & HWDESC_ADDR_HIGH_MASK;
+ if (sw_high == done_high &&
+ desc->hwdesc.addr_low == hwdesc->addr_low)
+ break;
+ }
+
+ re_jr_desc_done(desc);
+
+ jr->oub_count = (jr->oub_count + 1) & RING_SIZE_MASK;
+
+ out_be32(&jr->jrregs->oubring_job_rmvd,
+ RE_JR_OUB_JOB_REMOVE(1));
+
+ spin_lock_irqsave(&jr->desc_lock, flags);
+ list_move_tail(&desc->node, &jr->ack_q);
+ spin_unlock_irqrestore(&jr->desc_lock, flags);
+ }
+ spin_unlock_bh(&jr->oub_lock);
+
+ re_jr_cleanup_descs(jr);
+
+ return IRQ_HANDLED;
+}
+
+/* Per Job Ring interrupt handler */
+static irqreturn_t re_jr_isr(int irq, void *data)
+{
+ struct re_jr *jr = (struct re_jr *)data;
+
+ u32 irqstate, status;
+ irqstate = in_be32(&jr->jrregs->jr_interrupt_status);
+ if (!irqstate)
+ return IRQ_NONE;
+
+ /*
+ * There's no way in upper layer (read MD layer) to recover from
+ * error conditions except restart everything. In long term we
+ * need to do something more than just crashing
+ */
+ if (irqstate & RE_JR_ERROR) {
+ status = in_be32(&jr->jrregs->jr_status);
+ dev_err(jr->dev, "jr error irqstate: %x, status: %x\n",
+ irqstate, status);
+ }
+
+ /* Clear interrupt */
+ out_be32(&jr->jrregs->jr_interrupt_status, RE_JR_CLEAR_INT);
+
+ return IRQ_WAKE_THREAD;
+}
+
+static enum dma_status re_jr_tx_status(struct dma_chan *chan,
+ dma_cookie_t cookie, struct dma_tx_state *txstate)
+{
+ enum dma_status ret;
+ struct re_jr *jr = container_of(chan, struct re_jr, chan);
+
+ ret = dma_cookie_status(chan, cookie, txstate);
+ if (ret != DMA_COMPLETE) {
+ re_jr_cleanup_descs(jr);
+ ret = dma_cookie_status(chan, cookie, txstate);
+ }
+
+ return ret;
+}
+
+/* Copy descriptor from per jr software queue into hardware job ring */
+void re_jr_issue_pending(struct dma_chan *chan)
+{
+ struct re_jr *jr;
+ int avail;
+ struct fsl_re_dma_async_tx_desc *desc, *_desc;
+ unsigned long flags;
+
+ jr = container_of(chan, struct re_jr, chan);
+
+ if (list_empty(&jr->submit_q))
+ return;
+
+ avail = RE_JR_INB_SLOT_AVAIL(in_be32(&jr->jrregs->inbring_slot_avail));
+ if (!avail)
+ return;
+
+ spin_lock_irqsave(&jr->desc_lock, flags);
+
+ list_for_each_entry_safe(desc, _desc, &jr->submit_q, node) {
+ if (!avail)
+ break;
+
+ list_move_tail(&desc->node, &jr->active_q);
+
+ memcpy(&jr->inb_ring_virt_addr[jr->inb_count], &desc->hwdesc,
+ sizeof(struct jr_hw_desc));
+
+ jr->inb_count = (jr->inb_count + 1) & RING_SIZE_MASK;
+
+ /* add one job into job ring */
+ out_be32(&jr->jrregs->inbring_add_job, RE_JR_INB_JOB_ADD(1));
+ avail--;
+ }
+
+ spin_unlock_irqrestore(&jr->desc_lock, flags);
+}
+
+void fill_cfd_frame(struct cmpnd_frame *cf, u8 index,
+ size_t length, dma_addr_t addr, bool final)
+{
+ u32 efrl = 0;
+ efrl |= length & CF_LENGTH_MASK;
+ efrl |= final << CF_FINAL_SHIFT;
+ cf[index].efrl32 |= efrl;
+ cf[index].addr_low = (u32)addr;
+ cf[index].addr_high = (u32)(addr >> 32);
+}
+
+static struct fsl_re_dma_async_tx_desc *re_jr_init_desc(struct re_jr *jr,
+ struct fsl_re_dma_async_tx_desc *desc, void *cf, dma_addr_t paddr)
+{
+ desc->jr = jr;
+ desc->async_tx.tx_submit = re_jr_tx_submit;
+ dma_async_tx_descriptor_init(&desc->async_tx, &jr->chan);
+ INIT_LIST_HEAD(&desc->node);
+
+ desc->hwdesc.fmt32 = FRAME_FORMAT << HWDESC_FMT_SHIFT;
+ desc->hwdesc.lbea32 = (paddr >> 32) & HWDESC_ADDR_HIGH_MASK;
+ desc->hwdesc.addr_low = (u32)paddr;
+ desc->cf_addr = cf;
+ desc->cf_paddr = paddr;
+
+ desc->cdb_addr = (void *)(cf + RE_CF_DESC_SIZE);
+ desc->cdb_paddr = paddr + RE_CF_DESC_SIZE;
+
+ return desc;
+}
+
+static struct fsl_re_dma_async_tx_desc *re_jr_alloc_desc(struct re_jr *jr,
+ unsigned long flags)
+{
+ struct fsl_re_dma_async_tx_desc *desc;
+ void *cf;
+ dma_addr_t paddr;
+ unsigned long lock_flag;
+
+ if (list_empty(&jr->free_q)) {
+ desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+ cf = dma_pool_alloc(jr->re_dev->cf_desc_pool, GFP_ATOMIC,
+ &paddr);
+ if (!desc || !cf) {
+ kfree(desc);
+ return NULL;
+ }
+ desc = re_jr_init_desc(jr, desc, cf, paddr);
+
+ spin_lock_irqsave(&jr->desc_lock, lock_flag);
+ list_add(&desc->node, &jr->free_q);
+ jr->alloc_count++;
+ spin_unlock_irqrestore(&jr->desc_lock, lock_flag);
+ }
+
+ spin_lock_irqsave(&jr->desc_lock, lock_flag);
+ desc = list_first_entry(&jr->free_q,
+ struct fsl_re_dma_async_tx_desc, node);
+ list_del(&desc->node);
+ spin_unlock_irqrestore(&jr->desc_lock, lock_flag);
+
+ desc->async_tx.flags = flags;
+ return desc;
+}
+
+static struct dma_async_tx_descriptor *re_jr_prep_genq(
+ struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
+ unsigned int src_cnt, const unsigned char *scf, size_t len,
+ unsigned long flags)
+{
+ struct re_jr *jr;
+ struct fsl_re_dma_async_tx_desc *desc;
+ struct xor_cdb *xor;
+ struct cmpnd_frame *cf;
+ u32 cdb;
+ unsigned int i, j;
+
+ if (len > MAX_DATA_LENGTH) {
+ pr_err("Length greater than %d not supported\n",
+ MAX_DATA_LENGTH);
+ return NULL;
+ }
+
+ jr = container_of(chan, struct re_jr, chan);
+ desc = re_jr_alloc_desc(jr, flags);
+ if (desc <= 0)
+ return NULL;
+
+ /* Filling xor CDB */
+ cdb = RE_XOR_OPCODE << RE_CDB_OPCODE_SHIFT;
+ cdb |= (src_cnt - 1) << RE_CDB_NRCS_SHIFT;
+ cdb |= RE_BLOCK_SIZE << RE_CDB_BLKSIZE_SHIFT;
+ cdb |= INTERRUPT_ON_ERROR << RE_CDB_ERROR_SHIFT;
+ cdb |= DATA_DEPENDENCY << RE_CDB_DEPEND_SHIFT;
+ xor = desc->cdb_addr;
+ xor->cdb32 = cdb;
+
+ if (scf != NULL) {
+ /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
+ for (i = 0; i < src_cnt; i++)
+ xor->gfm[i] = scf[i];
+ } else {
+ /* compute P, that is XOR all srcs */
+ for (i = 0; i < src_cnt; i++)
+ xor->gfm[i] = 1;
+ }
+
+ /* Filling frame 0 of compound frame descriptor with CDB */
+ cf = desc->cf_addr;
+ fill_cfd_frame(cf, 0, sizeof(struct xor_cdb), desc->cdb_paddr, 0);
+
+ /* Fill CFD's 1st frame with dest buffer */
+ fill_cfd_frame(cf, 1, len, dest, 0);
+
+ /* Fill CFD's rest of the frames with source buffers */
+ for (i = 2, j = 0; j < src_cnt; i++, j++)
+ fill_cfd_frame(cf, i, len, src[j], 0);
+
+ /* Setting the final bit in the last source buffer frame in CFD */
+ cf[i - 1].efrl32 |= 1 << CF_FINAL_SHIFT;
+
+ return &desc->async_tx;
+}
+
+/*
+ * Prep function for P parity calculation.In RAID Engine terminology,
+ * XOR calculation is called GenQ calculation done through GenQ command
+ */
+static struct dma_async_tx_descriptor *re_jr_prep_dma_xor(
+ struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
+ unsigned int src_cnt, size_t len, unsigned long flags)
+{
+ /* NULL let genq take all coef as 1 */
+ return re_jr_prep_genq(chan, dest, src, src_cnt, NULL, len, flags);
+}
+
+/*
+ * Prep function for P/Q parity calculation.In RAID Engine terminology,
+ * P/Q calculation is called GenQQ done through GenQQ command
+ */
+static struct dma_async_tx_descriptor *re_jr_prep_pq(
+ struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
+ unsigned int src_cnt, const unsigned char *scf, size_t len,
+ unsigned long flags)
+{
+ struct re_jr *jr;
+ struct fsl_re_dma_async_tx_desc *desc;
+ struct pq_cdb *pq;
+ struct cmpnd_frame *cf;
+ u32 cdb;
+ u8 *p;
+ int gfmq_len, i, j;
+
+ if (len > MAX_DATA_LENGTH) {
+ pr_err("Length greater than %d not supported\n",
+ MAX_DATA_LENGTH);
+ return NULL;
+ }
+
+ /*
+ * RE requires at least 2 sources, if given only one source, we pass the
+ * second source same as the first one.
+ * With only one source, generating P is meaningless, only generate Q.
+ */
+ if (src_cnt == 1) {
+ struct dma_async_tx_descriptor *tx;
+ dma_addr_t dma_src[2];
+ unsigned char coef[2];
+
+ dma_src[0] = *src;
+ coef[0] = *scf;
+ dma_src[1] = *src;
+ coef[1] = 0;
+ tx = re_jr_prep_genq(chan, dest[1], dma_src, 2, coef, len,
+ flags);
+ if (tx)
+ desc = to_fsl_re_dma_desc(tx);
+
+ return tx;
+ }
+
+ /*
+ * During RAID6 array creation, Linux's MD layer gets P and Q
+ * calculated separately in two steps. But our RAID Engine has
+ * the capability to calculate both P and Q with a single command
+ * Hence to merge well with MD layer, we need to provide a hook
+ * here and call re_jq_prep_genq() function
+ */
+
+ if (flags & DMA_PREP_PQ_DISABLE_P)
+ return re_jr_prep_genq(chan, dest[1], src, src_cnt,
+ scf, len, flags);
+
+ jr = container_of(chan, struct re_jr, chan);
+ desc = re_jr_alloc_desc(jr, flags);
+ if (desc <= 0)
+ return NULL;
+
+ /* Filling GenQQ CDB */
+ cdb = RE_PQ_OPCODE << RE_CDB_OPCODE_SHIFT;
+ cdb |= (src_cnt - 1) << RE_CDB_NRCS_SHIFT;
+ cdb |= RE_BLOCK_SIZE << RE_CDB_BLKSIZE_SHIFT;
+ cdb |= BUFFERABLE_OUTPUT << RE_CDB_BUFFER_SHIFT;
+ cdb |= DATA_DEPENDENCY << RE_CDB_DEPEND_SHIFT;
+
+ pq = desc->cdb_addr;
+ pq->cdb32 = cdb;
+
+ p = pq->gfm_q1;
+ /* Init gfm_q1[] */
+ for (i = 0; i < src_cnt; i++)
+ p[i] = 1;
+
+ /* Align gfm[] to 32bit */
+ gfmq_len = ALIGN(src_cnt, 4);
+
+ /* Init gfm_q2[] */
+ p += gfmq_len;
+ for (i = 0; i < src_cnt; i++)
+ p[i] = scf[i];
+
+ /* Filling frame 0 of compound frame descriptor with CDB */
+ cf = desc->cf_addr;
+ fill_cfd_frame(cf, 0, sizeof(struct pq_cdb), desc->cdb_paddr, 0);
+
+ /* Fill CFD's 1st & 2nd frame with dest buffers */
+ for (i = 1, j = 0; i < 3; i++, j++)
+ fill_cfd_frame(cf, i, len, dest[j], 0);
+
+ /* Fill CFD's rest of the frames with source buffers */
+ for (i = 3, j = 0; j < src_cnt; i++, j++)
+ fill_cfd_frame(cf, i, len, src[j], 0);
+
+ /* Setting the final bit in the last source buffer frame in CFD */
+ cf[i - 1].efrl32 |= 1 << CF_FINAL_SHIFT;
+
+ return &desc->async_tx;
+}
+
+/*
+ * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
+ * command. Logic of this function will need to be modified once multipage
+ * support is added in Linux's MD/ASYNC Layer
+ */
+static struct dma_async_tx_descriptor *re_jr_prep_memcpy(
+ struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+ size_t len, unsigned long flags)
+{
+ struct re_jr *jr;
+ struct fsl_re_dma_async_tx_desc *desc;
+ size_t length;
+ struct cmpnd_frame *cf;
+ struct move_cdb *move;
+ u32 cdb;
+
+ jr = container_of(chan, struct re_jr, chan);
+
+ if (len > MAX_DATA_LENGTH) {
+ pr_err("Length greater than %d not supported\n",
+ MAX_DATA_LENGTH);
+ return NULL;
+ }
+
+ desc = re_jr_alloc_desc(jr, flags);
+ if (desc <= 0)
+ return NULL;
+
+ /* Filling move CDB */
+ cdb = RE_MOVE_OPCODE << RE_CDB_OPCODE_SHIFT;
+ cdb |= RE_BLOCK_SIZE << RE_CDB_BLKSIZE_SHIFT;
+ cdb |= INTERRUPT_ON_ERROR << RE_CDB_ERROR_SHIFT;
+ cdb |= DATA_DEPENDENCY << RE_CDB_DEPEND_SHIFT;
+
+ move = desc->cdb_addr;
+ move->cdb32 = cdb;
+
+ /* Filling frame 0 of CFD with move CDB */
+ cf = desc->cf_addr;
+ fill_cfd_frame(cf, 0, sizeof(struct move_cdb), desc->cdb_paddr, 0);
+
+ length = min_t(size_t, len, MAX_DATA_LENGTH);
+
+ /* Fill CFD's 1st frame with dest buffer */
+ fill_cfd_frame(cf, 1, length, dest, 0);
+
+ /* Fill CFD's 2nd frame with src buffer */
+ fill_cfd_frame(cf, 2, length, src, 1);
+
+ return &desc->async_tx;
+}
+
+static int re_jr_alloc_chan_resources(struct dma_chan *chan)
+{
+ struct re_jr *jr = container_of(chan, struct re_jr, chan);
+ struct fsl_re_dma_async_tx_desc *desc;
+ void *cf;
+ dma_addr_t paddr;
+
+ int i;
+
+ for (i = 0; i < MAX_INITIAL_DESCS; i++) {
+ desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+ cf = dma_pool_alloc(jr->re_dev->cf_desc_pool, GFP_ATOMIC,
+ &paddr);
+ if (!desc || !cf) {
+ kfree(desc);
+ break;
+ }
+
+ INIT_LIST_HEAD(&desc->node);
+ re_jr_init_desc(jr, desc, cf, paddr);
+
+ list_add_tail(&desc->node, &jr->free_q);
+ jr->alloc_count++;
+ }
+ return jr->alloc_count;
+}
+
+static void re_jr_free_chan_resources(struct dma_chan *chan)
+{
+ struct re_jr *jr = container_of(chan, struct re_jr, chan);
+ struct fsl_re_dma_async_tx_desc *desc;
+
+ while (jr->alloc_count--) {
+ desc = list_first_entry(&jr->free_q,
+ struct fsl_re_dma_async_tx_desc,
+ node);
+
+ list_del(&desc->node);
+ dma_pool_free(jr->re_dev->cf_desc_pool, desc->cf_addr,
+ desc->cf_paddr);
+ kfree(desc);
+ }
+
+ BUG_ON(!list_empty(&jr->free_q));
+}
+
+int re_jr_probe(struct platform_device *ofdev,
+ struct device_node *np, u8 q, u32 off)
+{
+ struct device *dev;
+ struct re_drv_private *repriv;
+ struct re_jr *jr;
+ struct dma_device *dma_dev;
+ u32 ptr;
+ u32 status;
+ int ret = 0, rc;
+ struct platform_device *jr_ofdev;
+
+ dev = &ofdev->dev;
+ repriv = dev_get_drvdata(dev);
+ dma_dev = &repriv->dma_dev;
+
+ jr = devm_kzalloc(dev, sizeof(*jr), GFP_KERNEL);
+ if (!jr) {
+ dev_err(dev, "No free memory for allocating JR struct\n");
+ return -ENOMEM;
+ }
+
+ /* create platform device for jr node */
+ jr_ofdev = of_platform_device_create(np, NULL, dev);
+ if (jr_ofdev == NULL) {
+ dev_err(dev, "Not able to create ofdev for jr %d\n", q);
+ ret = -EINVAL;
+ goto err_free;
+ }
+ dev_set_drvdata(&jr_ofdev->dev, jr);
+
+ /* read reg property from dts */
+ rc = of_property_read_u32(np, "reg", &ptr);
+ if (rc) {
+ dev_err(dev, "Reg property not found in JR number %d\n", q);
+ ret = -ENODEV;
+ goto err_free;
+ }
+
+ jr->jrregs = (struct jr_config_regs *)((u8 *)repriv->re_regs +
+ off + ptr);
+
+ /* read irq property from dts */
+ jr->irq = irq_of_parse_and_map(np, 0);
+ if (jr->irq == NO_IRQ) {
+ dev_err(dev, "No IRQ defined for JR %d\n", q);
+ ret = -ENODEV;
+ goto err_free;
+ }
+
+ ret = devm_request_threaded_irq(&jr_ofdev->dev, jr->irq, re_jr_isr,
+ re_jr_isr_thread, 0, jr->name, jr);
+ if (ret) {
+ dev_err(dev, "Unable to register JR interrupt for JR %d\n", q);
+ ret = -EINVAL;
+ goto err_free;
+ }
+
+ snprintf(jr->name, sizeof(jr->name), "re_jr%02d", q);
+
+ repriv->re_jrs[q] = jr;
+ jr->chan.device = dma_dev;
+ jr->chan.private = jr;
+ jr->dev = &jr_ofdev->dev;
+ jr->re_dev = repriv;
+
+ spin_lock_init(&jr->desc_lock);
+ INIT_LIST_HEAD(&jr->ack_q);
+ INIT_LIST_HEAD(&jr->active_q);
+ INIT_LIST_HEAD(&jr->submit_q);
+ INIT_LIST_HEAD(&jr->free_q);
+
+ spin_lock_init(&jr->inb_lock);
+ spin_lock_init(&jr->oub_lock);
+
+ list_add_tail(&jr->chan.device_node, &dma_dev->channels);
+ dma_dev->chancnt++;
+
+ jr->inb_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool,
+ GFP_ATOMIC, &jr->inb_phys_addr);
+
+ if (!jr->inb_ring_virt_addr) {
+ dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
+ ret = -ENOMEM;
+ goto err_free;
+ }
+
+ jr->oub_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool,
+ GFP_ATOMIC, &jr->oub_phys_addr);
+
+ if (!jr->oub_ring_virt_addr) {
+ dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
+ ret = -ENOMEM;
+ goto err_free_1;
+ }
+
+ jr->inb_count = 0;
+ jr->oub_count = 0;
+ jr->alloc_count = 0;
+
+ /* Program the Inbound/Outbound ring base addresses and size */
+ out_be32(&jr->jrregs->inbring_base_h,
+ jr->inb_phys_addr & RE_JR_ADDRESS_BIT_MASK);
+ out_be32(&jr->jrregs->oubring_base_h,
+ jr->oub_phys_addr & RE_JR_ADDRESS_BIT_MASK);
+ out_be32(&jr->jrregs->inbring_base_l,
+ jr->inb_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT);
+ out_be32(&jr->jrregs->oubring_base_l,
+ jr->oub_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT);
+ out_be32(&jr->jrregs->inbring_size, RING_SIZE << RING_SIZE_SHIFT);
+ out_be32(&jr->jrregs->oubring_size, RING_SIZE << RING_SIZE_SHIFT);
+
+ /* Read LIODN value from u-boot */
+ status = in_be32(&jr->jrregs->jr_config_1) & RE_JR_REG_LIODN_MASK;
+
+ /* Program the CFG reg */
+ out_be32(&jr->jrregs->jr_config_1,
+ RE_JR_CFG1_CBSI | RE_JR_CFG1_CBS0 | status);
+
+ /* Enable RE/JR */
+ out_be32(&jr->jrregs->jr_command, RE_JR_ENABLE);
+
+ return 0;
+
+err_free_1:
+ dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr,
+ jr->inb_phys_addr);
+err_free:
+ return ret;
+}
+
+/* Probe function for RAID Engine */
+static int raide_probe(struct platform_device *ofdev)
+{
+ struct re_drv_private *repriv;
+ struct device_node *np;
+ struct device_node *child;
+ u32 off;
+ u8 ridx = 0;
+ struct dma_device *dma_dev;
+ struct resource *res;
+ int rc;
+ struct device *dev = &ofdev->dev;
+
+ dev_info(dev, "Freescale RAID Engine driver\n");
+
+ repriv = devm_kzalloc(dev, sizeof(*repriv), GFP_KERNEL);
+ if (!repriv)
+ return -ENOMEM;
+
+ res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -ENODEV;
+
+ /* IOMAP the entire RAID Engine region */
+ repriv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
+ if (!repriv->re_regs)
+ return -EBUSY;
+
+ dev_set_drvdata(dev, repriv);
+
+ /* Print the RE version */
+ dev_info(dev, "Ver = %x\n", in_be32(&repriv->re_regs->re_version_id));
+
+ /* Program the RE mode */
+ out_be32(&repriv->re_regs->global_config, RE_NON_DPAA_MODE);
+ dev_info(dev, "RE mode is %x\n",
+ in_be32(&repriv->re_regs->global_config));
+
+ /* Program Galois Field polynomial */
+ out_be32(&repriv->re_regs->galois_field_config, RE_GFM_POLY);
+ dev_info(dev, "Galois Field Polynomial is %x\n",
+ in_be32(&repriv->re_regs->galois_field_config));
+
+ dma_dev = &repriv->dma_dev;
+ dma_dev->dev = dev;
+ INIT_LIST_HEAD(&dma_dev->channels);
+ dma_set_mask(dev, DMA_BIT_MASK(40));
+
+ dma_dev->device_alloc_chan_resources = re_jr_alloc_chan_resources;
+ dma_dev->device_tx_status = re_jr_tx_status;
+ dma_dev->device_issue_pending = re_jr_issue_pending;
+
+ dma_dev->max_xor = MAX_XOR_SRCS;
+ dma_dev->device_prep_dma_xor = re_jr_prep_dma_xor;
+ dma_cap_set(DMA_XOR, dma_dev->cap_mask);
+
+ dma_dev->max_pq = MAX_PQ_SRCS;
+ dma_dev->device_prep_dma_pq = re_jr_prep_pq;
+ dma_cap_set(DMA_PQ, dma_dev->cap_mask);
+
+ dma_dev->device_prep_dma_memcpy = re_jr_prep_memcpy;
+ dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
+
+ dma_dev->device_free_chan_resources = re_jr_free_chan_resources;
+
+ repriv->total_jrs = 0;
+
+ repriv->cf_desc_pool = dmam_pool_create("re_cf_desc_pool", dev,
+ RE_CF_CDB_SIZE,
+ RE_CF_CDB_ALIGN, 0);
+
+ if (!repriv->cf_desc_pool) {
+ pr_err("No memory for dma desc pool\n");
+ return -ENOMEM;
+ }
+
+ repriv->hw_desc_pool = dmam_pool_create("re_hw_desc_pool", dev,
+ sizeof(struct jr_hw_desc) * RING_SIZE,
+ FRAME_DESC_ALIGNMENT, 0);
+ if (!repriv->hw_desc_pool) {
+ pr_err("No memory for hw desc pool\n");
+ return -ENOMEM;
+ }
+
+ /* Parse Device tree to find out the total number of JQs present */
+ for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
+ rc = of_property_read_u32(np, "reg", &off);
+ if (rc) {
+ dev_err(dev, "Reg property not found in JQ node\n");
+ return -ENODEV;
+ }
+ /* Find out the Job Rings present under each JQ */
+ for_each_child_of_node(np, child) {
+ rc = of_device_is_compatible(child,
+ "fsl,raideng-v1.0-job-ring");
+ if (rc) {
+ re_jr_probe(ofdev, child, ridx++, off);
+ repriv->total_jrs++;
+ }
+ }
+ }
+
+ dma_async_device_register(dma_dev);
+
+ return 0;
+}
+
+static void release_jr(struct re_jr *jr)
+{
+ dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr,
+ jr->inb_phys_addr);
+
+ dma_pool_free(jr->re_dev->hw_desc_pool, jr->oub_ring_virt_addr,
+ jr->oub_phys_addr);
+}
+
+static int raide_remove(struct platform_device *ofdev)
+{
+ struct re_drv_private *repriv;
+ struct device *dev;
+ int i;
+
+ dev = &ofdev->dev;
+ repriv = dev_get_drvdata(dev);
+
+ /* Cleanup JR related memory areas */
+ for (i = 0; i < repriv->total_jrs; i++)
+ release_jr(repriv->re_jrs[i]);
+
+ /* Unregister the driver */
+ dma_async_device_unregister(&repriv->dma_dev);
+
+ return 0;
+}
+
+static struct of_device_id raide_ids[] = {
+ { .compatible = "fsl,raideng-v1.0", },
+ {}
+};
+
+static struct platform_driver raide_driver = {
+ .driver = {
+ .name = "fsl-raideng",
+ .owner = THIS_MODULE,
+ .of_match_table = raide_ids,
+ },
+ .probe = raide_probe,
+ .remove = raide_remove,
+};
+
+module_platform_driver(raide_driver);
+
+MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");
new file mode 100644
@@ -0,0 +1,310 @@
+/*
+ * drivers/dma/fsl_raid.h
+ *
+ * Freescale RAID Engine device driver
+ *
+ * Author:
+ * Harninder Rai <harninder.rai@freescale.com>
+ * Naveen Burmi <naveenburmi@freescale.com>
+ *
+ * Rewrite:
+ * Xuelin Shi <xuelin.shi@freescale.com>
+
+ * Copyright (c) 2010-2012 Freescale Semiconductor, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Freescale Semiconductor nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * ALTERNATIVELY, this software may be distributed under the terms of the
+ * GNU General Public License ("GPL") as published by the Free Software
+ * Foundation, either version 2 of that License or (at your option) any
+ * later version.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#define MAX_RE_JRS 4
+
+#define RE_DPAA_MODE (1 << 30)
+#define RE_NON_DPAA_MODE (1 << 31)
+#define RE_GFM_POLY 0x1d000000
+#define RE_JR_INB_JOB_ADD(x) ((x) << 16)
+#define RE_JR_OUB_JOB_REMOVE(x) ((x) << 16)
+#define RE_JR_CFG1_CBSI 0x08000000
+#define RE_JR_CFG1_CBS0 0x00080000
+#define RE_JR_OUB_SLOT_FULL_SHIFT 8
+#define RE_JR_OUB_SLOT_FULL(x) ((x) >> RE_JR_OUB_SLOT_FULL_SHIFT)
+#define RE_JR_INB_SLOT_AVAIL_SHIFT 8
+#define RE_JR_INB_SLOT_AVAIL(x) ((x) >> RE_JR_INB_SLOT_AVAIL_SHIFT)
+#define RE_PQ_OPCODE 0x1B
+#define RE_XOR_OPCODE 0x1A
+#define RE_MOVE_OPCODE 0x8
+#define FRAME_DESC_ALIGNMENT 16
+#define RE_BLOCK_SIZE 0x3 /* 4096 bytes */
+#define CACHEABLE_INPUT_OUTPUT 0x0
+#define BUFFERABLE_OUTPUT 0x0
+#define INTERRUPT_ON_ERROR 0x1
+#define DATA_DEPENDENCY 0x1
+#define ENABLE_DPI 0x0
+#define RING_SIZE 0x1000
+#define RING_SIZE_MASK (RING_SIZE - 1)
+#define RING_SIZE_SHIFT 8
+#define RE_JR_ADDRESS_BIT_SHIFT 4
+#define RE_JR_ADDRESS_BIT_MASK ((1 << RE_JR_ADDRESS_BIT_SHIFT) - 1)
+#define RE_JR_ERROR 0x40000000
+#define RE_JR_INTERRUPT 0x80000000
+#define RE_JR_CLEAR_INT 0x80000000
+#define RE_JR_PAUSE 0x80000000
+#define RE_JR_ENABLE 0x80000000
+
+#define RE_JR_REG_LIODN_MASK 0x00000FFF
+#define RE_CF_CDB_ALIGN 64
+
+#define RE_CDB_OPCODE_MASK 0xF8000000
+#define RE_CDB_OPCODE_SHIFT 27
+#define RE_CDB_EXCLEN_MASK 0x03000000
+#define RE_CDB_EXCLEN_SHIFT 24
+#define RE_CDB_EXCLQ1_MASK 0x00F00000
+#define RE_CDB_EXCLQ1_SHIFT 20
+#define RE_CDB_EXCLQ2_MASK 0x000F0000
+#define RE_CDB_EXCLQ2_SHIFT 16
+#define RE_CDB_BLKSIZE_MASK 0x0000C000
+#define RE_CDB_BLKSIZE_SHIFT 14
+#define RE_CDB_CACHE_MASK 0x00003000
+#define RE_CDB_CACHE_SHIFT 12
+#define RE_CDB_BUFFER_MASK 0x00000800
+#define RE_CDB_BUFFER_SHIFT 11
+#define RE_CDB_ERROR_MASK 0x00000400
+#define RE_CDB_ERROR_SHIFT 10
+#define RE_CDB_NRCS_MASK 0x0000003C
+#define RE_CDB_NRCS_SHIFT 6
+#define RE_CDB_DEPEND_MASK 0x00000008
+#define RE_CDB_DEPEND_SHIFT 3
+#define RE_CDB_DPI_MASK 0x00000004
+#define RE_CDB_DPI_SHIFT 2
+
+/*
+ * the largest cf block is 19*sizeof(struct cmpnd_frame), which is 304 bytes.
+ * here 19 = 1(cdb)+2(dest)+16(src), align to 64bytes, that is 320 bytes.
+ * the largest cdb block: struct pq_cdb which is 180 bytes, adding to cf block
+ * 320+180=500, align to 64bytes, that is 512 bytes.
+ */
+#define RE_CF_DESC_SIZE 320
+#define RE_CF_CDB_SIZE 512
+
+struct re_ctrl {
+ /* General Configuration Registers */
+ __be32 global_config; /* Global Configuration Register */
+ u8 rsvd1[4];
+ __be32 galois_field_config; /* Galois Field Configuration Register */
+ u8 rsvd2[4];
+ __be32 jq_wrr_config; /* WRR Configuration register */
+ u8 rsvd3[4];
+ __be32 crc_config; /* CRC Configuration register */
+ u8 rsvd4[228];
+ __be32 system_reset; /* System Reset Register */
+ u8 rsvd5[252];
+ __be32 global_status; /* Global Status Register */
+ u8 rsvd6[832];
+ __be32 re_liodn_base; /* LIODN Base Register */
+ u8 rsvd7[1712];
+ __be32 re_version_id; /* Version ID register of RE */
+ __be32 re_version_id_2; /* Version ID 2 register of RE */
+ u8 rsvd8[512];
+ __be32 host_config; /* Host I/F Configuration Register */
+};
+
+struct jr_config_regs {
+ /* Registers for JR interface */
+ __be32 jr_config_0; /* Job Queue Configuration 0 Register */
+ __be32 jr_config_1; /* Job Queue Configuration 1 Register */
+ __be32 jr_interrupt_status; /* Job Queue Interrupt Status Register */
+ u8 rsvd1[4];
+ __be32 jr_command; /* Job Queue Command Register */
+ u8 rsvd2[4];
+ __be32 jr_status; /* Job Queue Status Register */
+ u8 rsvd3[228];
+
+ /* Input Ring */
+ __be32 inbring_base_h; /* Inbound Ring Base Address Register - High */
+ __be32 inbring_base_l; /* Inbound Ring Base Address Register - Low */
+ __be32 inbring_size; /* Inbound Ring Size Register */
+ u8 rsvd4[4];
+ __be32 inbring_slot_avail; /* Inbound Ring Slot Available Register */
+ u8 rsvd5[4];
+ __be32 inbring_add_job; /* Inbound Ring Add Job Register */
+ u8 rsvd6[4];
+ __be32 inbring_cnsmr_indx; /* Inbound Ring Consumer Index Register */
+ u8 rsvd7[220];
+
+ /* Output Ring */
+ __be32 oubring_base_h; /* Outbound Ring Base Address Register - High */
+ __be32 oubring_base_l; /* Outbound Ring Base Address Register - Low */
+ __be32 oubring_size; /* Outbound Ring Size Register */
+ u8 rsvd8[4];
+ __be32 oubring_job_rmvd; /* Outbound Ring Job Removed Register */
+ u8 rsvd9[4];
+ __be32 oubring_slot_full; /* Outbound Ring Slot Full Register */
+ u8 rsvd10[4];
+ __be32 oubring_prdcr_indx; /* Outbound Ring Producer Index */
+};
+
+/*
+ * Command Descriptor Block (CDB) for unicast move command.
+ * In RAID Engine terms, memcpy is done through move command
+ */
+struct move_cdb {
+ __be32 cdb32;
+};
+
+/* Data protection/integrity related fields */
+#define DPI_APPS_MASK 0xC0000000
+#define DPI_APPS_SHIFT 30
+#define DPI_REF_MASK 0x30000000
+#define DPI_REF_SHIFT 28
+#define DPI_GUARD_MASK 0x0C000000
+#define DPI_GUARD_SHIFT 26
+#define DPI_ATTR_MASK 0x03000000
+#define DPI_ATTR_SHIFT 24
+#define DPI_META_MASK 0x0000FFFF
+
+struct dpi_related {
+ __be32 dpi32;
+ __be32 ref;
+};
+
+/*
+ * CDB for GenQ command. In RAID Engine terminology, XOR is
+ * done through this command
+ */
+struct xor_cdb {
+ __be32 cdb32;
+ u8 gfm[16];
+ struct dpi_related dpi_dest_spec;
+ struct dpi_related dpi_src_spec[16];
+};
+
+/* CDB for no-op command */
+struct noop_cdb {
+ __be32 cdb32;
+};
+
+/*
+ * CDB for GenQQ command. In RAID Engine terminology, P/Q is
+ * done through this command
+ */
+struct pq_cdb {
+ __be32 cdb32;
+ u8 gfm_q1[16];
+ u8 gfm_q2[16];
+ struct dpi_related dpi_dest_spec[2];
+ struct dpi_related dpi_src_spec[16];
+} __packed;
+
+/* Compound frame */
+#define CF_ADDR_HIGH_MASK 0x000000FF
+#define CF_EXT_MASK 0x80000000
+#define CF_EXT_SHIFT 31
+#define CF_FINAL_MASK 0x40000000
+#define CF_FINAL_SHIFT 30
+#define CF_LENGTH_MASK 0x000FFFFF
+#define CF_BPID_MASK 0x00FF0000
+#define CF_BPID_SHIFT 16
+#define CF_OFFSET_MASK 0x00001FFF
+
+struct cmpnd_frame {
+ __be32 addr_high;
+ __be32 addr_low;
+ __be32 efrl32;
+ __be32 rbro32;
+};
+
+/* Frame descriptor */
+#define HWDESC_LIODN_MASK 0x3F000000
+#define HWDESC_LIODN_SHIFT 30
+#define HWDESC_BPID_MASK 0x00FF0000
+#define HWDESC_BPID_SHIFT 16
+#define HWDESC_ELIODN_MASK 0x0000F000
+#define HWDESC_ELIODN_SHIFT 12
+#define HWDESC_ADDR_HIGH_MASK 0x000000FF
+#define HWDESC_FMT_MASK 0x30000000
+#define HWDESC_FMT_SHIFT 29
+
+struct jr_hw_desc {
+ __be32 lbea32;
+ __be32 addr_low;
+ __be32 fmt32;
+ __be32 status;
+};
+
+/* Raid Engine device private data */
+struct re_drv_private {
+ u8 total_jrs;
+ struct dma_device dma_dev;
+ struct re_ctrl *re_regs;
+ struct re_jr *re_jrs[MAX_RE_JRS];
+ struct dma_pool *cf_desc_pool;
+ struct dma_pool *hw_desc_pool;
+};
+
+/* Per job ring data structure */
+struct re_jr {
+ char name[16];
+ dma_cookie_t completed_cookie;
+ spinlock_t desc_lock; /* queue lock */
+ struct list_head ack_q; /* wait to acked queue */
+ struct list_head active_q; /* already issued on hw, not completed */
+ struct list_head submit_q;
+ struct list_head free_q; /* alloc available queue */
+ struct device *dev;
+ struct re_drv_private *re_dev;
+ struct dma_chan chan;
+ struct jr_config_regs *jrregs;
+ int irq;
+ u32 alloc_count;
+
+ /* hw descriptor ring for inbound queue*/
+ spinlock_t inb_lock; /* jr inboud queue access lock */
+ dma_addr_t inb_phys_addr;
+ struct jr_hw_desc *inb_ring_virt_addr;
+ u32 inb_count;
+
+ /* hw descriptor ring for outbound queue */
+ spinlock_t oub_lock; /* jr inboud queue access lock */
+ dma_addr_t oub_phys_addr;
+ struct jr_hw_desc *oub_ring_virt_addr;
+ u32 oub_count;
+};
+
+/* Async transaction descriptor */
+struct fsl_re_dma_async_tx_desc {
+ struct dma_async_tx_descriptor async_tx;
+ struct list_head node;
+ struct jr_hw_desc hwdesc;
+ struct re_jr *jr;
+
+ /* hwdesc will point to cf_addr */
+ void *cf_addr;
+ dma_addr_t cf_paddr;
+
+ void *cdb_addr;
+ dma_addr_t cdb_paddr;
+};