Message ID | 20210324052947.27889-2-lizhi.hou@xilinx.com (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | XRT Alveo driver overview | expand |
general problem with xmgmt needing to be changed to xrt-mgmt On 3/23/21 10:29 PM, Lizhi Hou wrote: > Describe XRT driver architecture and provide basic overview of > Xilinx Alveo platform. > > Signed-off-by: Sonal Santan <sonal.santan@xilinx.com> > Signed-off-by: Max Zhen <max.zhen@xilinx.com> > Signed-off-by: Lizhi Hou <lizhi.hou@xilinx.com> > --- > Documentation/fpga/index.rst | 1 + > Documentation/fpga/xrt.rst | 844 +++++++++++++++++++++++++++++++++++ > 2 files changed, 845 insertions(+) > create mode 100644 Documentation/fpga/xrt.rst > > diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst > index f80f95667ca2..30134357b70d 100644 > --- a/Documentation/fpga/index.rst > +++ b/Documentation/fpga/index.rst > @@ -8,6 +8,7 @@ fpga > :maxdepth: 1 > > dfl > + xrt > > .. only:: subproject and html > > diff --git a/Documentation/fpga/xrt.rst b/Documentation/fpga/xrt.rst > new file mode 100644 > index 000000000000..0f7977464270 > --- /dev/null > +++ b/Documentation/fpga/xrt.rst > @@ -0,0 +1,844 @@ > +.. SPDX-License-Identifier: GPL-2.0 > + > +================================== > +XRTV2 Linux Kernel Driver Overview > +================================== > + > +Authors: > + > +* Sonal Santan <sonal.santan@xilinx.com> > +* Max Zhen <max.zhen@xilinx.com> > +* Lizhi Hou <lizhi.hou@xilinx.com> > + > +XRTV2 drivers are second generation `XRT <https://github.com/Xilinx/XRT>`_ > +drivers which support `Alveo <https://www.xilinx.com/products/boards-and-kits/alveo.html>`_ > +PCIe platforms from Xilinx. > + > +XRTV2 drivers support *subsystem* style data driven platforms where driver's > +configuration and behavior is determined by meta data provided by the platform > +(in *device tree* format). Primary management physical function (MPF) driver > +is called **xmgmt**. Primary user physical function (UPF) driver is called > +**xuser** and is under development. xrt driver framework and HW subsystem > +drivers are packaged into a library module called **xrt-lib**, which is > +shared by **xmgmt** and **xuser** (under development). The xrt driver framework > +implements a pseudo-bus which is used to discover HW subsystems and facilitate > +inter HW subsystem interaction. > + > +Driver Modules > +============== > + > +xrt-lib.ko > +---------- > + > +Repository of all subsystem drivers and pure software modules that can potentially > +be shared between xmgmt and xuser. All these drivers are structured as Linux > +*platform driver* and are instantiated by xmgmt (or xuser under development) based > +on meta data associated with the hardware. The metadata is in the form of a device ok > +tree as mentioned before. Each platform driver statically defines a subsystem node > +array by using node name or a string in its ``compatible`` property. And this > +array is eventually translated to IOMEM resources of the platform device. > + > +The xrt-lib core infrastructure provides hooks to platform drivers for device node > +management, user file operations and ioctl callbacks. The core infrastructure also ok > +provides pseudo-bus functionality for platform driver registration, discovery and > +inter platform driver ioctl calls. if/where infrastructure moves is undecided. > + > +.. note:: > + See code in ``include/xleaf.h`` > + > + > +xmgmt.ko > +-------- > + > +The xmgmt driver is a PCIe device driver driving MPF found on Xilinx's Alveo > +PCIE device. It consists of one *root* driver, one or more *group* drivers > +and one or more *xleaf* drivers. The root and MPF specific xleaf drivers are > +in xmgmt.ko. The group driver and other xleaf drivers are in xrt-lib.ko. > + > +The instantiation of specific group driver or xleaf driver is completely data > +driven based on meta data (mostly in device tree format) found through VSEC > +capability and inside firmware files, such as platform xsabin or user xclbin file. > +The root driver manages the life cycle of multiple group drivers, which, in turn, > +manages multiple xleaf drivers. This allows a single set of drivers to support ok > +all kinds of subsystems exposed by different shells. The difference among all > +these subsystems will be handled in xleaf drivers with root and group drivers > +being part of the infrastructure and provide common services for all leaves > +found on all platforms. > + > +The driver object model looks like the following:: > + > + +-----------+ > + | xroot | > + +-----+-----+ > + | > + +-----------+-----------+ > + | | > + v v > + +-----------+ +-----------+ > + | group | ... | group | > + +-----+-----+ +------+----+ > + | | > + | | > + +-----+----+ +-----+----+ > + | | | | > + v v v v > + +-------+ +-------+ +-------+ +-------+ > + | xleaf |..| xleaf | | xleaf |..| xleaf | > + +-------+ +-------+ +-------+ +-------+ > + > +As an example for Xilinx Alveo U50 before user xclbin download, the tree > +looks like the following:: > + > + +-----------+ > + | xmgmt | > + +-----+-----+ > + | > + +-------------------------+--------------------+ > + | | | > + v v v > + +--------+ +--------+ +--------+ > + | group0 | | group1 | | group2 | > + +----+---+ +----+---+ +---+----+ > + | | | > + | | | > + +-----+-----+ +----+-----+---+ +-----+-----+----+--------+ > + | | | | | | | | | > + v v | v v | v v | > + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | > + | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | > + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | > + | +---------+ | +------+ +-----------+ | > + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ > + +---------+ | +------+ +-----------+ > + | +-------+ > + +->| CALIB | > + +-------+ > + > +After an xclbin is download, group3 will be added and the tree looks like the > +following:: > + > + +-----------+ > + | xmgmt | > + +-----+-----+ > + | > + +-------------------------+--------------------+-----------------+ > + | | | | > + v v v | > + +--------+ +--------+ +--------+ | > + | group0 | | group1 | | group2 | | > + +----+---+ +----+---+ +---+----+ | > + | | | | > + | | | | > + +-----+-----+ +-----+-----+---+ +-----+-----+----+--------+ | > + | | | | | | | | | | > + v v | v v | v v | | > + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | > + | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | | > + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | > + | +---------+ | +------+ +-----------+ | | > + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ | > + +---------+ | +------+ +-----------+ | > + | +-------+ | > + +->| CALIB | | > + +-------+ | > + +---+----+ | > + | group3 |<--------------------------------------------+ > + +--------+ > + | > + | > + +-------+--------+---+--+--------+------+-------+ > + | | | | | | | > + v | v | v | v > + +--------+ | +--------+ | +--------+ | +-----+ > + | CLOCK0 | | | CLOCK1 | | | CLOCK2 | | | UCS | > + +--------+ v +--------+ v +--------+ v +-----+ > + +-------------+ +-------------+ +-------------+ > + | CLOCK-FREQ0 | | CLOCK-FREQ1 | | CLOCK-FREQ2 | > + +-------------+ +-------------+ +-------------+ > + > + > +xmgmt-root > +^^^^^^^^^^ > + > +The xmgmt-root driver is a PCIe device driver attached to MPF. It's part of the > +infrastructure of the MPF driver and resides in xmgmt.ko. This driver > + > +* manages one or more group drivers > +* provides access to functionalities that requires pci_dev, such as PCIE config > + space access, to other xleaf drivers through root calls > +* facilities event callbacks for other xleaf drivers > +* facilities inter-leaf driver calls for other xleaf drivers > + > +When root driver starts, it will explicitly create an initial group instance, > +which contains xleaf drivers that will trigger the creation of other group > +instances. The root driver will wait for all group and leaves to be created > +before it returns from it's probe routine and claim success of the > +initialization of the entire xmgmt driver. If any leaf fails to initialize the > +xmgmt driver will still come online but with limited functionality. thanks for adding this > + > +.. note:: > + See code in ``lib/xroot.c`` and ``mgmt/root.c`` > + > + > +group > +^^^^^ > + > +The group driver represents a pseudo device whose life cycle is managed by ok > +root and does not have real IO mem or IRQ resources. It's part of the > +infrastructure of the MPF driver and resides in xrt-lib.ko. This driver > + > +* manages one or more xleaf drivers > +* provides access to root from leaves, so that root calls, event notifications > + and inter-leaf calls can happen > + > +In xmgmt, an initial group driver instance will be created by the root. This > +instance contains leaves that will trigger group instances to be created to > +manage groups of leaves found on different partitions on hardware, such as > +VSEC, Shell, and User. > + > +Every *fpga_region* has a group object associated with it. The group is > +created when xclbin image is loaded on the fpga_region. The existing group > +is destroyed when a new xclbin image is loaded. The fpga_region persists > +across xclbin downloads. > + > +.. note:: > + See code in ``lib/group.c`` > + > + > +xleaf > +^^^^^ > + > +The xleaf driver is a platform device driver whose life cycle is managed by > +a group driver and may or may not have real IO mem or IRQ resources. They > +are the real meat of xmgmt and contains platform specific code to Shell and > +User found on a MPF. > + > +A xleaf driver may not have real hardware resources when it merely acts as a > +driver that manages certain in-memory states for xmgmt. A xleaf driver without real hardware resources manages in-memory states for xrt-mgmt. A more concise wording of above, change if you like. I noticed use of xmgmt, this changed in v4 ot xrt-mgmt, check doc for others. > These in-memory states > +could be shared by multiple other leaves. > + > +Leaf drivers assigned to specific hardware resources drive specific subsystem in drive a specific > +the device. To manipulate the subsystem or carry out a task, a xleaf driver may > +ask help from root via root calls and/or from other leaves via inter-leaf calls. ask for help > + > +A xleaf can also broadcast events through infrastructure code for other leaves > +to process. It can also receive event notification from infrastructure about > +certain events, such as post-creation or pre-exit of a particular xleaf. > + > +.. note:: > + See code in ``lib/xleaf/*.c`` > + > + > +FPGA Manager Interaction > +======================== > + > +fpga_manager > +------------ > + > +An instance of fpga_manager is created by xmgmt_main and is used for xclbin > +image download. fpga_manager requires the full xclbin image before it can > +start programming the FPGA configuration engine via Internal Configuration > +Access Port (ICAP) platform driver. thanks for expanding icap > + > +fpga_region > +----------- > + > +For every interface exposed by the currently loaded xclbin/xsabin in the ok > +*parent* fpga_region a new instance of fpga_region is created like a *child* ok > +fpga_region. The device tree of the *parent* fpga_region defines the > +resources for a new instance of fpga_bridge which isolates the parent from > +child fpga_region. This new instance of fpga_bridge will be used when a ok > +xclbin image is loaded on the child fpga_region. After the xclbin image is > +downloaded to the fpga_region, an instance of group is created for the > +fpga_region using the device tree obtained as part of the xclbin. If this > +device tree defines any child interfaces then it can trigger the creation of > +fpga_bridge and fpga_region for the next region in the chain. a fpga_bridge and a fpga_region > + > +fpga_bridge > +----------- > + > +Like the fpga_region, matching fpga_bridge is also created by walking the ok > +device tree of the parent group. > + > +Driver Interfaces > +================= > + > +xmgmt Driver Ioctls > +------------------- > + > +Ioctls exposed by xmgmt driver to user space are enumerated in the following > +table: > + > +== ===================== ============================ ========================== > +# Functionality ioctl request code data format > +== ===================== ============================ ========================== > +1 FPGA image download XMGMT_IOCICAPDOWNLOAD_AXLF xmgmt_ioc_bitstream_axlf > +== ===================== ============================ ========================== > + > +A user xclbin can be downloaded by using the xbmgmt tool from the XRT open source > +suite. See example usage below:: ok > + > + xbmgmt partition --program --path /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/test/verify.xclbin --force > + > +xmgmt Driver Sysfs > +------------------ > + > +xmgmt driver exposes a rich set of sysfs interfaces. Subsystem platform > +drivers export sysfs node for every platform instance. > + > +Every partition also exports its UUIDs. See below for examples:: > + > + /sys/bus/pci/devices/0000:06:00.0/xmgmt_main.0/interface_uuids > + /sys/bus/pci/devices/0000:06:00.0/xmgmt_main.0/logic_uuids > + > + > +hwmon > +----- > + > +xmgmt driver exposes standard hwmon interface to report voltage, current, > +temperature, power, etc. These can easily be viewed using *sensors* command > +line utility. > + > +Alveo Platform Overview > +======================= > + > +Alveo platforms are architected as two physical FPGA partitions: *Shell* and > +*User*. The Shell provides basic infrastructure for the Alveo platform like > +PCIe connectivity, board management, Dynamic Function Exchange (DFX), sensors, > +clocking, reset, and security. User partition contains user compiled FPGA The User partition contains the user > +binary which is loaded by a process called DFX also known as partial > +reconfiguration. > + > +For DFX to work properly physical partitions require strict HW compatibility properly, physical > +with each other. Every physical partition has two interface UUIDs: *parent* UUID > +and *child* UUID. For simple single stage platforms, Shell → User forms parent > +child relationship. > + > +.. note:: > + Partition compatibility matching is key design component of Alveo platforms is a key > + and XRT. Partitions have child and parent relationship. A loaded partition > + exposes child partition UUID to advertise its compatibility requirement.When space needed after '.' > + loading a child partition the xmgmt management driver matches parent UUID of > + the child partition against child UUID exported by the parent. Parent and > + child partition UUIDs are stored in the *xclbin* (for user) or *xsabin* (for > + shell). Except for root UUID exported by VSEC, hardware itself does not know > + about UUIDs. UUIDs are stored in xsabin and xclbin. The image format has a > + special node called Partition UUIDs which define the compatibility UUIDs. See > + :ref:`partition_uuids`. > + This is worded better, thanks. > + > +The physical partitions and their loading is illustrated below:: > + > + SHELL USER > + +-----------+ +-------------------+ > + | | | | > + | VSEC UUID | CHILD PARENT | LOGIC UUID | > + | o------->|<--------o | > + | | UUID UUID | | > + +-----+-----+ +--------+----------+ > + | | > + . . > + | | > + +---+---+ +------+--------+ > + | POR | | USER COMPILED | > + | FLASH | | XCLBIN | > + +-------+ +---------------+ > + > + > +Loading Sequence > +---------------- > + > +The Shell partition is loaded from flash at system boot time. It establishes the > +PCIe link and exposes two physical functions to the BIOS. After the OS boots, xmgmt the xrt-mgmt > +driver attaches to the PCIe physical function 0 exposed by the Shell and then looks > +for VSEC in PCIe extended configuration space. Using VSEC it determines the logic in the PCIe Using VSEC, it > +UUID of Shell and uses the UUID to load matching *xsabin* file from Linux firmware > +directory. The xsabin file contains metadata to discover peripherals that are part contains the metadata the peripherals > +of Shell and firmware(s) for any embedded soft processors in Shell. The xsabin file of the Shell and the the firmware can drop '(s)' > +also contains Partition UUIDs as described here :ref:`partition_uuids`. > + > +The Shell exports a child interface UUID which is used for the compatibility check ok > +when loading user compiled xclbin over the User partition as part of DFX. When a user > +requests loading of a specific xclbin the xmgmt management driver reads the parent xclbin, the xrt-mgmt driver can drop 'managment' since 'mgmt' is management > +interface UUID specified in the xclbin and matches it with child interface UUID > +exported by Shell to determine if xclbin is compatible with the Shell. If match > +fails loading of xclbin is denied. It the match fails, loading is denied. > + > +xclbin loading is requested using ICAP_DOWNLOAD_AXLF ioctl command. When loading > +xclbin, xmgmt driver performs the following *logical* operations: ok > + > +1. Copy xclbin from user to kernel memory > +2. Sanity check the xclbin contents > +3. Isolate the User partition > +4. Download the bitstream using the FPGA config engine (ICAP) > +5. De-isolate the User partition > +6. Program the clocks (ClockWiz) driving the User partition > +7. Wait for memory controller (MIG) calibration for the > +8. Return the loading status back to the caller > + > +`Platform Loading Overview <https://xilinx.github.io/XRT/master/html/platforms_partitions.html>`_ > +provides more detailed information on platform loading. > + > + > +xsabin > +------ > + > +Each Alveo platform comes packaged with its own xsabin. The xsabin is a trusted ok > +component of the platform. For format details refer to :ref:`xsabin_xclbin_container_format` > +below. xsabin contains basic information like UUIDs, platform name and metadata in the > +form of device tree. See :ref:`device_tree_usage` below for details and example. ok > + > +xclbin > +------ > + > +xclbin is compiled by end user using > +`Vitis <https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html>`_ > +tool set from Xilinx. The xclbin contains sections describing user compiled > +acceleration engines/kernels, memory subsystems, clocking information etc. It also > +contains FPGA bitstream for the user partition, UUIDs, platform name, etc. needs to be either FPGA bitstreams or a FPGA bitstream > + > + > +.. _xsabin_xclbin_container_format: > + > +xsabin/xclbin Container Format > +------------------------------ > + > +xclbin/xsabin is ELF-like binary container format. It is structured as series of > +sections. There is a file header followed by several section headers which is > +followed by sections. A section header points to an actual section. There is an > +optional signature at the end. The format is defined by header file ``xclbin.h``. ok > +The following figure illustrates a typical xclbin:: > + > + > + +---------------------+ > + | | > + | HEADER | > + +---------------------+ > + | SECTION HEADER | > + | | > + +---------------------+ > + | ... | > + | | > + +---------------------+ > + | SECTION HEADER | > + | | > + +---------------------+ > + | SECTION | > + | | > + +---------------------+ > + | ... | > + | | > + +---------------------+ > + | SECTION | > + | | > + +---------------------+ > + | SIGNATURE | > + | (OPTIONAL) | > + +---------------------+ > + > + > +xclbin/xsabin files can be packaged, un-packaged and inspected using XRT utility using a XRT utility > +called **xclbinutil**. xclbinutil is part of XRT open source software stack. The of the XRT > +source code for xclbinutil can be found at > +https://github.com/Xilinx/XRT/tree/master/src/runtime_src/tools/xclbinutil > + > +For example to enumerate the contents of a xclbin/xsabin use the *--info* switch > +as shown below:: > + > + > + xclbinutil --info --input /opt/xilinx/firmware/u50/gen3x16-xdma/blp/test/bandwidth.xclbin > + xclbinutil --info --input /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/partition.xsabin > + > + > +.. _device_tree_usage: > + > +Device Tree Usage > +----------------- > + > +As mentioned previously xsabin stores metadata which advertise HW subsystems present previously, xsabin > +in a partition. The metadata is stored in device tree format with a well defined schema. ok > +XRT management driver uses this information to bind *platform drivers* to the subsystem > +instantiations. The platform drivers are found in **xrt-lib.ko** kernel module defined > +later. > + > +Logic UUID > +^^^^^^^^^^ > +A partition is identified uniquely through ``logic_uuid`` property:: > + > + /dts-v1/; > + / { > + logic_uuid = "0123456789abcdef0123456789abcdef"; > + ... > + } > + > +Schema Version > +^^^^^^^^^^^^^^ > +Schema version is defined through ``schema_version`` node. And it contains ``major`` > +and ``minor`` properties as below:: > + > + /dts-v1/; > + / { > + schema_version { > + major = <0x01>; > + minor = <0x00>; > + }; > + ... > + } > + > +.. _partition_uuids: > + > +Partition UUIDs > +^^^^^^^^^^^^^^^ > +As mentioned earlier, each partition may have parent and child UUIDs. These UUIDs are > +defined by ``interfaces`` node and ``interface_uuid`` property:: > + > + /dts-v1/; > + / { > + interfaces { > + @0 { > + interface_uuid = "0123456789abcdef0123456789abcdef"; > + }; > + @1 { > + interface_uuid = "fedcba9876543210fedcba9876543210"; > + }; > + ... > + }; > + ... > + } > + > + > +Subsystem Instantiations > +^^^^^^^^^^^^^^^^^^^^^^^^ > +Subsystem instantiations are captured as children of ``addressable_endpoints`` > +node:: > + > + /dts-v1/; > + / { > + addressable_endpoints { > + abc { > + ... > + }; > + def { > + ... > + }; > + ... > + } > + } > + > +Subnode 'abc' and 'def' are the name of subsystem nodes > + > +Subsystem Node > +^^^^^^^^^^^^^^ > +Each subsystem node and its properties define a hardware instance:: > + > + > + addressable_endpoints { > + abc { > + reg = <0xa 0xb> > + pcie_physical_function = <0x0>; > + pcie_bar_mapping = <0x2>; > + compatible = "abc def"; > + firmware { > + firmware_product_name = "abc" > + firmware_branch_name = "def" > + firmware_version_major = <1> > + firmware_version_minor = <2> > + }; > + } > + ... > + } > + > +:reg: > + Property defines address range. '<0xa 0xb>' is BAR offset and length pair, both defines an address is the BAR > + are 64-bit integer. integers > +:pcie_physical_function: > + Property specifies which PCIe physical function the subsystem node resides. > +:pcie_bar_mapping: > + Property specifies which PCIe BAR the subsystem node resides. '<0x2>' is BAR > + index and it is 0 if this property is not defined. index. A value of 0 means the property is not defined. > +:compatible: > + Property is a list of strings. The first string in the list specifies the exact > + subsystem node. The following strings represent other devices that the device > + is compatible with. > +:firmware: > + Subnode defines the firmware required by this subsystem node. > + > +Alveo U50 Platform Example > +^^^^^^^^^^^^^^^^^^^^^^^^^^ > +:: > + > + /dts-v1/; > + > + /{ > + logic_uuid = "f465b0a3ae8c64f619bc150384ace69b"; > + > + schema_version { > + major = <0x01>; > + minor = <0x00>; > + }; > + > + interfaces { > + > + @0 { > + interface_uuid = "862c7020a250293e32036f19956669e5"; > + }; > + }; > + > + addressable_endpoints { > + > + ep_blp_rom_00 { > + reg = <0x00 0x1f04000 0x00 0x1000>; this is 4 values, not 2 > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; > + }; > + > + ep_card_flash_program_00 { > + reg = <0x00 0x1f06000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_quad_spi-1.0\0axi_quad_spi"; > + interrupts = <0x03 0x03>; interrupts not covered above > + }; > + > + ep_cmc_firmware_mem_00 { > + reg = <0x00 0x1e20000 0x00 0x20000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; > + > + firmware { > + firmware_product_name = "cmc"; > + firmware_branch_name = "u50"; > + firmware_version_major = <0x01>; > + firmware_version_minor = <0x00>; > + }; > + }; > + > + ep_cmc_intc_00 { > + reg = <0x00 0x1e03000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; > + interrupts = <0x04 0x04>; > + }; > + > + ep_cmc_mutex_00 { > + reg = <0x00 0x1e02000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_cmc_regmap_00 { > + reg = <0x00 0x1e08000 0x00 0x2000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; > + > + firmware { > + firmware_product_name = "sc-fw"; > + firmware_branch_name = "u50"; > + firmware_version_major = <0x05>; > + }; > + }; > + > + ep_cmc_reset_00 { > + reg = <0x00 0x1e01000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_ddr_mem_calib_00 { > + reg = <0x00 0x63000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_debug_bscan_mgmt_00 { > + reg = <0x00 0x1e90000 0x00 0x10000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-debug_bridge-1.0\0debug_bridge"; > + }; > + > + ep_ert_base_address_00 { > + reg = <0x00 0x21000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_ert_command_queue_mgmt_00 { > + reg = <0x00 0x40000 0x00 0x10000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; > + }; > + > + ep_ert_command_queue_user_00 { > + reg = <0x00 0x40000 0x00 0x10000>; > + pcie_physical_function = <0x01>; > + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; > + }; > + > + ep_ert_firmware_mem_00 { > + reg = <0x00 0x30000 0x00 0x8000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; > + > + firmware { > + firmware_product_name = "ert"; > + firmware_branch_name = "v20"; > + firmware_version_major = <0x01>; > + }; > + }; > + > + ep_ert_intc_00 { > + reg = <0x00 0x23000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; > + interrupts = <0x05 0x05>; > + }; > + > + ep_ert_reset_00 { > + reg = <0x00 0x22000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_ert_sched_00 { > + reg = <0x00 0x50000 0x00 0x1000>; > + pcie_physical_function = <0x01>; > + compatible = "xilinx.com,reg_abs-ert_sched-1.0\0ert_sched"; > + interrupts = <0x09 0x0c>; > + }; > + > + ep_fpga_configuration_00 { > + reg = <0x00 0x1e88000 0x00 0x8000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_hwicap-1.0\0axi_hwicap"; > + interrupts = <0x02 0x02>; > + }; > + > + ep_icap_reset_00 { > + reg = <0x00 0x1f07000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_msix_00 { > + reg = <0x00 0x00 0x00 0x20000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-msix-1.0\0msix"; > + pcie_bar_mapping = <0x02>; > + }; > + > + ep_pcie_link_mon_00 { > + reg = <0x00 0x1f05000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_pr_isolate_plp_00 { > + reg = <0x00 0x1f01000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_pr_isolate_ulp_00 { > + reg = <0x00 0x1000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; > + }; > + > + ep_uuid_rom_00 { > + reg = <0x00 0x64000 0x00 0x1000>; > + pcie_physical_function = <0x00>; > + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; > + }; > + > + ep_xdma_00 { > + reg = <0x00 0x00 0x00 0x10000>; > + pcie_physical_function = <0x01>; > + compatible = "xilinx.com,reg_abs-xdma-1.0\0xdma"; > + pcie_bar_mapping = <0x02>; > + }; > + }; > + > + } > + > + > + > +Deployment Models > +================= > + > +Baremetal > +--------- > + > +In bare-metal deployments, both MPF and UPF are visible and accessible. xmgmt ok xmgnt -> xrt-mgmt > +driver binds to MPF. xmgmt driver operations are privileged and available to > +system administrator. The full stack is illustrated below:: > + > + HOST > + > + [XMGMT] [XUSER] > + | | > + | | > + +-----+ +-----+ > + | MPF | | UPF | > + | | | | > + | PF0 | | PF1 | > + +--+--+ +--+--+ > + ......... ^................. ^.......... > + | | > + | PCIe DEVICE | > + | | > + +--+------------------+--+ > + | SHELL | > + | | > + +------------------------+ > + | USER | > + | | > + | | > + | | > + | | > + +------------------------+ > + > + > + > +Virtualized > +----------- > + > +In virtualized deployments, privileged MPF is assigned to host but unprivileged an article is needed to precede 'MPF' and 'UPF' pick either 'a' or 'the' Thanks for all the changes. Tom > +UPF is assigned to guest VM via PCIe pass-through. xmgmt driver in host binds > +to MPF. xmgmt driver operations are privileged and only accessible to the MPF. > +The full stack is illustrated below:: > + > + > + ............. > + HOST . VM . > + . . > + [XMGMT] . [XUSER] . > + | . | . > + | . | . > + +-----+ . +-----+ . > + | MPF | . | UPF | . > + | | . | | . > + | PF0 | . | PF1 | . > + +--+--+ . +--+--+ . > + ......... ^................. ^.......... > + | | > + | PCIe DEVICE | > + | | > + +--+------------------+--+ > + | SHELL | > + | | > + +------------------------+ > + | USER | > + | | > + | | > + | | > + | | > + +------------------------+ > + > + > + > + > + > +Platform Security Considerations > +================================ > + > +`Security of Alveo Platform <https://xilinx.github.io/XRT/master/html/security.html>`_ > +discusses the deployment options and security implications in great detail.
diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst index f80f95667ca2..30134357b70d 100644 --- a/Documentation/fpga/index.rst +++ b/Documentation/fpga/index.rst @@ -8,6 +8,7 @@ fpga :maxdepth: 1 dfl + xrt .. only:: subproject and html diff --git a/Documentation/fpga/xrt.rst b/Documentation/fpga/xrt.rst new file mode 100644 index 000000000000..0f7977464270 --- /dev/null +++ b/Documentation/fpga/xrt.rst @@ -0,0 +1,844 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================================== +XRTV2 Linux Kernel Driver Overview +================================== + +Authors: + +* Sonal Santan <sonal.santan@xilinx.com> +* Max Zhen <max.zhen@xilinx.com> +* Lizhi Hou <lizhi.hou@xilinx.com> + +XRTV2 drivers are second generation `XRT <https://github.com/Xilinx/XRT>`_ +drivers which support `Alveo <https://www.xilinx.com/products/boards-and-kits/alveo.html>`_ +PCIe platforms from Xilinx. + +XRTV2 drivers support *subsystem* style data driven platforms where driver's +configuration and behavior is determined by meta data provided by the platform +(in *device tree* format). Primary management physical function (MPF) driver +is called **xmgmt**. Primary user physical function (UPF) driver is called +**xuser** and is under development. xrt driver framework and HW subsystem +drivers are packaged into a library module called **xrt-lib**, which is +shared by **xmgmt** and **xuser** (under development). The xrt driver framework +implements a pseudo-bus which is used to discover HW subsystems and facilitate +inter HW subsystem interaction. + +Driver Modules +============== + +xrt-lib.ko +---------- + +Repository of all subsystem drivers and pure software modules that can potentially +be shared between xmgmt and xuser. All these drivers are structured as Linux +*platform driver* and are instantiated by xmgmt (or xuser under development) based +on meta data associated with the hardware. The metadata is in the form of a device +tree as mentioned before. Each platform driver statically defines a subsystem node +array by using node name or a string in its ``compatible`` property. And this +array is eventually translated to IOMEM resources of the platform device. + +The xrt-lib core infrastructure provides hooks to platform drivers for device node +management, user file operations and ioctl callbacks. The core infrastructure also +provides pseudo-bus functionality for platform driver registration, discovery and +inter platform driver ioctl calls. + +.. note:: + See code in ``include/xleaf.h`` + + +xmgmt.ko +-------- + +The xmgmt driver is a PCIe device driver driving MPF found on Xilinx's Alveo +PCIE device. It consists of one *root* driver, one or more *group* drivers +and one or more *xleaf* drivers. The root and MPF specific xleaf drivers are +in xmgmt.ko. The group driver and other xleaf drivers are in xrt-lib.ko. + +The instantiation of specific group driver or xleaf driver is completely data +driven based on meta data (mostly in device tree format) found through VSEC +capability and inside firmware files, such as platform xsabin or user xclbin file. +The root driver manages the life cycle of multiple group drivers, which, in turn, +manages multiple xleaf drivers. This allows a single set of drivers to support +all kinds of subsystems exposed by different shells. The difference among all +these subsystems will be handled in xleaf drivers with root and group drivers +being part of the infrastructure and provide common services for all leaves +found on all platforms. + +The driver object model looks like the following:: + + +-----------+ + | xroot | + +-----+-----+ + | + +-----------+-----------+ + | | + v v + +-----------+ +-----------+ + | group | ... | group | + +-----+-----+ +------+----+ + | | + | | + +-----+----+ +-----+----+ + | | | | + v v v v + +-------+ +-------+ +-------+ +-------+ + | xleaf |..| xleaf | | xleaf |..| xleaf | + +-------+ +-------+ +-------+ +-------+ + +As an example for Xilinx Alveo U50 before user xclbin download, the tree +looks like the following:: + + +-----------+ + | xmgmt | + +-----+-----+ + | + +-------------------------+--------------------+ + | | | + v v v + +--------+ +--------+ +--------+ + | group0 | | group1 | | group2 | + +----+---+ +----+---+ +---+----+ + | | | + | | | + +-----+-----+ +----+-----+---+ +-----+-----+----+--------+ + | | | | | | | | | + v v | v v | v v | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | + | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | + | +---------+ | +------+ +-----------+ | + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ + +---------+ | +------+ +-----------+ + | +-------+ + +->| CALIB | + +-------+ + +After an xclbin is download, group3 will be added and the tree looks like the +following:: + + +-----------+ + | xmgmt | + +-----+-----+ + | + +-------------------------+--------------------+-----------------+ + | | | | + v v v | + +--------+ +--------+ +--------+ | + | group0 | | group1 | | group2 | | + +----+---+ +----+---+ +---+----+ | + | | | | + | | | | + +-----+-----+ +-----+-----+---+ +-----+-----+----+--------+ | + | | | | | | | | | | + v v | v v | v v | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | + | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | + | +---------+ | +------+ +-----------+ | | + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ | + +---------+ | +------+ +-----------+ | + | +-------+ | + +->| CALIB | | + +-------+ | + +---+----+ | + | group3 |<--------------------------------------------+ + +--------+ + | + | + +-------+--------+---+--+--------+------+-------+ + | | | | | | | + v | v | v | v + +--------+ | +--------+ | +--------+ | +-----+ + | CLOCK0 | | | CLOCK1 | | | CLOCK2 | | | UCS | + +--------+ v +--------+ v +--------+ v +-----+ + +-------------+ +-------------+ +-------------+ + | CLOCK-FREQ0 | | CLOCK-FREQ1 | | CLOCK-FREQ2 | + +-------------+ +-------------+ +-------------+ + + +xmgmt-root +^^^^^^^^^^ + +The xmgmt-root driver is a PCIe device driver attached to MPF. It's part of the +infrastructure of the MPF driver and resides in xmgmt.ko. This driver + +* manages one or more group drivers +* provides access to functionalities that requires pci_dev, such as PCIE config + space access, to other xleaf drivers through root calls +* facilities event callbacks for other xleaf drivers +* facilities inter-leaf driver calls for other xleaf drivers + +When root driver starts, it will explicitly create an initial group instance, +which contains xleaf drivers that will trigger the creation of other group +instances. The root driver will wait for all group and leaves to be created +before it returns from it's probe routine and claim success of the +initialization of the entire xmgmt driver. If any leaf fails to initialize the +xmgmt driver will still come online but with limited functionality. + +.. note:: + See code in ``lib/xroot.c`` and ``mgmt/root.c`` + + +group +^^^^^ + +The group driver represents a pseudo device whose life cycle is managed by +root and does not have real IO mem or IRQ resources. It's part of the +infrastructure of the MPF driver and resides in xrt-lib.ko. This driver + +* manages one or more xleaf drivers +* provides access to root from leaves, so that root calls, event notifications + and inter-leaf calls can happen + +In xmgmt, an initial group driver instance will be created by the root. This +instance contains leaves that will trigger group instances to be created to +manage groups of leaves found on different partitions on hardware, such as +VSEC, Shell, and User. + +Every *fpga_region* has a group object associated with it. The group is +created when xclbin image is loaded on the fpga_region. The existing group +is destroyed when a new xclbin image is loaded. The fpga_region persists +across xclbin downloads. + +.. note:: + See code in ``lib/group.c`` + + +xleaf +^^^^^ + +The xleaf driver is a platform device driver whose life cycle is managed by +a group driver and may or may not have real IO mem or IRQ resources. They +are the real meat of xmgmt and contains platform specific code to Shell and +User found on a MPF. + +A xleaf driver may not have real hardware resources when it merely acts as a +driver that manages certain in-memory states for xmgmt. These in-memory states +could be shared by multiple other leaves. + +Leaf drivers assigned to specific hardware resources drive specific subsystem in +the device. To manipulate the subsystem or carry out a task, a xleaf driver may +ask help from root via root calls and/or from other leaves via inter-leaf calls. + +A xleaf can also broadcast events through infrastructure code for other leaves +to process. It can also receive event notification from infrastructure about +certain events, such as post-creation or pre-exit of a particular xleaf. + +.. note:: + See code in ``lib/xleaf/*.c`` + + +FPGA Manager Interaction +======================== + +fpga_manager +------------ + +An instance of fpga_manager is created by xmgmt_main and is used for xclbin +image download. fpga_manager requires the full xclbin image before it can +start programming the FPGA configuration engine via Internal Configuration +Access Port (ICAP) platform driver. + +fpga_region +----------- + +For every interface exposed by the currently loaded xclbin/xsabin in the +*parent* fpga_region a new instance of fpga_region is created like a *child* +fpga_region. The device tree of the *parent* fpga_region defines the +resources for a new instance of fpga_bridge which isolates the parent from +child fpga_region. This new instance of fpga_bridge will be used when a +xclbin image is loaded on the child fpga_region. After the xclbin image is +downloaded to the fpga_region, an instance of group is created for the +fpga_region using the device tree obtained as part of the xclbin. If this +device tree defines any child interfaces then it can trigger the creation of +fpga_bridge and fpga_region for the next region in the chain. + +fpga_bridge +----------- + +Like the fpga_region, matching fpga_bridge is also created by walking the +device tree of the parent group. + +Driver Interfaces +================= + +xmgmt Driver Ioctls +------------------- + +Ioctls exposed by xmgmt driver to user space are enumerated in the following +table: + +== ===================== ============================ ========================== +# Functionality ioctl request code data format +== ===================== ============================ ========================== +1 FPGA image download XMGMT_IOCICAPDOWNLOAD_AXLF xmgmt_ioc_bitstream_axlf +== ===================== ============================ ========================== + +A user xclbin can be downloaded by using the xbmgmt tool from the XRT open source +suite. See example usage below:: + + xbmgmt partition --program --path /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/test/verify.xclbin --force + +xmgmt Driver Sysfs +------------------ + +xmgmt driver exposes a rich set of sysfs interfaces. Subsystem platform +drivers export sysfs node for every platform instance. + +Every partition also exports its UUIDs. See below for examples:: + + /sys/bus/pci/devices/0000:06:00.0/xmgmt_main.0/interface_uuids + /sys/bus/pci/devices/0000:06:00.0/xmgmt_main.0/logic_uuids + + +hwmon +----- + +xmgmt driver exposes standard hwmon interface to report voltage, current, +temperature, power, etc. These can easily be viewed using *sensors* command +line utility. + +Alveo Platform Overview +======================= + +Alveo platforms are architected as two physical FPGA partitions: *Shell* and +*User*. The Shell provides basic infrastructure for the Alveo platform like +PCIe connectivity, board management, Dynamic Function Exchange (DFX), sensors, +clocking, reset, and security. User partition contains user compiled FPGA +binary which is loaded by a process called DFX also known as partial +reconfiguration. + +For DFX to work properly physical partitions require strict HW compatibility +with each other. Every physical partition has two interface UUIDs: *parent* UUID +and *child* UUID. For simple single stage platforms, Shell → User forms parent +child relationship. + +.. note:: + Partition compatibility matching is key design component of Alveo platforms + and XRT. Partitions have child and parent relationship. A loaded partition + exposes child partition UUID to advertise its compatibility requirement.When + loading a child partition the xmgmt management driver matches parent UUID of + the child partition against child UUID exported by the parent. Parent and + child partition UUIDs are stored in the *xclbin* (for user) or *xsabin* (for + shell). Except for root UUID exported by VSEC, hardware itself does not know + about UUIDs. UUIDs are stored in xsabin and xclbin. The image format has a + special node called Partition UUIDs which define the compatibility UUIDs. See + :ref:`partition_uuids`. + + +The physical partitions and their loading is illustrated below:: + + SHELL USER + +-----------+ +-------------------+ + | | | | + | VSEC UUID | CHILD PARENT | LOGIC UUID | + | o------->|<--------o | + | | UUID UUID | | + +-----+-----+ +--------+----------+ + | | + . . + | | + +---+---+ +------+--------+ + | POR | | USER COMPILED | + | FLASH | | XCLBIN | + +-------+ +---------------+ + + +Loading Sequence +---------------- + +The Shell partition is loaded from flash at system boot time. It establishes the +PCIe link and exposes two physical functions to the BIOS. After the OS boots, xmgmt +driver attaches to the PCIe physical function 0 exposed by the Shell and then looks +for VSEC in PCIe extended configuration space. Using VSEC it determines the logic +UUID of Shell and uses the UUID to load matching *xsabin* file from Linux firmware +directory. The xsabin file contains metadata to discover peripherals that are part +of Shell and firmware(s) for any embedded soft processors in Shell. The xsabin file +also contains Partition UUIDs as described here :ref:`partition_uuids`. + +The Shell exports a child interface UUID which is used for the compatibility check +when loading user compiled xclbin over the User partition as part of DFX. When a user +requests loading of a specific xclbin the xmgmt management driver reads the parent +interface UUID specified in the xclbin and matches it with child interface UUID +exported by Shell to determine if xclbin is compatible with the Shell. If match +fails loading of xclbin is denied. + +xclbin loading is requested using ICAP_DOWNLOAD_AXLF ioctl command. When loading +xclbin, xmgmt driver performs the following *logical* operations: + +1. Copy xclbin from user to kernel memory +2. Sanity check the xclbin contents +3. Isolate the User partition +4. Download the bitstream using the FPGA config engine (ICAP) +5. De-isolate the User partition +6. Program the clocks (ClockWiz) driving the User partition +7. Wait for memory controller (MIG) calibration +8. Return the loading status back to the caller + +`Platform Loading Overview <https://xilinx.github.io/XRT/master/html/platforms_partitions.html>`_ +provides more detailed information on platform loading. + + +xsabin +------ + +Each Alveo platform comes packaged with its own xsabin. The xsabin is a trusted +component of the platform. For format details refer to :ref:`xsabin_xclbin_container_format` +below. xsabin contains basic information like UUIDs, platform name and metadata in the +form of device tree. See :ref:`device_tree_usage` below for details and example. + +xclbin +------ + +xclbin is compiled by end user using +`Vitis <https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html>`_ +tool set from Xilinx. The xclbin contains sections describing user compiled +acceleration engines/kernels, memory subsystems, clocking information etc. It also +contains FPGA bitstream for the user partition, UUIDs, platform name, etc. + + +.. _xsabin_xclbin_container_format: + +xsabin/xclbin Container Format +------------------------------ + +xclbin/xsabin is ELF-like binary container format. It is structured as series of +sections. There is a file header followed by several section headers which is +followed by sections. A section header points to an actual section. There is an +optional signature at the end. The format is defined by header file ``xclbin.h``. +The following figure illustrates a typical xclbin:: + + + +---------------------+ + | | + | HEADER | + +---------------------+ + | SECTION HEADER | + | | + +---------------------+ + | ... | + | | + +---------------------+ + | SECTION HEADER | + | | + +---------------------+ + | SECTION | + | | + +---------------------+ + | ... | + | | + +---------------------+ + | SECTION | + | | + +---------------------+ + | SIGNATURE | + | (OPTIONAL) | + +---------------------+ + + +xclbin/xsabin files can be packaged, un-packaged and inspected using XRT utility +called **xclbinutil**. xclbinutil is part of XRT open source software stack. The +source code for xclbinutil can be found at +https://github.com/Xilinx/XRT/tree/master/src/runtime_src/tools/xclbinutil + +For example to enumerate the contents of a xclbin/xsabin use the *--info* switch +as shown below:: + + + xclbinutil --info --input /opt/xilinx/firmware/u50/gen3x16-xdma/blp/test/bandwidth.xclbin + xclbinutil --info --input /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/partition.xsabin + + +.. _device_tree_usage: + +Device Tree Usage +----------------- + +As mentioned previously xsabin stores metadata which advertise HW subsystems present +in a partition. The metadata is stored in device tree format with a well defined schema. +XRT management driver uses this information to bind *platform drivers* to the subsystem +instantiations. The platform drivers are found in **xrt-lib.ko** kernel module defined +later. + +Logic UUID +^^^^^^^^^^ +A partition is identified uniquely through ``logic_uuid`` property:: + + /dts-v1/; + / { + logic_uuid = "0123456789abcdef0123456789abcdef"; + ... + } + +Schema Version +^^^^^^^^^^^^^^ +Schema version is defined through ``schema_version`` node. And it contains ``major`` +and ``minor`` properties as below:: + + /dts-v1/; + / { + schema_version { + major = <0x01>; + minor = <0x00>; + }; + ... + } + +.. _partition_uuids: + +Partition UUIDs +^^^^^^^^^^^^^^^ +As mentioned earlier, each partition may have parent and child UUIDs. These UUIDs are +defined by ``interfaces`` node and ``interface_uuid`` property:: + + /dts-v1/; + / { + interfaces { + @0 { + interface_uuid = "0123456789abcdef0123456789abcdef"; + }; + @1 { + interface_uuid = "fedcba9876543210fedcba9876543210"; + }; + ... + }; + ... + } + + +Subsystem Instantiations +^^^^^^^^^^^^^^^^^^^^^^^^ +Subsystem instantiations are captured as children of ``addressable_endpoints`` +node:: + + /dts-v1/; + / { + addressable_endpoints { + abc { + ... + }; + def { + ... + }; + ... + } + } + +Subnode 'abc' and 'def' are the name of subsystem nodes + +Subsystem Node +^^^^^^^^^^^^^^ +Each subsystem node and its properties define a hardware instance:: + + + addressable_endpoints { + abc { + reg = <0xa 0xb> + pcie_physical_function = <0x0>; + pcie_bar_mapping = <0x2>; + compatible = "abc def"; + firmware { + firmware_product_name = "abc" + firmware_branch_name = "def" + firmware_version_major = <1> + firmware_version_minor = <2> + }; + } + ... + } + +:reg: + Property defines address range. '<0xa 0xb>' is BAR offset and length pair, both + are 64-bit integer. +:pcie_physical_function: + Property specifies which PCIe physical function the subsystem node resides. +:pcie_bar_mapping: + Property specifies which PCIe BAR the subsystem node resides. '<0x2>' is BAR + index and it is 0 if this property is not defined. +:compatible: + Property is a list of strings. The first string in the list specifies the exact + subsystem node. The following strings represent other devices that the device + is compatible with. +:firmware: + Subnode defines the firmware required by this subsystem node. + +Alveo U50 Platform Example +^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + /dts-v1/; + + /{ + logic_uuid = "f465b0a3ae8c64f619bc150384ace69b"; + + schema_version { + major = <0x01>; + minor = <0x00>; + }; + + interfaces { + + @0 { + interface_uuid = "862c7020a250293e32036f19956669e5"; + }; + }; + + addressable_endpoints { + + ep_blp_rom_00 { + reg = <0x00 0x1f04000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + }; + + ep_card_flash_program_00 { + reg = <0x00 0x1f06000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_quad_spi-1.0\0axi_quad_spi"; + interrupts = <0x03 0x03>; + }; + + ep_cmc_firmware_mem_00 { + reg = <0x00 0x1e20000 0x00 0x20000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "cmc"; + firmware_branch_name = "u50"; + firmware_version_major = <0x01>; + firmware_version_minor = <0x00>; + }; + }; + + ep_cmc_intc_00 { + reg = <0x00 0x1e03000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; + interrupts = <0x04 0x04>; + }; + + ep_cmc_mutex_00 { + reg = <0x00 0x1e02000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_cmc_regmap_00 { + reg = <0x00 0x1e08000 0x00 0x2000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "sc-fw"; + firmware_branch_name = "u50"; + firmware_version_major = <0x05>; + }; + }; + + ep_cmc_reset_00 { + reg = <0x00 0x1e01000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ddr_mem_calib_00 { + reg = <0x00 0x63000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_debug_bscan_mgmt_00 { + reg = <0x00 0x1e90000 0x00 0x10000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-debug_bridge-1.0\0debug_bridge"; + }; + + ep_ert_base_address_00 { + reg = <0x00 0x21000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ert_command_queue_mgmt_00 { + reg = <0x00 0x40000 0x00 0x10000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; + }; + + ep_ert_command_queue_user_00 { + reg = <0x00 0x40000 0x00 0x10000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; + }; + + ep_ert_firmware_mem_00 { + reg = <0x00 0x30000 0x00 0x8000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "ert"; + firmware_branch_name = "v20"; + firmware_version_major = <0x01>; + }; + }; + + ep_ert_intc_00 { + reg = <0x00 0x23000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; + interrupts = <0x05 0x05>; + }; + + ep_ert_reset_00 { + reg = <0x00 0x22000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ert_sched_00 { + reg = <0x00 0x50000 0x00 0x1000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-ert_sched-1.0\0ert_sched"; + interrupts = <0x09 0x0c>; + }; + + ep_fpga_configuration_00 { + reg = <0x00 0x1e88000 0x00 0x8000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_hwicap-1.0\0axi_hwicap"; + interrupts = <0x02 0x02>; + }; + + ep_icap_reset_00 { + reg = <0x00 0x1f07000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_msix_00 { + reg = <0x00 0x00 0x00 0x20000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-msix-1.0\0msix"; + pcie_bar_mapping = <0x02>; + }; + + ep_pcie_link_mon_00 { + reg = <0x00 0x1f05000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_pr_isolate_plp_00 { + reg = <0x00 0x1f01000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_pr_isolate_ulp_00 { + reg = <0x00 0x1000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_uuid_rom_00 { + reg = <0x00 0x64000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + }; + + ep_xdma_00 { + reg = <0x00 0x00 0x00 0x10000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-xdma-1.0\0xdma"; + pcie_bar_mapping = <0x02>; + }; + }; + + } + + + +Deployment Models +================= + +Baremetal +--------- + +In bare-metal deployments, both MPF and UPF are visible and accessible. xmgmt +driver binds to MPF. xmgmt driver operations are privileged and available to +system administrator. The full stack is illustrated below:: + + HOST + + [XMGMT] [XUSER] + | | + | | + +-----+ +-----+ + | MPF | | UPF | + | | | | + | PF0 | | PF1 | + +--+--+ +--+--+ + ......... ^................. ^.......... + | | + | PCIe DEVICE | + | | + +--+------------------+--+ + | SHELL | + | | + +------------------------+ + | USER | + | | + | | + | | + | | + +------------------------+ + + + +Virtualized +----------- + +In virtualized deployments, privileged MPF is assigned to host but unprivileged +UPF is assigned to guest VM via PCIe pass-through. xmgmt driver in host binds +to MPF. xmgmt driver operations are privileged and only accessible to the MPF. +The full stack is illustrated below:: + + + ............. + HOST . VM . + . . + [XMGMT] . [XUSER] . + | . | . + | . | . + +-----+ . +-----+ . + | MPF | . | UPF | . + | | . | | . + | PF0 | . | PF1 | . + +--+--+ . +--+--+ . + ......... ^................. ^.......... + | | + | PCIe DEVICE | + | | + +--+------------------+--+ + | SHELL | + | | + +------------------------+ + | USER | + | | + | | + | | + | | + +------------------------+ + + + + + +Platform Security Considerations +================================ + +`Security of Alveo Platform <https://xilinx.github.io/XRT/master/html/security.html>`_ +discusses the deployment options and security implications in great detail.