=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 70 cycles
100000 times kmalloc(16)/kfree -> 70 cycles
100000 times kmalloc(32)/kfree -> 70 cycles
100000 times kmalloc(64)/kfree -> 70 cycles
100000 times kmalloc(128)/kfree -> 70 cycles
100000 times kmalloc(256)/kfree -> 69 cycles
100000 times kmalloc(512)/kfree -> 70 cycles
100000 times kmalloc(1024)/kfree -> 73 cycles
100000 times kmalloc(2048)/kfree -> 72 cycles
100000 times kmalloc(4096)/kfree -> 71 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 66 cycles
100000 times kmalloc(16)/kfree -> 66 cycles
100000 times kmalloc(32)/kfree -> 66 cycles
100000 times kmalloc(64)/kfree -> 66 cycles
100000 times kmalloc(128)/kfree -> 65 cycles
100000 times kmalloc(256)/kfree -> 67 cycles
100000 times kmalloc(512)/kfree -> 67 cycles
100000 times kmalloc(1024)/kfree -> 64 cycles
100000 times kmalloc(2048)/kfree -> 67 cycles
100000 times kmalloc(4096)/kfree -> 67 cycles
Kernbench, before:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 101.873 (1.16069)
User Time 1045.22 (1.60447)
System Time 88.969 (0.559195)
Percent CPU 1112.9 (13.8279)
Context Switches 189140 (2282.15)
Sleeps 99008.6 (768.091)
After:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 102.47 (0.562732)
User Time 1045.3 (1.34263)
System Time 88.311 (0.342554)
Percent CPU 1105.8 (6.49444)
Context Switches 189081 (2355.78)
Sleeps 99231.5 (800.358)
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
---
Based on next-20160526
---
include/linux/slub_def.h | 5 ++
init/Kconfig | 4 +-
mm/slub.c | 133 ++++++++++++++++++++++++++++++++++++++++++++---
3 files changed, 133 insertions(+), 9 deletions(-)
@@ -99,6 +99,11 @@ struct kmem_cache {
*/
int remote_node_defrag_ratio;
#endif
+
+#ifdef CONFIG_SLAB_FREELIST_RANDOM
+ unsigned int *random_seq;
+#endif
+
struct kmem_cache_node *node[MAX_NUMNODES];
};
@@ -1784,10 +1784,10 @@ endchoice
config SLAB_FREELIST_RANDOM
default n
- depends on SLAB
+ depends on SLAB || SLUB
bool "SLAB freelist randomization"
help
- Randomizes the freelist order used on creating new SLABs. This
+ Randomizes the freelist order used on creating new pages. This
security feature reduces the predictability of the kernel slab
allocator against heap overflows.
@@ -1405,6 +1405,109 @@ static inline struct page *alloc_slab_page(struct kmem_cache *s,
return page;
}
+#ifdef CONFIG_SLAB_FREELIST_RANDOM
+/* Pre-initialize the random sequence cache */
+static int init_cache_random_seq(struct kmem_cache *s)
+{
+ int err;
+ unsigned long i, count = oo_objects(s->oo);
+
+ err = cache_random_seq_create(s, count, GFP_KERNEL);
+ if (err) {
+ pr_err("SLUB: Unable to initialize free list for %s\n",
+ s->name);
+ return err;
+ }
+
+ /* Transform to an offset on the set of pages */
+ if (s->random_seq) {
+ for (i = 0; i < count; i++)
+ s->random_seq[i] *= s->size;
+ }
+ return 0;
+}
+
+/* Initialize each random sequence freelist per cache */
+static void __init init_freelist_randomization(void)
+{
+ struct kmem_cache *s;
+
+ mutex_lock(&slab_mutex);
+
+ list_for_each_entry(s, &slab_caches, list)
+ init_cache_random_seq(s);
+
+ mutex_unlock(&slab_mutex);
+}
+
+/* Get the next entry on the pre-computed freelist randomized */
+static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
+ unsigned long *pos, void *start,
+ unsigned long page_limit,
+ unsigned long freelist_count)
+{
+ unsigned int idx;
+
+ /*
+ * If the target page allocation failed, the number of objects on the
+ * page might be smaller than the usual size defined by the cache.
+ */
+ do {
+ idx = s->random_seq[*pos];
+ *pos += 1;
+ if (*pos >= freelist_count)
+ *pos = 0;
+ } while (unlikely(idx >= page_limit));
+
+ return (char *)start + idx;
+}
+
+/* Shuffle the single linked freelist based on a random pre-computed sequence */
+static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
+{
+ void *start;
+ void *cur;
+ void *next;
+ unsigned long idx, pos, page_limit, freelist_count;
+
+ if (page->objects < 2 || !s->random_seq)
+ return false;
+
+ freelist_count = oo_objects(s->oo);
+ pos = get_random_int() % freelist_count;
+
+ page_limit = page->objects * s->size;
+ start = fixup_red_left(s, page_address(page));
+
+ /* First entry is used as the base of the freelist */
+ cur = next_freelist_entry(s, page, &pos, start, page_limit,
+ freelist_count);
+ page->freelist = cur;
+
+ for (idx = 1; idx < page->objects; idx++) {
+ setup_object(s, page, cur);
+ next = next_freelist_entry(s, page, &pos, start, page_limit,
+ freelist_count);
+ set_freepointer(s, cur, next);
+ cur = next;
+ }
+ setup_object(s, page, cur);
+ set_freepointer(s, cur, NULL);
+
+ return true;
+}
+#else
+static inline int init_cache_random_seq(struct kmem_cache *s)
+{
+ return 0;
+}
+static inline void init_freelist_randomization(void) { }
+static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
+{
+ return false;
+}
+#endif /* CONFIG_SLAB_FREELIST_RANDOM */
+
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
struct page *page;
@@ -1412,6 +1515,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
gfp_t alloc_gfp;
void *start, *p;
int idx, order;
+ bool shuffle;
flags &= gfp_allowed_mask;
@@ -1473,15 +1577,19 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
kasan_poison_slab(page);
- for_each_object_idx(p, idx, s, start, page->objects) {
- setup_object(s, page, p);
- if (likely(idx < page->objects))
- set_freepointer(s, p, p + s->size);
- else
- set_freepointer(s, p, NULL);
+ shuffle = shuffle_freelist(s, page);
+
+ if (!shuffle) {
+ for_each_object_idx(p, idx, s, start, page->objects) {
+ setup_object(s, page, p);
+ if (likely(idx < page->objects))
+ set_freepointer(s, p, p + s->size);
+ else
+ set_freepointer(s, p, NULL);
+ }
+ page->freelist = fixup_red_left(s, start);
}
- page->freelist = fixup_red_left(s, start);
page->inuse = page->objects;
page->frozen = 1;
@@ -3207,6 +3315,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
void __kmem_cache_release(struct kmem_cache *s)
{
+ cache_random_seq_destroy(s);
free_percpu(s->cpu_slab);
free_kmem_cache_nodes(s);
}
@@ -3431,6 +3540,13 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
#endif
+
+ /* Initialize the pre-computed randomized freelist if slab is up */
+ if (slab_state >= UP) {
+ if (init_cache_random_seq(s))
+ goto error;
+ }
+
if (!init_kmem_cache_nodes(s))
goto error;
@@ -3947,6 +4063,9 @@ void __init kmem_cache_init(void)
setup_kmalloc_cache_index_table();
create_kmalloc_caches(0);
+ /* Setup random freelists for each cache */
+ init_freelist_randomization();
+
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
#endif