From patchwork Thu Sep 10 16:46:10 2020 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: =?utf-8?q?Micka=C3=ABl_Sala=C3=BCn?= X-Patchwork-Id: 11768179 Return-Path: Received: from mail.kernel.org (pdx-korg-mail-1.web.codeaurora.org [172.30.200.123]) by pdx-korg-patchwork-2.web.codeaurora.org (Postfix) with ESMTP id 5122392C for ; Thu, 10 Sep 2020 16:46:49 +0000 (UTC) Received: from mother.openwall.net (mother.openwall.net [195.42.179.200]) by mail.kernel.org (Postfix) with SMTP id 14987214F1 for ; Thu, 10 Sep 2020 16:46:47 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 14987214F1 Authentication-Results: mail.kernel.org; dmarc=none (p=none dis=none) header.from=digikod.net Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=kernel-hardening-return-19843-patchwork-kernel-hardening=patchwork.kernel.org@lists.openwall.com Received: (qmail 18015 invoked by uid 550); 10 Sep 2020 16:46:41 -0000 Mailing-List: contact kernel-hardening-help@lists.openwall.com; run by ezmlm Precedence: bulk List-Post: List-Help: List-Unsubscribe: List-Subscribe: List-ID: Delivered-To: mailing list kernel-hardening@lists.openwall.com Received: (qmail 17960 invoked from network); 10 Sep 2020 16:46:40 -0000 From: =?utf-8?q?Micka=C3=ABl_Sala=C3=BCn?= To: linux-kernel@vger.kernel.org Cc: =?utf-8?q?Micka=C3=ABl_Sala=C3=BCn?= , Aleksa Sarai , Alexei Starovoitov , Al Viro , Andrew Morton , Andy Lutomirski , Arnd Bergmann , Casey Schaufler , Christian Brauner , Christian Heimes , Daniel Borkmann , Deven Bowers , Dmitry Vyukov , Eric Biggers , Eric Chiang , Florian Weimer , James Morris , Jan Kara , Jann Horn , Jonathan Corbet , Kees Cook , Lakshmi Ramasubramanian , Matthew Garrett , Matthew Wilcox , Michael Kerrisk , Miklos Szeredi , Mimi Zohar , =?utf-8?q?Philippe_Tr=C3=A9buchet?= , Scott Shell , Sean Christopherson , Shuah Khan , Steve Dower , Steve Grubb , Tetsuo Handa , Thibaut Sautereau , Vincent Strubel , kernel-hardening@lists.openwall.com, linux-api@vger.kernel.org, linux-integrity@vger.kernel.org, linux-security-module@vger.kernel.org, linux-fsdevel@vger.kernel.org, Thibaut Sautereau , =?utf-8?q?Micka=C3=ABl_S?= =?utf-8?q?ala=C3=BCn?= Subject: [RFC PATCH v9 1/3] fs: Add introspect_access(2) syscall implementation and related sysctl Date: Thu, 10 Sep 2020 18:46:10 +0200 Message-Id: <20200910164612.114215-2-mic@digikod.net> X-Mailer: git-send-email 2.28.0 In-Reply-To: <20200910164612.114215-1-mic@digikod.net> References: <20200910164612.114215-1-mic@digikod.net> MIME-Version: 1.0 From: Mickaël Salaün The introspect_access() syscall enables user space tasks to check that files are allowed to be executed or interpreted by user space. This may allow script interpreters to check execution permission before reading commands from a file, or dynamic linkers to allow shared object loading. This may be seen as a way for a trusted task (e.g. interpreter) to check the trustworthiness of files (e.g. scripts) before extending its control flow graph with new ones originating from these files. The security policy is consistently managed by the kernel through a sysctl or implemented by an LSM thanks to the inode_permission hook and a new kernel flag: MAY_INTROSPECTION_EXEC . The new sysctl fs.introspection_policy enables system administrators to enforce two complementary security policies according to the installed system: enforce the noexec mount option, and enforce executable file permission. Indeed, because of compatibility with installed systems, only system administrators are able to check that this new enforcement is in line with the system mount points and file permissions. The underlying idea is to be able to restrict scripts interpretation according to a policy defined by the system administrator. For this to be possible, script interpreters must use introspect_access(2) with the X_OK mode. To be fully effective, these interpreters also need to handle the other ways to execute code: command line parameters (e.g., option -e for Perl), module loading (e.g., option -m for Python), stdin, file sourcing, environment variables, configuration files, etc. According to the threat model, it may be acceptable to allow some script interpreters (e.g. Bash) to interpret commands from stdin, may it be a TTY or a pipe, because it may not be enough to (directly) perform syscalls. Even without enforced security policy, user space interpreters can use this syscall to try as much as possible to enforce the system policy at their level, knowing that it will not break anything on running systems which do not care about this feature. However, on systems which want this feature enforced, there will be knowledgeable people (i.e. system administrator who configured fs.introspection_policy deliberately) to manage it. Because introspect_access(2) with X_OK mode is a mean to enforce a system-wide security policy (but not application-centric policies), it does not make sense for user space to check the sysctl value. Indeed, this new flag only enables to extend the system ability to enforce a policy thanks to (some trusted) user space collaboration. Moreover, additional security policies could be managed by LSMs. This is a best-effort approach from the application developer point of view: https://lore.kernel.org/lkml/1477d3d7-4b36-afad-7077-a38f42322238@digikod.net/ introspect_access(2) with X_OK should not be confused with the O_EXEC flag (for open) which is intended for execute-only, which obviously doesn't work for scripts. However, a similar behavior could be implemented in user space with O_PATH: https://lore.kernel.org/lkml/1e2f6913-42f2-3578-28ed-567f6a4bdda1@digikod.net/ Being able to restrict execution also enables to protect the kernel by restricting arbitrary syscalls that an attacker could perform with a crafted binary or certain script languages. It also improves multilevel isolation by reducing the ability of an attacker to use side channels with specific code. These restrictions can natively be enforced for ELF binaries (with the noexec mount option) but require this kernel extension to properly handle scripts (e.g. Python, Perl). To get a consistent execution policy, additional memory restrictions should also be enforced (e.g. thanks to SELinux). This is a new implementation of a patch initially written by Vincent Strubel for CLIP OS 4: https://github.com/clipos-archive/src_platform_clip-patches/blob/f5cb330d6b684752e403b4e41b39f7004d88e561/1901_open_mayexec.patch This patch has been used for more than 12 years with customized script interpreters. Some examples (with the original O_MAYEXEC) can be found here: https://github.com/clipos-archive/clipos4_portage-overlay/search?q=O_MAYEXEC Co-developed-by: Thibaut Sautereau Signed-off-by: Thibaut Sautereau Signed-off-by: Mickaël Salaün Cc: Al Viro Cc: Andrew Morton Cc: Arnd Bergmann Cc: Jonathan Corbet Cc: Kees Cook Cc: Vincent Strubel --- Changes since v8: * Add a dedicated syscall introspect_access() (requested by Al Viro). * Rename MAY_INTERPRETED_EXEC to MAY_INTROSPECTION_EXEC . * Rename the sysctl fs.interpreted_access to fs.introspection_policy . * Update documentation. Changes since v7: * Replaces openat2/O_MAYEXEC with faccessat2/X_OK/AT_INTERPRETED . Switching to an FD-based syscall was suggested by Al Viro and Jann Horn. * Handle special file descriptors. * Add a compatibility mode for execute/read check. * Move the sysctl policy from fs/namei.c to fs/open.c for the new faccessat2/AT_INTERPRETED. * Rename the sysctl from fs.open_mayexec_enforce to fs.interpreted_access . * Update documentation accordingly. Changes since v6: * Allow opening pipes, block devices and character devices with O_MAYEXEC when there is no enforced policy, but forbid any non-regular file opened with O_MAYEXEC otherwise (i.e. for any enforced policy). * Add a paragraph about the non-regular files policy. * Move path_noexec() calls out of the fast-path (suggested by Kees Cook). * Do not set __FMODE_EXEC for now because of inconsistent behavior: https://lore.kernel.org/lkml/202007160822.CCDB5478@keescook/ * Returns EISDIR when opening a directory with O_MAYEXEC. * Removed Deven Bowers and Kees Cook Reviewed-by tags because of the current update. Changes since v5: * Remove the static enforcement configuration through Kconfig because it makes the code more simple like this, and because the current sysctl configuration can only be set with CAP_SYS_ADMIN, the same way mount options (i.e. noexec) can be set. If an harden distro wants to enforce a configuration, it should restrict capabilities or sysctl configuration. Furthermore, an LSM can easily leverage O_MAYEXEC to fit its need. * Move checks from inode_permission() to may_open() and make the error codes more consistent according to file types (in line with a previous commit): opening a directory with O_MAYEXEC returns EISDIR and other non-regular file types may return EACCES. * In may_open(), when OMAYEXEC_ENFORCE_FILE is set, replace explicit call to generic_permission() with an artificial MAY_EXEC to avoid double calls. This makes sense especially when an LSM policy forbids execution of a file. * Replace the custom proc_omayexec() with proc_dointvec_minmax_sysadmin(), and then replace the CAP_MAC_ADMIN check with a CAP_SYS_ADMIN one (suggested by Kees Cook and Stephen Smalley). * Use BIT() (suggested by Kees Cook). * Rename variables (suggested by Kees Cook). * Reword the kconfig help. * Import the documentation patch (suggested by Kees Cook): https://lore.kernel.org/lkml/20200505153156.925111-6-mic@digikod.net/ * Update documentation and add LWN.net article. Changes since v4: * Add kernel configuration options to enforce O_MAYEXEC at build time, and disable the sysctl in such case (requested by James Morris). * Reword commit message. Changes since v3: * Switch back to O_MAYEXEC, but only handle it with openat2(2) which checks unknown flags (suggested by Aleksa Sarai). Cf. https://lore.kernel.org/lkml/20200430015429.wuob7m5ofdewubui@yavin.dot.cyphar.com/ Changes since v2: * Replace O_MAYEXEC with RESOLVE_MAYEXEC from openat2(2). This change enables to not break existing application using bogus O_* flags that may be ignored by current kernels by using a new dedicated flag, only usable through openat2(2) (suggested by Jeff Layton). Using this flag will results in an error if the running kernel does not support it. User space needs to manage this case, as with other RESOLVE_* flags. The best effort approach to security (for most common distros) will simply consists of ignoring such an error and retry without RESOLVE_MAYEXEC. However, a fully controlled system may which to error out if such an inconsistency is detected. * Cosmetic changes. Changes since v1: * Set __FMODE_EXEC when using O_MAYEXEC to make this information available through the new fanotify/FAN_OPEN_EXEC event (suggested by Jan Kara and Matthew Bobrowski): https://lore.kernel.org/lkml/20181213094658.GA996@lithium.mbobrowski.org/ * Move code from Yama to the FS subsystem (suggested by Kees Cook). * Make omayexec_inode_permission() static (suggested by Jann Horn). * Use mode 0600 for the sysctl. * Only match regular files (not directories nor other types), which follows the same semantic as commit 73601ea5b7b1 ("fs/open.c: allow opening only regular files during execve()"). --- Documentation/admin-guide/sysctl/fs.rst | 50 ++++++++++++++++ fs/open.c | 79 +++++++++++++++++++++++++ include/linux/fs.h | 3 + include/linux/syscalls.h | 1 + kernel/sysctl.c | 12 +++- 5 files changed, 143 insertions(+), 2 deletions(-) diff --git a/Documentation/admin-guide/sysctl/fs.rst b/Documentation/admin-guide/sysctl/fs.rst index f48277a0a850..2f244e968a1d 100644 --- a/Documentation/admin-guide/sysctl/fs.rst +++ b/Documentation/admin-guide/sysctl/fs.rst @@ -36,6 +36,7 @@ Currently, these files are in /proc/sys/fs: - inode-max - inode-nr - inode-state +- introspection_policy - nr_open - overflowuid - overflowgid @@ -165,6 +166,55 @@ system needs to prune the inode list instead of allocating more. +introspection_policy +-------------------- + +An interpreter can call :manpage:`introspect_access(2)` with an ``X_OK`` mode +to check that opened regular files are expected to be executable. If the file +is not identified as executable, then the syscall returns -EACCES. This may +allow a script interpreter to check executable permission before reading +commands from a file, or a dynamic linker to only load executable shared +objects. One interesting use case is to enforce a "write xor execute" policy +through interpreters. + +The ability to restrict code execution must be thought as a system-wide policy, +which first starts by restricting mount points with the ``noexec`` option. +This option is also automatically applied to special filesystems such as /proc . +This prevents files on such mount points to be directly executed by the kernel +or mapped as executable memory (e.g. libraries). With script interpreters +using :manpage:`introspect_access(2)`, the executable permission can then be +checked before reading commands from files. This makes it possible to enforce +the ``noexec`` at the interpreter level, and thus propagates this security +policy to scripts. To be fully effective, these interpreters also need to +handle the other ways to execute code: command line parameters (e.g., option +``-e`` for Perl), module loading (e.g., option ``-m`` for Python), stdin, file +sourcing, environment variables, configuration files, etc. According to the +threat model, it may be acceptable to allow some script interpreters (e.g. +Bash) to interpret commands from stdin, may it be a TTY or a pipe, because it +may not be enough to (directly) perform syscalls. + +There are two complementary security policies: enforce the ``noexec`` mount +option, and enforce executable file permission. These policies are handled by +the ``fs.introspection_policy`` sysctl (writable only with ``CAP_SYS_ADMIN``) +as a bitmask: + +1 - Mount restriction: checks that the mount options for the underlying VFS + mount do not prevent execution. + +2 - File permission restriction: checks that the file is marked as + executable for the current process (e.g., POSIX permissions, ACLs). + +Note that as long as a policy is enforced, checking any non-regular file with +:manpage:`introspect_access(2)` returns -EACCES (e.g. TTYs, pipe), even when +such a file is marked as executable or is on an executable mount point. + +Code samples can be found in +tools/testing/selftests/interpreter/introspection_policy_test.c and interpreter +patches (for the original O_MAYEXEC) are available at +https://github.com/clipos-archive/clipos4_portage-overlay/search?q=O_MAYEXEC . +See also an overview article: https://lwn.net/Articles/820000/ . + + overflowgid & overflowuid ------------------------- diff --git a/fs/open.c b/fs/open.c index 9af548fb841b..390cef411236 100644 --- a/fs/open.c +++ b/fs/open.c @@ -32,6 +32,7 @@ #include #include #include +#include #include "internal.h" @@ -482,6 +483,84 @@ SYSCALL_DEFINE2(access, const char __user *, filename, int, mode) return do_faccessat(AT_FDCWD, filename, mode, 0); } +#define INTROSPECTION_EXEC_MOUNT BIT(0) +#define INTROSPECTION_EXEC_FILE BIT(1) + +int sysctl_introspection_policy __read_mostly; + +SYSCALL_DEFINE3(introspect_access, const int, fd, const int, mode, const int, flags) +{ + int mask, err = -EACCES; + struct fd f; + struct inode *inode; + + if (flags) + return -EINVAL; + + /* Only allows X_OK for now. */ + if (mode != S_IXOTH) + return -EINVAL; + mask = MAY_EXEC; + + f = fdget(fd); + if (!f.file) + return -EBADF; + inode = d_backing_inode(f.file->f_path.dentry); + + /* + * For compatibility reasons, without a defined security policy (via + * sysctl or LSM), we must map the execute permission to the read + * permission. Indeed, from user space point of view, being able to + * execute data (e.g. scripts) implies to be able to read this data. + * + * The MAY_INTROSPECTION_EXEC bit is set to enable LSMs to add custom + * checks, while being compatible with current policies. + */ + if ((mask & MAY_EXEC)) { + mask |= MAY_INTROSPECTION_EXEC; + /* + * If there is a system-wide execute policy enforced, then + * forbids access to non-regular files and special superblocks. + */ + if ((sysctl_introspection_policy & (INTROSPECTION_EXEC_MOUNT | + INTROSPECTION_EXEC_FILE))) { + if (!S_ISREG(inode->i_mode)) + goto out_fd; + /* + * Denies access to pseudo filesystems that will never + * be mountable (e.g. sockfs, pipefs) but can still be + * reachable through /proc/self/fd, or memfd-like file + * descriptors, or nsfs-like files. + * + * According to the tests, SB_NOEXEC seems to be only + * used by proc and nsfs filesystems. Is it correct? + */ + if ((f.file->f_path.dentry->d_sb->s_flags & + (SB_NOUSER | SB_KERNMOUNT | SB_NOEXEC))) + goto out_fd; + } + + if ((sysctl_introspection_policy & INTROSPECTION_EXEC_MOUNT) && + path_noexec(&f.file->f_path)) + goto out_fd; + /* + * For compatibility reasons, if the system-wide policy doesn't + * enforce file permission checks, then replaces the execute + * permission request with a read permission request. + */ + if (!(sysctl_introspection_policy & INTROSPECTION_EXEC_FILE)) + mask &= ~MAY_EXEC; + /* To be executed *by* user space, files must be readable. */ + mask |= MAY_READ; + } + + err = inode_permission(inode, mask | MAY_ACCESS); + +out_fd: + fdput(f); + return err; +} + SYSCALL_DEFINE1(chdir, const char __user *, filename) { struct path path; diff --git a/include/linux/fs.h b/include/linux/fs.h index 7519ae003a08..3f9c4fe199ce 100644 --- a/include/linux/fs.h +++ b/include/linux/fs.h @@ -83,6 +83,7 @@ extern int sysctl_protected_symlinks; extern int sysctl_protected_hardlinks; extern int sysctl_protected_fifos; extern int sysctl_protected_regular; +extern int sysctl_introspection_policy; typedef __kernel_rwf_t rwf_t; @@ -101,6 +102,8 @@ typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 +/* introspection accesses, cf. introspect_access(2) */ +#define MAY_INTROSPECTION_EXEC 0x00000100 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond diff --git a/include/linux/syscalls.h b/include/linux/syscalls.h index 75ac7f8ae93c..e8cb6846dea2 100644 --- a/include/linux/syscalls.h +++ b/include/linux/syscalls.h @@ -429,6 +429,7 @@ asmlinkage long sys_fallocate(int fd, int mode, loff_t offset, loff_t len); asmlinkage long sys_faccessat(int dfd, const char __user *filename, int mode); asmlinkage long sys_faccessat2(int dfd, const char __user *filename, int mode, int flags); +asmlinkage long sys_introspect_access(int fd, int mode, int flags); asmlinkage long sys_chdir(const char __user *filename); asmlinkage long sys_fchdir(unsigned int fd); asmlinkage long sys_chroot(const char __user *filename); diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 09e70ee2332e..d9c2aca9a0c0 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c @@ -113,6 +113,7 @@ static int sixty = 60; static int __maybe_unused neg_one = -1; static int __maybe_unused two = 2; +static int __maybe_unused three = 3; static int __maybe_unused four = 4; static unsigned long zero_ul; static unsigned long one_ul = 1; @@ -887,7 +888,6 @@ static int proc_taint(struct ctl_table *table, int write, return err; } -#ifdef CONFIG_PRINTK static int proc_dointvec_minmax_sysadmin(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { @@ -896,7 +896,6 @@ static int proc_dointvec_minmax_sysadmin(struct ctl_table *table, int write, return proc_dointvec_minmax(table, write, buffer, lenp, ppos); } -#endif /** * struct do_proc_dointvec_minmax_conv_param - proc_dointvec_minmax() range checking structure @@ -3293,6 +3292,15 @@ static struct ctl_table fs_table[] = { .extra1 = SYSCTL_ZERO, .extra2 = &two, }, + { + .procname = "introspection_policy", + .data = &sysctl_introspection_policy, + .maxlen = sizeof(int), + .mode = 0600, + .proc_handler = proc_dointvec_minmax_sysadmin, + .extra1 = SYSCTL_ZERO, + .extra2 = &three, + }, #if defined(CONFIG_BINFMT_MISC) || defined(CONFIG_BINFMT_MISC_MODULE) { .procname = "binfmt_misc",