@@ -38,4 +38,33 @@ tempX_max Threshold ambient temperature for alert generation.
inX_input Measured power supply voltage
inX_fault 0: No fail condition.
1: Failing power supply.
-power1_input System power consumption (microWatt)
+powerX_input Power consumption (microWatt)
+currX_input Measured current
+
+Sysfs attributes in POWER9
+---------------------------
+
+On-Chip-Controller(OCC) copies the sensors to main memory. The
+environmental sensor groups can be dynamically configured by writing
+to the below sysfs files. Writing to this file configures the sensor
+group update for the all the OCC chips in the system.
+
+power_enable Disable/enable copying of power sensors
+ 0: Disable
+ 1: Enable
+ RO
+
+in_enable Disable/enable copying of voltage sensors
+ 0: Disable
+ 1: Enable
+ RO
+
+curr_enable Disable/enable copying of current sensors
+ 0: Disable
+ 1: Enable
+ RO
+
+temp_enable Disable/enable copying of temperature sensors
+ 0: Disable
+ 1: Enable
+ RO
@@ -90,6 +90,16 @@ struct sensor_data {
struct device_attribute dev_attr;
};
+struct sensor_group_data {
+ u32 nr_ids;
+ u32 *id;
+ char name[MAX_ATTR_LEN];
+ struct device_attribute dev_attr;
+};
+
+DEFINE_MUTEX(sensor_groups_mutex);
+static int nr_sg_attr_count;
+
struct platform_data {
const struct attribute_group *attr_groups[MAX_SENSOR_TYPE + 1];
u32 sensors_count; /* Total count of sensors from each group */
@@ -117,6 +127,42 @@ static ssize_t show_sensor(struct device *dev, struct device_attribute *devattr,
return sprintf(buf, "%u\n", x);
}
+static ssize_t store_enable(struct device *dev,
+ struct device_attribute *devattr,
+ const char *buf, size_t count)
+{
+ struct sensor_group_data *sdata = container_of(devattr,
+ struct sensor_group_data,
+ dev_attr);
+ int ret;
+ u32 data;
+ int i;
+
+ ret = kstrtoint(buf, 0, &data);
+ if (ret)
+ return ret;
+
+ if (data != 0 && data != 1)
+ return -EIO;
+
+ ret = mutex_lock_interruptible(&sensor_groups_mutex);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < sdata->nr_ids; i++) {
+ ret = sensor_group_enable(sdata->id[i], data);
+ if (ret) {
+ ret = -EIO;
+ goto out;
+ }
+ }
+
+ ret = count;
+out:
+ mutex_unlock(&sensor_groups_mutex);
+ return ret;
+}
+
static ssize_t show_label(struct device *dev, struct device_attribute *devattr,
char *buf)
{
@@ -322,6 +368,21 @@ static int populate_attr_groups(struct platform_device *pdev)
of_node_put(opal);
+ opal = of_find_node_by_path("/ibm,opal/sensor-groups");
+ for (type = 0; type < MAX_SENSOR_TYPE; type++)
+ for_each_child_of_node(opal, np) {
+ enum sensors ctype;
+
+ ctype = get_sensor_type(np);
+ if (ctype == type) {
+ sensor_groups[ctype].attr_count++;
+ nr_sg_attr_count++;
+ break;
+ }
+ }
+
+ of_node_put(opal);
+
for (type = 0; type < MAX_SENSOR_TYPE; type++) {
sensor_groups[type].group.attrs = devm_kzalloc(&pdev->dev,
sizeof(struct attribute *) *
@@ -400,19 +461,25 @@ static int create_device_attrs(struct platform_device *pdev)
const struct attribute_group **pgroups = pdata->attr_groups;
struct device_node *opal, *np;
struct sensor_data *sdata;
+ struct sensor_group_data *sgdata;
u32 sensor_id;
enum sensors type;
u32 count = 0;
int err = 0;
+ int nr_id[MAX_SENSOR_TYPE] = {0};
- opal = of_find_node_by_path("/ibm,opal/sensors");
- sdata = devm_kzalloc(&pdev->dev, pdata->sensors_count * sizeof(*sdata),
+ sdata = devm_kzalloc(&pdev->dev, (pdata->sensors_count -
+ nr_sg_attr_count) * sizeof(*sdata),
GFP_KERNEL);
- if (!sdata) {
- err = -ENOMEM;
- goto exit_put_node;
- }
+ if (!sdata)
+ return -ENOMEM;
+
+ sgdata = devm_kzalloc(&pdev->dev, nr_sg_attr_count * sizeof(*sgdata),
+ GFP_KERNEL);
+ if (!sgdata)
+ return -ENOMEM;
+ opal = of_find_node_by_path("/ibm,opal/sensors");
for_each_child_of_node(opal, np) {
const char *attr_name;
u32 opal_index;
@@ -496,7 +563,53 @@ static int create_device_attrs(struct platform_device *pdev)
}
}
-exit_put_node:
+ of_node_put(opal);
+
+ opal = of_find_node_by_path("/ibm,opal/sensor-groups");
+ for_each_child_of_node(opal, np) {
+ type = get_sensor_type(np);
+ if (type == MAX_SENSOR_TYPE)
+ continue;
+ nr_id[type]++;
+ }
+
+ count = 0;
+ for (type = 0; type < MAX_SENSOR_TYPE; type++) {
+ int c = 0;
+
+ if (!nr_id[type])
+ continue;
+
+ sgdata[count].nr_ids = nr_id[type];
+ sgdata[count].id = devm_kzalloc(&pdev->dev, nr_id[type] *
+ sizeof(u32), GFP_KERNEL);
+ if (!sgdata[count].id)
+ return -ENOMEM;
+
+ for_each_child_of_node(opal, np) {
+ enum sensors ctype;
+
+ ctype = get_sensor_type(np);
+ if (type != ctype)
+ continue;
+
+ if (of_property_read_u32(np, "sensor-group-id",
+ &sensor_id))
+ continue;
+
+ sgdata[count].id[c++] = sensor_id;
+ }
+ snprintf(sgdata[count].name, MAX_ATTR_LEN, "%s_enable",
+ sensor_groups[type].name);
+ sysfs_attr_init(&sgdata[count].dev_attr.attr);
+ sgdata[count].dev_attr.attr.name = sgdata[count].name;
+ sgdata[count].dev_attr.attr.mode = 00220;
+ sgdata[count].dev_attr.store = store_enable;
+ pgroups[type]->attrs[sensor_groups[type].attr_count++] =
+ &sgdata[count].dev_attr.attr;
+ count++;
+ }
+
of_node_put(opal);
return err;
}
On-Chip-Controller(OCC) is an embedded micro-processor in POWER9 chip which measures various system and chip level sensors. These sensors comprises of environmental sensors (like power, temperature, current and voltage) and performance sensors (like utilization, frequency). All these sensors are copied to main memory at a regular interval of 100ms. OCC provides a way to select a group of sensors that is copied to the main memory to increase the update frequency of selected sensor groups. When a sensor-group is disabled, OCC will not copy it to main memory and those sensors read 0 values. This patch provides support for enabling/disabling the sensor groups like power, temperature, current and voltage. This patch adds new sysfs attributes to disable and enable them. Signed-off-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> --- - Should the new attributes be added to hwmon_chip_attrs[]? Documentation/hwmon/ibmpowernv | 31 +++++++++- drivers/hwmon/ibmpowernv.c | 127 ++++++++++++++++++++++++++++++++++++++--- 2 files changed, 150 insertions(+), 8 deletions(-)