diff mbox series

[1/1] iio: core: Improve precision of __iio_format_value for FRACTIONAL values

Message ID 1548743212-83787-1-git-send-email-preid@electromag.com.au (mailing list archive)
State New, archived
Headers show
Series [1/1] iio: core: Improve precision of __iio_format_value for FRACTIONAL values | expand

Commit Message

Phil Reid Jan. 29, 2019, 6:26 a.m. UTC
Currently FRACTIONAL values are outputed with 9 digits after the decimal
place. This is not always sufficient to resolve the raw value with 1 bit.
Output FRACTIONAL values to 15 decimal places of precision, regardless
of the number of leading zeros.

Currently for a 2.5V ref with 24 bits of precision the code outputs only
to 9 decimal places.

Cur: 0.00014901100000000000 * 16777216 = 2499.989733
New: 0.00014901161193847600 * 16777216 = 2500.000000
Signed-off-by: Phil Reid <preid@electromag.com.au>
---

Notes:
    Alternatively I could add additonal FRACTIONAL types that select the new
    behaviour to prevent any possible regressions.

 drivers/iio/industrialio-core.c | 55 ++++++++++++++++++++++++++++++++++-------
 1 file changed, 46 insertions(+), 9 deletions(-)

Comments

Alexandru Ardelean Jan. 29, 2019, 8:32 a.m. UTC | #1
On Tue, Jan 29, 2019 at 8:28 AM Phil Reid <preid@electromag.com.au> wrote:
>
> Currently FRACTIONAL values are outputed with 9 digits after the decimal
> place. This is not always sufficient to resolve the raw value with 1 bit.
> Output FRACTIONAL values to 15 decimal places of precision, regardless
> of the number of leading zeros.
>
> Currently for a 2.5V ref with 24 bits of precision the code outputs only
> to 9 decimal places.
>
> Cur: 0.00014901100000000000 * 16777216 = 2499.989733
> New: 0.00014901161193847600 * 16777216 = 2500.000000
> Signed-off-by: Phil Reid <preid@electromag.com.au>
> ---
>
> Notes:
>     Alternatively I could add additonal FRACTIONAL types that select the new
>     behaviour to prevent any possible regressions.
>
>  drivers/iio/industrialio-core.c | 55 ++++++++++++++++++++++++++++++++++-------
>  1 file changed, 46 insertions(+), 9 deletions(-)
>
> diff --git a/drivers/iio/industrialio-core.c b/drivers/iio/industrialio-core.c
> index a062cfd..bd9da64 100644
> --- a/drivers/iio/industrialio-core.c
> +++ b/drivers/iio/industrialio-core.c
> @@ -571,11 +571,53 @@ int of_iio_read_mount_matrix(const struct device *dev,
>  #endif
>  EXPORT_SYMBOL(of_iio_read_mount_matrix);
>
> +static ssize_t __iio_format_div_prec(char *buf, unsigned int len, s64 x, s32 y)
> +{
> +       unsigned int prec = 0;
> +       unsigned int idx = 0;
> +       s64 d;
> +
> +       if (!len)
> +               return 0;
> +
> +       if (!y)
> +               return snprintf(buf, len, "inf");
> +
> +       if (!x)
> +               return snprintf(buf, len, "0");
> +
> +       if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
> +               buf[idx++] = '-';
> +               x = x > 0 ? x : -x;
> +               y = y > 0 ? y : -y;
> +       }
> +
> +       d = div64_s64(x, y);
> +       idx += snprintf(buf+idx, len-idx, "%d", (int)d);
> +       x = x - (y * d);
> +       if ((x != 0) && (idx < len-1)) {
> +               buf[idx++] = '.';
> +               x = x * 10;
> +               d = div64_s64(x, y);
> +
> +               while ((idx < len-1) && (prec < 15)) {
> +                       if (d || prec)
> +                               prec++;
> +                       buf[idx++] = '0' + (char)d;
> +                       x = x - (y * d);
> +                       if (!x)
> +                               break;
> +                       x = x * 10;
> +                       d = div64_s64(x, y);
> +               }
> +               buf[idx] = 0;
> +       }
> +       return idx;
> +}
> +
>  static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
>                                   int size, const int *vals)
>  {
> -       unsigned long long tmp;
> -       int tmp0, tmp1;
>         bool scale_db = false;
>
>         switch (type) {
> @@ -598,14 +640,9 @@ static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
>                 else
>                         return snprintf(buf, len, "%d.%09u", vals[0], vals[1]);
>         case IIO_VAL_FRACTIONAL:
> -               tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
> -               tmp1 = vals[1];
> -               tmp0 = (int)div_s64_rem(tmp, 1000000000, &tmp1);
> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
> +               return __iio_format_div_prec(buf, len, vals[0], vals[1]);

Maybe I'm a bit naive, but I'm also a bit curious.
If you just bump the numbers here, would it work the same ?

i.e.   10^9 -> 10^15 and "snprintf(buf, len, "%d.%15u", tmp0, abs(tmp1));"

But in any case, what would be interesting now, is to extend the IIO
core logic to provide [somehow] a precision number, default being 9.
This could probably be specified on per-channel basis [somehow],
similar to other channel params.

So, for example in the default case, if you have "uint32_t precision =
9", you would have the same behavior, with something like

      tmp = div_s64((s64)vals[0] * pow_of_10(precision), vals[1]);
      tmp1 = vals[1];
      tmp0 = (int)div_s64_rem(tmp, pow_of_10(precision), &tmp1);
      return snprintf(buf, len, "%d.%" precision "u", tmp0, abs(tmp1));

Obviously, the above code is just pseudo-code, where pow_of_10()
multiplies 10 a "precision" number of times, and the snprintf() would
need a temporary buffer to create a format string, which then would be
used.

Thanks
Alex

>         case IIO_VAL_FRACTIONAL_LOG2:
> -               tmp = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
> -               tmp0 = (int)div_s64_rem(tmp, 1000000000LL, &tmp1);
> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
> +               return __iio_format_div_prec(buf, len, vals[0], 1 << vals[1]);
>         case IIO_VAL_INT_MULTIPLE:
>         {
>                 int i;
> --
> 1.8.3.1
>
Phil Reid Jan. 29, 2019, 9:11 a.m. UTC | #2
G'day Alex,

On 29/01/2019 4:32 pm, Alexandru Ardelean wrote:
> On Tue, Jan 29, 2019 at 8:28 AM Phil Reid <preid@electromag.com.au> wrote:
>>
>> Currently FRACTIONAL values are outputed with 9 digits after the decimal
>> place. This is not always sufficient to resolve the raw value with 1 bit.
>> Output FRACTIONAL values to 15 decimal places of precision, regardless
>> of the number of leading zeros.
>>
>> Currently for a 2.5V ref with 24 bits of precision the code outputs only
>> to 9 decimal places.
>>
>> Cur: 0.00014901100000000000 * 16777216 = 2499.989733
>> New: 0.00014901161193847600 * 16777216 = 2500.000000
>> Signed-off-by: Phil Reid <preid@electromag.com.au>
>> ---
>>
>> Notes:
>>      Alternatively I could add additonal FRACTIONAL types that select the new
>>      behaviour to prevent any possible regressions.
>>
>>   drivers/iio/industrialio-core.c | 55 ++++++++++++++++++++++++++++++++++-------
>>   1 file changed, 46 insertions(+), 9 deletions(-)
>>
>> diff --git a/drivers/iio/industrialio-core.c b/drivers/iio/industrialio-core.c
>> index a062cfd..bd9da64 100644
>> --- a/drivers/iio/industrialio-core.c
>> +++ b/drivers/iio/industrialio-core.c
>> @@ -571,11 +571,53 @@ int of_iio_read_mount_matrix(const struct device *dev,
>>   #endif
>>   EXPORT_SYMBOL(of_iio_read_mount_matrix);
>>
>> +static ssize_t __iio_format_div_prec(char *buf, unsigned int len, s64 x, s32 y)
>> +{
>> +       unsigned int prec = 0;
>> +       unsigned int idx = 0;
>> +       s64 d;
>> +
>> +       if (!len)
>> +               return 0;
>> +
>> +       if (!y)
>> +               return snprintf(buf, len, "inf");
>> +
>> +       if (!x)
>> +               return snprintf(buf, len, "0");
>> +
>> +       if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
>> +               buf[idx++] = '-';
>> +               x = x > 0 ? x : -x;
>> +               y = y > 0 ? y : -y;
>> +       }
>> +
>> +       d = div64_s64(x, y);
>> +       idx += snprintf(buf+idx, len-idx, "%d", (int)d);
>> +       x = x - (y * d);
>> +       if ((x != 0) && (idx < len-1)) {
>> +               buf[idx++] = '.';
>> +               x = x * 10;
>> +               d = div64_s64(x, y);
>> +
>> +               while ((idx < len-1) && (prec < 15)) {
>> +                       if (d || prec)
>> +                               prec++;
>> +                       buf[idx++] = '0' + (char)d;
>> +                       x = x - (y * d);
>> +                       if (!x)
>> +                               break;
>> +                       x = x * 10;
>> +                       d = div64_s64(x, y);
>> +               }
>> +               buf[idx] = 0;
>> +       }
>> +       return idx;
>> +}
>> +
>>   static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
>>                                    int size, const int *vals)
>>   {
>> -       unsigned long long tmp;
>> -       int tmp0, tmp1;
>>          bool scale_db = false;
>>
>>          switch (type) {
>> @@ -598,14 +640,9 @@ static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
>>                  else
>>                          return snprintf(buf, len, "%d.%09u", vals[0], vals[1]);
>>          case IIO_VAL_FRACTIONAL:
>> -               tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
>> -               tmp1 = vals[1];
>> -               tmp0 = (int)div_s64_rem(tmp, 1000000000, &tmp1);
>> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
>> +               return __iio_format_div_prec(buf, len, vals[0], vals[1]);
> 
> Maybe I'm a bit naive, but I'm also a bit curious.
> If you just bump the numbers here, would it work the same ?
> 
> i.e.   10^9 -> 10^15 and "snprintf(buf, len, "%d.%15u", tmp0, abs(tmp1));"
I did look at that solution.

But I was running into overflow issues (even with 64 bit numbers).

eg: with a 2500 reference and 32 bits.

2500 * 10^15 = 2e+18 = 61 bits
And the result of
2500 / 2^32 =  0.000000582076609
Only provides 9 significant digits with 15 decimal places.

I was looking to provide 15 significant digits to match a standard double
precision floating point value.

Proposed solution seemed to work with a wider range, but I admit it's not elegant.
Certainly interested in other peoples ideas.

My alternative thought was to introduce a new type that returns the scale
as a rational. eg: return string like
scale_rational = 2500/4294967296

But that'd require existing user space to become aware of the new format.


> 
> But in any case, what would be interesting now, is to extend the IIO
> core logic to provide [somehow] a precision number, default being 9.
> This could probably be specified on per-channel basis [somehow],
> similar to other channel params.
> 
> So, for example in the default case, if you have "uint32_t precision =
> 9", you would have the same behavior, with something like
> 
>        tmp = div_s64((s64)vals[0] * pow_of_10(precision), vals[1]);
>        tmp1 = vals[1];
>        tmp0 = (int)div_s64_rem(tmp, pow_of_10(precision), &tmp1);
>        return snprintf(buf, len, "%d.%" precision "u", tmp0, abs(tmp1));
> 
> Obviously, the above code is just pseudo-code, where pow_of_10()
> multiplies 10 a "precision" number of times, and the snprintf() would
> need a temporary buffer to create a format string, which then would be
> used.

Good idea to have some kind of overide, I'll have a look

> 
> Thanks
> Alex
> 
>>          case IIO_VAL_FRACTIONAL_LOG2:
>> -               tmp = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
>> -               tmp0 = (int)div_s64_rem(tmp, 1000000000LL, &tmp1);
>> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
>> +               return __iio_format_div_prec(buf, len, vals[0], 1 << vals[1]);
>>          case IIO_VAL_INT_MULTIPLE:
>>          {
>>                  int i;
>> --
>> 1.8.3.1
>>
> 
>
Jonathan Cameron Jan. 31, 2019, 1:35 p.m. UTC | #3
On Tue, 29 Jan 2019 17:11:25 +0800
Phil Reid <preid@electromag.com.au> wrote:

> G'day Alex,
> 
> On 29/01/2019 4:32 pm, Alexandru Ardelean wrote:
> > On Tue, Jan 29, 2019 at 8:28 AM Phil Reid <preid@electromag.com.au> wrote:  
> >>
> >> Currently FRACTIONAL values are outputed with 9 digits after the decimal
> >> place. This is not always sufficient to resolve the raw value with 1 bit.
> >> Output FRACTIONAL values to 15 decimal places of precision, regardless
> >> of the number of leading zeros.
> >>
> >> Currently for a 2.5V ref with 24 bits of precision the code outputs only
> >> to 9 decimal places.
> >>
> >> Cur: 0.00014901100000000000 * 16777216 = 2499.989733
> >> New: 0.00014901161193847600 * 16777216 = 2500.000000
> >> Signed-off-by: Phil Reid <preid@electromag.com.au>
> >> ---
> >>
> >> Notes:
> >>      Alternatively I could add additonal FRACTIONAL types that select the new
> >>      behaviour to prevent any possible regressions.
> >>
> >>   drivers/iio/industrialio-core.c | 55 ++++++++++++++++++++++++++++++++++-------
> >>   1 file changed, 46 insertions(+), 9 deletions(-)
> >>
> >> diff --git a/drivers/iio/industrialio-core.c b/drivers/iio/industrialio-core.c
> >> index a062cfd..bd9da64 100644
> >> --- a/drivers/iio/industrialio-core.c
> >> +++ b/drivers/iio/industrialio-core.c
> >> @@ -571,11 +571,53 @@ int of_iio_read_mount_matrix(const struct device *dev,
> >>   #endif
> >>   EXPORT_SYMBOL(of_iio_read_mount_matrix);
> >>
> >> +static ssize_t __iio_format_div_prec(char *buf, unsigned int len, s64 x, s32 y)
> >> +{
> >> +       unsigned int prec = 0;
> >> +       unsigned int idx = 0;
> >> +       s64 d;
> >> +
> >> +       if (!len)
> >> +               return 0;
> >> +
> >> +       if (!y)
> >> +               return snprintf(buf, len, "inf");
> >> +
> >> +       if (!x)
> >> +               return snprintf(buf, len, "0");
> >> +
> >> +       if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
> >> +               buf[idx++] = '-';
> >> +               x = x > 0 ? x : -x;
> >> +               y = y > 0 ? y : -y;
> >> +       }
> >> +
> >> +       d = div64_s64(x, y);
> >> +       idx += snprintf(buf+idx, len-idx, "%d", (int)d);
> >> +       x = x - (y * d);
> >> +       if ((x != 0) && (idx < len-1)) {
> >> +               buf[idx++] = '.';
> >> +               x = x * 10;
> >> +               d = div64_s64(x, y);
> >> +
> >> +               while ((idx < len-1) && (prec < 15)) {
> >> +                       if (d || prec)
> >> +                               prec++;
> >> +                       buf[idx++] = '0' + (char)d;
> >> +                       x = x - (y * d);
> >> +                       if (!x)
> >> +                               break;
> >> +                       x = x * 10;
> >> +                       d = div64_s64(x, y);
> >> +               }
> >> +               buf[idx] = 0;
> >> +       }
> >> +       return idx;
> >> +}
> >> +
> >>   static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
> >>                                    int size, const int *vals)
> >>   {
> >> -       unsigned long long tmp;
> >> -       int tmp0, tmp1;
> >>          bool scale_db = false;
> >>
> >>          switch (type) {
> >> @@ -598,14 +640,9 @@ static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
> >>                  else
> >>                          return snprintf(buf, len, "%d.%09u", vals[0], vals[1]);
> >>          case IIO_VAL_FRACTIONAL:
> >> -               tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
> >> -               tmp1 = vals[1];
> >> -               tmp0 = (int)div_s64_rem(tmp, 1000000000, &tmp1);
> >> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
> >> +               return __iio_format_div_prec(buf, len, vals[0], vals[1]);  
> > 
> > Maybe I'm a bit naive, but I'm also a bit curious.
> > If you just bump the numbers here, would it work the same ?
> > 
> > i.e.   10^9 -> 10^15 and "snprintf(buf, len, "%d.%15u", tmp0, abs(tmp1));"  
> I did look at that solution.
> 
> But I was running into overflow issues (even with 64 bit numbers).
> 
> eg: with a 2500 reference and 32 bits.
> 
> 2500 * 10^15 = 2e+18 = 61 bits
> And the result of
> 2500 / 2^32 =  0.000000582076609
> Only provides 9 significant digits with 15 decimal places.
> 
> I was looking to provide 15 significant digits to match a standard double
> precision floating point value.

I'll ask the awkward engineering question.  Is this precision actually valid?
I.e. typical voltage references are +- 0.0x %

The fact we have a 32 bit ADC means you'll detect small changes, but I'm
dubious about whether the absolute value will ever be 'that good'.

If we are going to go out of way to support greater precision we need
a strong justification of why.
To take advantage of these high precision devices you need to take into
account non linear effects, temperature etc.  These will swamp (I think)
any effect of a lack of precision the scale value.

> 
> Proposed solution seemed to work with a wider range, but I admit it's not elegant.
> Certainly interested in other peoples ideas.
> 
> My alternative thought was to introduce a new type that returns the scale
> as a rational. eg: return string like
> scale_rational = 2500/4294967296
> 
> But that'd require existing user space to become aware of the new format.
> 
> 
> > 
> > But in any case, what would be interesting now, is to extend the IIO
> > core logic to provide [somehow] a precision number, default being 9.
> > This could probably be specified on per-channel basis [somehow],
> > similar to other channel params.
> > 
> > So, for example in the default case, if you have "uint32_t precision =
> > 9", you would have the same behavior, with something like
> > 
> >        tmp = div_s64((s64)vals[0] * pow_of_10(precision), vals[1]);
> >        tmp1 = vals[1];
> >        tmp0 = (int)div_s64_rem(tmp, pow_of_10(precision), &tmp1);
> >        return snprintf(buf, len, "%d.%" precision "u", tmp0, abs(tmp1));
> > 
> > Obviously, the above code is just pseudo-code, where pow_of_10()
> > multiplies 10 a "precision" number of times, and the snprintf() would
> > need a temporary buffer to create a format string, which then would be
> > used.  
> 
> Good idea to have some kind of overide, I'll have a look
> 
> > 
> > Thanks
> > Alex
> >   
> >>          case IIO_VAL_FRACTIONAL_LOG2:
> >> -               tmp = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
> >> -               tmp0 = (int)div_s64_rem(tmp, 1000000000LL, &tmp1);
> >> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
> >> +               return __iio_format_div_prec(buf, len, vals[0], 1 << vals[1]);
> >>          case IIO_VAL_INT_MULTIPLE:
> >>          {
> >>                  int i;
> >> --
> >> 1.8.3.1
> >>  
> > 
> >   
> 
>
Phil Reid Feb. 1, 2019, 5:47 a.m. UTC | #4
On 31/01/2019 9:35 pm, Jonathan Cameron wrote:
> On Tue, 29 Jan 2019 17:11:25 +0800
> Phil Reid <preid@electromag.com.au> wrote:
> 
>> G'day Alex,
>>
>> On 29/01/2019 4:32 pm, Alexandru Ardelean wrote:
>>> On Tue, Jan 29, 2019 at 8:28 AM Phil Reid <preid@electromag.com.au> wrote:
>>>>
>>>> Currently FRACTIONAL values are outputed with 9 digits after the decimal
>>>> place. This is not always sufficient to resolve the raw value with 1 bit.
>>>> Output FRACTIONAL values to 15 decimal places of precision, regardless
>>>> of the number of leading zeros.
>>>>
>>>> Currently for a 2.5V ref with 24 bits of precision the code outputs only
>>>> to 9 decimal places.
>>>>
>>>> Cur: 0.00014901100000000000 * 16777216 = 2499.989733
>>>> New: 0.00014901161193847600 * 16777216 = 2500.000000
>>>> Signed-off-by: Phil Reid <preid@electromag.com.au>
>>>> ---
>>>>
>>>> Notes:
>>>>       Alternatively I could add additonal FRACTIONAL types that select the new
>>>>       behaviour to prevent any possible regressions.
>>>>
>>>>    drivers/iio/industrialio-core.c | 55 ++++++++++++++++++++++++++++++++++-------
>>>>    1 file changed, 46 insertions(+), 9 deletions(-)
>>>>
>>>> diff --git a/drivers/iio/industrialio-core.c b/drivers/iio/industrialio-core.c
>>>> index a062cfd..bd9da64 100644
>>>> --- a/drivers/iio/industrialio-core.c
>>>> +++ b/drivers/iio/industrialio-core.c
>>>> @@ -571,11 +571,53 @@ int of_iio_read_mount_matrix(const struct device *dev,
>>>>    #endif
>>>>    EXPORT_SYMBOL(of_iio_read_mount_matrix);
>>>>
>>>> +static ssize_t __iio_format_div_prec(char *buf, unsigned int len, s64 x, s32 y)
>>>> +{
>>>> +       unsigned int prec = 0;
>>>> +       unsigned int idx = 0;
>>>> +       s64 d;
>>>> +
>>>> +       if (!len)
>>>> +               return 0;
>>>> +
>>>> +       if (!y)
>>>> +               return snprintf(buf, len, "inf");
>>>> +
>>>> +       if (!x)
>>>> +               return snprintf(buf, len, "0");
>>>> +
>>>> +       if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
>>>> +               buf[idx++] = '-';
>>>> +               x = x > 0 ? x : -x;
>>>> +               y = y > 0 ? y : -y;
>>>> +       }
>>>> +
>>>> +       d = div64_s64(x, y);
>>>> +       idx += snprintf(buf+idx, len-idx, "%d", (int)d);
>>>> +       x = x - (y * d);
>>>> +       if ((x != 0) && (idx < len-1)) {
>>>> +               buf[idx++] = '.';
>>>> +               x = x * 10;
>>>> +               d = div64_s64(x, y);
>>>> +
>>>> +               while ((idx < len-1) && (prec < 15)) {
>>>> +                       if (d || prec)
>>>> +                               prec++;
>>>> +                       buf[idx++] = '0' + (char)d;
>>>> +                       x = x - (y * d);
>>>> +                       if (!x)
>>>> +                               break;
>>>> +                       x = x * 10;
>>>> +                       d = div64_s64(x, y);
>>>> +               }
>>>> +               buf[idx] = 0;
>>>> +       }
>>>> +       return idx;
>>>> +}
>>>> +
>>>>    static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
>>>>                                     int size, const int *vals)
>>>>    {
>>>> -       unsigned long long tmp;
>>>> -       int tmp0, tmp1;
>>>>           bool scale_db = false;
>>>>
>>>>           switch (type) {
>>>> @@ -598,14 +640,9 @@ static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
>>>>                   else
>>>>                           return snprintf(buf, len, "%d.%09u", vals[0], vals[1]);
>>>>           case IIO_VAL_FRACTIONAL:
>>>> -               tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
>>>> -               tmp1 = vals[1];
>>>> -               tmp0 = (int)div_s64_rem(tmp, 1000000000, &tmp1);
>>>> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
>>>> +               return __iio_format_div_prec(buf, len, vals[0], vals[1]);
>>>
>>> Maybe I'm a bit naive, but I'm also a bit curious.
>>> If you just bump the numbers here, would it work the same ?
>>>
>>> i.e.   10^9 -> 10^15 and "snprintf(buf, len, "%d.%15u", tmp0, abs(tmp1));"
>> I did look at that solution.
>>
>> But I was running into overflow issues (even with 64 bit numbers).
>>
>> eg: with a 2500 reference and 32 bits.
>>
>> 2500 * 10^15 = 2e+18 = 61 bits
>> And the result of
>> 2500 / 2^32 =  0.000000582076609
>> Only provides 9 significant digits with 15 decimal places.
>>
>> I was looking to provide 15 significant digits to match a standard double
>> precision floating point value.
> 
> I'll ask the awkward engineering question.  Is this precision actually valid?
> I.e. typical voltage references are +- 0.0x %
> 
> The fact we have a 32 bit ADC means you'll detect small changes, but I'm
> dubious about whether the absolute value will ever be 'that good'.
> 
> If we are going to go out of way to support greater precision we need
> a strong justification of why.
> To take advantage of these high precision devices you need to take into
> account non linear effects, temperature etc.  These will swamp (I think)
> any effect of a lack of precision the scale value.
> 

All valid points.

9 signification digits is probably fine.
However the current formatting doesn't always provide 9 significant digits.
So I believe this can start to add significant error.


Some typical ref voltages using 32 bit scale.
         scale          iio scale    err               err%
2500  5.820766091E-07  0.000000582  -7.660913467E-11  -0.0132%
3000  6.984919310E-07  0.000000698  -4.919309616E-10  -0.0705%
3300  7.683411241E-07  0.000000768  -3.411240578E-10  -0.0444%
5000  1.164153218E-06  0.000001164  -1.532182693E-10  -0.0132%

Looking at other drivers they seem to adjust the scale figure based on gain
selection as well. Is this expected?

If so when adding gain eg: x100

       scale            iio scale     err              err%
2500  5.820766091E-09  0.000000005  -8.207660913E-10  -16%
3000  6.984919310E-09  0.000000006  -9.849193096E-10  -16%
3300  7.683411241E-09  0.000000007  -6.834112406E-10  -10%
5000  1.164153218E-08  0.000000011  -6.415321827E-10  -6%

The limited number of significant digits is swamping everything else.

even at 24bit with gain 1x00

       scale            iio scale     err              err%
2500  1.490116119E-06  0.000001490  -1.161193848E-10  -0.01%
3000  1.788139343E-06  0.000001788  -1.393432617E-10  -0.01%
3300  1.966953278E-06  0.000001966  -9.532775879E-10  -0.05%
5000  2.980232239E-06  0.000002980  -2.322387695E-10  -0.01%


Similarly this while also affect the accuracy of values mapped thru the
rescale driver.
Jonathan Cameron Feb. 1, 2019, 11:22 a.m. UTC | #5
On Fri, 1 Feb 2019 13:47:57 +0800
Phil Reid <preid@electromag.com.au> wrote:

> On 31/01/2019 9:35 pm, Jonathan Cameron wrote:
> > On Tue, 29 Jan 2019 17:11:25 +0800
> > Phil Reid <preid@electromag.com.au> wrote:
> >   
> >> G'day Alex,
> >>
> >> On 29/01/2019 4:32 pm, Alexandru Ardelean wrote:  
> >>> On Tue, Jan 29, 2019 at 8:28 AM Phil Reid <preid@electromag.com.au> wrote:  
> >>>>
> >>>> Currently FRACTIONAL values are outputed with 9 digits after the decimal
> >>>> place. This is not always sufficient to resolve the raw value with 1 bit.
> >>>> Output FRACTIONAL values to 15 decimal places of precision, regardless
> >>>> of the number of leading zeros.
> >>>>
> >>>> Currently for a 2.5V ref with 24 bits of precision the code outputs only
> >>>> to 9 decimal places.
> >>>>
> >>>> Cur: 0.00014901100000000000 * 16777216 = 2499.989733
> >>>> New: 0.00014901161193847600 * 16777216 = 2500.000000
> >>>> Signed-off-by: Phil Reid <preid@electromag.com.au>
> >>>> ---
> >>>>
> >>>> Notes:
> >>>>       Alternatively I could add additonal FRACTIONAL types that select the new
> >>>>       behaviour to prevent any possible regressions.
> >>>>
> >>>>    drivers/iio/industrialio-core.c | 55 ++++++++++++++++++++++++++++++++++-------
> >>>>    1 file changed, 46 insertions(+), 9 deletions(-)
> >>>>
> >>>> diff --git a/drivers/iio/industrialio-core.c b/drivers/iio/industrialio-core.c
> >>>> index a062cfd..bd9da64 100644
> >>>> --- a/drivers/iio/industrialio-core.c
> >>>> +++ b/drivers/iio/industrialio-core.c
> >>>> @@ -571,11 +571,53 @@ int of_iio_read_mount_matrix(const struct device *dev,
> >>>>    #endif
> >>>>    EXPORT_SYMBOL(of_iio_read_mount_matrix);
> >>>>
> >>>> +static ssize_t __iio_format_div_prec(char *buf, unsigned int len, s64 x, s32 y)
> >>>> +{
> >>>> +       unsigned int prec = 0;
> >>>> +       unsigned int idx = 0;
> >>>> +       s64 d;
> >>>> +
> >>>> +       if (!len)
> >>>> +               return 0;
> >>>> +
> >>>> +       if (!y)
> >>>> +               return snprintf(buf, len, "inf");
> >>>> +
> >>>> +       if (!x)
> >>>> +               return snprintf(buf, len, "0");
> >>>> +
> >>>> +       if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
> >>>> +               buf[idx++] = '-';
> >>>> +               x = x > 0 ? x : -x;
> >>>> +               y = y > 0 ? y : -y;
> >>>> +       }
> >>>> +
> >>>> +       d = div64_s64(x, y);
> >>>> +       idx += snprintf(buf+idx, len-idx, "%d", (int)d);
> >>>> +       x = x - (y * d);
> >>>> +       if ((x != 0) && (idx < len-1)) {
> >>>> +               buf[idx++] = '.';
> >>>> +               x = x * 10;
> >>>> +               d = div64_s64(x, y);
> >>>> +
> >>>> +               while ((idx < len-1) && (prec < 15)) {
> >>>> +                       if (d || prec)
> >>>> +                               prec++;
> >>>> +                       buf[idx++] = '0' + (char)d;
> >>>> +                       x = x - (y * d);
> >>>> +                       if (!x)
> >>>> +                               break;
> >>>> +                       x = x * 10;
> >>>> +                       d = div64_s64(x, y);
> >>>> +               }
> >>>> +               buf[idx] = 0;
> >>>> +       }
> >>>> +       return idx;
> >>>> +}
> >>>> +
> >>>>    static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
> >>>>                                     int size, const int *vals)
> >>>>    {
> >>>> -       unsigned long long tmp;
> >>>> -       int tmp0, tmp1;
> >>>>           bool scale_db = false;
> >>>>
> >>>>           switch (type) {
> >>>> @@ -598,14 +640,9 @@ static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
> >>>>                   else
> >>>>                           return snprintf(buf, len, "%d.%09u", vals[0], vals[1]);
> >>>>           case IIO_VAL_FRACTIONAL:
> >>>> -               tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
> >>>> -               tmp1 = vals[1];
> >>>> -               tmp0 = (int)div_s64_rem(tmp, 1000000000, &tmp1);
> >>>> -               return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
> >>>> +               return __iio_format_div_prec(buf, len, vals[0], vals[1]);  
> >>>
> >>> Maybe I'm a bit naive, but I'm also a bit curious.
> >>> If you just bump the numbers here, would it work the same ?
> >>>
> >>> i.e.   10^9 -> 10^15 and "snprintf(buf, len, "%d.%15u", tmp0, abs(tmp1));"  
> >> I did look at that solution.
> >>
> >> But I was running into overflow issues (even with 64 bit numbers).
> >>
> >> eg: with a 2500 reference and 32 bits.
> >>
> >> 2500 * 10^15 = 2e+18 = 61 bits
> >> And the result of
> >> 2500 / 2^32 =  0.000000582076609
> >> Only provides 9 significant digits with 15 decimal places.
> >>
> >> I was looking to provide 15 significant digits to match a standard double
> >> precision floating point value.  
> > 
> > I'll ask the awkward engineering question.  Is this precision actually valid?
> > I.e. typical voltage references are +- 0.0x %
> > 
> > The fact we have a 32 bit ADC means you'll detect small changes, but I'm
> > dubious about whether the absolute value will ever be 'that good'.
> > 
> > If we are going to go out of way to support greater precision we need
> > a strong justification of why.
> > To take advantage of these high precision devices you need to take into
> > account non linear effects, temperature etc.  These will swamp (I think)
> > any effect of a lack of precision the scale value.
> >   
> 
> All valid points.
> 
> 9 signification digits is probably fine.
> However the current formatting doesn't always provide 9 significant digits.
> So I believe this can start to add significant error.

Agreed, we need to allow for smaller numbers, 10^-12 10^-15 etc perhaps
with formatting functions to match.

Should be a fairly small change I think and fits with the current scheme
(though obviously might confuse existing userspace - hopefully not!)

> 
> 
> Some typical ref voltages using 32 bit scale.
>          scale          iio scale    err               err%
> 2500  5.820766091E-07  0.000000582  -7.660913467E-11  -0.0132%
> 3000  6.984919310E-07  0.000000698  -4.919309616E-10  -0.0705%
> 3300  7.683411241E-07  0.000000768  -3.411240578E-10  -0.0444%
> 5000  1.164153218E-06  0.000001164  -1.532182693E-10  -0.0132%
> 
> Looking at other drivers they seem to adjust the scale figure based on gain
> selection as well. Is this expected?
> 
> If so when adding gain eg: x100

Interesting point.  A device with high variable gain should be changing
the type to best represent the 'scale'. 

> 
>        scale            iio scale     err              err%
> 2500  5.820766091E-09  0.000000005  -8.207660913E-10  -16%
> 3000  6.984919310E-09  0.000000006  -9.849193096E-10  -16%
> 3300  7.683411241E-09  0.000000007  -6.834112406E-10  -10%
> 5000  1.164153218E-08  0.000000011  -6.415321827E-10  -6%
> 
> The limited number of significant digits is swamping everything else.
> 
> even at 24bit with gain 1x00
> 
>        scale            iio scale     err              err%
> 2500  1.490116119E-06  0.000001490  -1.161193848E-10  -0.01%
> 3000  1.788139343E-06  0.000001788  -1.393432617E-10  -0.01%
> 3300  1.966953278E-06  0.000001966  -9.532775879E-10  -0.05%
> 5000  2.980232239E-06  0.000002980  -2.322387695E-10  -0.01%
> 
> 
> Similarly this while also affect the accuracy of values mapped thru the
> rescale driver.

Agreed, the rescale driver probably needs to be a bit more clever to
deal with large scale changes.

Jonathan
diff mbox series

Patch

diff --git a/drivers/iio/industrialio-core.c b/drivers/iio/industrialio-core.c
index a062cfd..bd9da64 100644
--- a/drivers/iio/industrialio-core.c
+++ b/drivers/iio/industrialio-core.c
@@ -571,11 +571,53 @@  int of_iio_read_mount_matrix(const struct device *dev,
 #endif
 EXPORT_SYMBOL(of_iio_read_mount_matrix);
 
+static ssize_t __iio_format_div_prec(char *buf, unsigned int len, s64 x, s32 y)
+{
+	unsigned int prec = 0;
+	unsigned int idx = 0;
+	s64 d;
+
+	if (!len)
+		return 0;
+
+	if (!y)
+		return snprintf(buf, len, "inf");
+
+	if (!x)
+		return snprintf(buf, len, "0");
+
+	if (((x > 0) && (y < 0)) || ((x < 0) && (y > 0))) {
+		buf[idx++] = '-';
+		x = x > 0 ? x : -x;
+		y = y > 0 ? y : -y;
+	}
+
+	d = div64_s64(x, y);
+	idx += snprintf(buf+idx, len-idx, "%d", (int)d);
+	x = x - (y * d);
+	if ((x != 0) && (idx < len-1)) {
+		buf[idx++] = '.';
+		x = x * 10;
+		d = div64_s64(x, y);
+
+		while ((idx < len-1) && (prec < 15)) {
+			if (d || prec)
+				prec++;
+			buf[idx++] = '0' + (char)d;
+			x = x - (y * d);
+			if (!x)
+				break;
+			x = x * 10;
+			d = div64_s64(x, y);
+		}
+		buf[idx] = 0;
+	}
+	return idx;
+}
+
 static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
 				  int size, const int *vals)
 {
-	unsigned long long tmp;
-	int tmp0, tmp1;
 	bool scale_db = false;
 
 	switch (type) {
@@ -598,14 +640,9 @@  static ssize_t __iio_format_value(char *buf, size_t len, unsigned int type,
 		else
 			return snprintf(buf, len, "%d.%09u", vals[0], vals[1]);
 	case IIO_VAL_FRACTIONAL:
-		tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
-		tmp1 = vals[1];
-		tmp0 = (int)div_s64_rem(tmp, 1000000000, &tmp1);
-		return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
+		return __iio_format_div_prec(buf, len, vals[0], vals[1]);
 	case IIO_VAL_FRACTIONAL_LOG2:
-		tmp = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
-		tmp0 = (int)div_s64_rem(tmp, 1000000000LL, &tmp1);
-		return snprintf(buf, len, "%d.%09u", tmp0, abs(tmp1));
+		return __iio_format_div_prec(buf, len, vals[0], 1 << vals[1]);
 	case IIO_VAL_INT_MULTIPLE:
 	{
 		int i;