Message ID | 8d31bb3d92bc8fa33a9756fa802ee14266ab994e.1618253574.git.maciej.szmigiero@oracle.com (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | [v2,1/2] KVM: selftests: Keep track of memslots more efficiently | expand |
On 13/04/21 16:08, Maciej S. Szmigiero wrote: > From: "Maciej S. Szmigiero" <maciej.szmigiero@oracle.com> > > This benchmark contains the following tests: > * Map test, where the host unmaps guest memory while the guest writes to > it (maps it). > > The test is designed in a way to make the unmap operation on the host > take a negligible amount of time in comparison with the mapping > operation in the guest. > > The test area is actually split in two: the first half is being mapped > by the guest while the second half in being unmapped by the host. > Then a guest <-> host sync happens and the areas are reversed. > > * Unmap test which is broadly similar to the above map test, but it is > designed in an opposite way: to make the mapping operation in the guest > take a negligible amount of time in comparison with the unmap operation > on the host. > This test is available in two variants: with per-page unmap operation > or a chunked one (using 2 MiB chunk size). > > * Move active area test which involves moving the last (highest gfn) > memslot a bit back and forth on the host while the guest is > concurrently writing around the area being moved (including over the > moved memslot). > > * Move inactive area test which is similar to the previous move active > area test, but now guest writes all happen outside of the area being > moved. > > * Read / write test in which the guest writes to the beginning of each > page of the test area while the host writes to the middle of each such > page. > Then each side checks the values the other side has written. > This particular test is not expected to give different results depending > on particular memslots implementation, it is meant as a rough sanity > check and to provide insight on the spread of test results expected. > > Each test performs its operation in a loop until a test period ends > (this is 5 seconds by default, but it is configurable). > Then the total count of loops done is divided by the actual elapsed > time to give the test result. > > The tests have a configurable memslot cap with the "-s" test option, by > default the system maximum is used. > Each test is repeated a particular number of times (by default 20 > times), the best result achieved is printed. > > The test memory area is divided equally between memslots, the reminder > is added to the last memslot. > The test area size does not depend on the number of memslots in use. > > The tests also measure the time that it took to add all these memslots. > The best result from the tests that use the whole test area is printed > after all the requested tests are done. > > In general, these tests are designed to use as much memory as possible > (within reason) while still doing 100+ loops even on high memslot counts > with the default test length. > Increasing the test runtime makes it increasingly more likely that some > event will happen on the system during the test run, which might lower > the test result. > > Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> > Reviewed-by: Andrew Jones <drjones@redhat.com> > --- > > Changes from v1: > * Try to keep alphabetic order when adding new entries to Makefile > and .gitignore > > * Remove no longer necessary explicit vcpu_set_cpuid() call > > * Add Andrew's Reviewed-by: tag > > tools/testing/selftests/kvm/.gitignore | 1 + > tools/testing/selftests/kvm/Makefile | 1 + > .../testing/selftests/kvm/memslot_perf_test.c | 1037 +++++++++++++++++ > 3 files changed, 1039 insertions(+) > create mode 100644 tools/testing/selftests/kvm/memslot_perf_test.c > > diff --git a/tools/testing/selftests/kvm/.gitignore b/tools/testing/selftests/kvm/.gitignore > index 32b87cc77c8e..40a36f5570ad 100644 > --- a/tools/testing/selftests/kvm/.gitignore > +++ b/tools/testing/selftests/kvm/.gitignore > @@ -36,5 +36,6 @@ > /hardware_disable_test > /kvm_create_max_vcpus > /memslot_modification_stress_test > +/memslot_perf_test > /set_memory_region_test > /steal_time > diff --git a/tools/testing/selftests/kvm/Makefile b/tools/testing/selftests/kvm/Makefile > index c30a21c1d676..401ef2e88991 100644 > --- a/tools/testing/selftests/kvm/Makefile > +++ b/tools/testing/selftests/kvm/Makefile > @@ -70,6 +70,7 @@ TEST_GEN_PROGS_x86_64 += dirty_log_perf_test > TEST_GEN_PROGS_x86_64 += hardware_disable_test > TEST_GEN_PROGS_x86_64 += kvm_create_max_vcpus > TEST_GEN_PROGS_x86_64 += memslot_modification_stress_test > +TEST_GEN_PROGS_x86_64 += memslot_perf_test > TEST_GEN_PROGS_x86_64 += set_memory_region_test > TEST_GEN_PROGS_x86_64 += steal_time > > diff --git a/tools/testing/selftests/kvm/memslot_perf_test.c b/tools/testing/selftests/kvm/memslot_perf_test.c > new file mode 100644 > index 000000000000..4ae0e5ec0f74 > --- /dev/null > +++ b/tools/testing/selftests/kvm/memslot_perf_test.c > @@ -0,0 +1,1037 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * A memslot-related performance benchmark. > + * > + * Copyright (C) 2021 Oracle and/or its affiliates. > + * > + * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. > + */ > +#include <pthread.h> > +#include <sched.h> > +#include <semaphore.h> > +#include <stdatomic.h> > +#include <stdbool.h> > +#include <stdint.h> > +#include <stdio.h> > +#include <stdlib.h> > +#include <string.h> > +#include <sys/mman.h> > +#include <time.h> > +#include <unistd.h> > + > +#include <linux/compiler.h> > + > +#include <test_util.h> > +#include <kvm_util.h> > +#include <processor.h> > + > +#define VCPU_ID 0 > + > +#define MEM_SIZE ((512U << 20) + 4096) > +#define MEM_SIZE_PAGES (MEM_SIZE / 4096) > +#define MEM_GPA 0x10000000UL > +#define MEM_AUX_GPA MEM_GPA > +#define MEM_SYNC_GPA MEM_AUX_GPA > +#define MEM_TEST_GPA (MEM_AUX_GPA + 4096) > +#define MEM_TEST_SIZE (MEM_SIZE - 4096) > +static_assert(MEM_SIZE % 4096 == 0, "invalid mem size"); > +static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size"); > + > +/* > + * 32 MiB is max size that gets well over 100 iterations on 509 slots. > + * Considering that each slot needs to have at least one page up to > + * 8194 slots in use can then be tested (although with slightly > + * limited resolution). > + */ > +#define MEM_SIZE_MAP ((32U << 20) + 4096) > +#define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096) > +#define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096) > +#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096) > +static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size"); > +static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size"); > +static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size"); > +static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size"); > + > +/* > + * 128 MiB is min size that fills 32k slots with at least one page in each > + * while at the same time gets 100+ iterations in such test > + */ > +#define MEM_TEST_UNMAP_SIZE (128U << 20) > +#define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096) > +/* 2 MiB chunk size like a typical huge page */ > +#define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12)) > +static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE, > + "invalid unmap test region size"); > +static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0, > + "invalid unmap test region size"); > +static_assert(MEM_TEST_UNMAP_SIZE_PAGES % > + (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0, > + "invalid unmap test region size"); > + > +/* > + * For the move active test the middle of the test area is placed on > + * a memslot boundary: half lies in the memslot being moved, half in > + * other memslot(s). > + * > + * When running this test with 32k memslots (32764, really) each memslot > + * contains 4 pages. > + * The last one additionally contains the remaining 21 pages of memory, > + * for the total size of 25 pages. > + * Hence, the maximum size here is 50 pages. > + */ > +#define MEM_TEST_MOVE_SIZE_PAGES (50) > +#define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096) > +#define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) > +static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, > + "invalid move test region size"); > + > +#define MEM_TEST_VAL_1 0x1122334455667788 > +#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 > + > +struct vm_data { > + struct kvm_vm *vm; > + pthread_t vcpu_thread; > + uint32_t nslots; > + uint64_t npages; > + uint64_t pages_per_slot; > + void **hva_slots; > + bool mmio_ok; > + uint64_t mmio_gpa_min; > + uint64_t mmio_gpa_max; > +}; > + > +struct sync_area { > + atomic_bool start_flag; > + atomic_bool exit_flag; > + atomic_bool sync_flag; > + void *move_area_ptr; > +}; > + > +/* > + * Technically, we need also for the atomic bool to be address-free, which > + * is recommended, but not strictly required, by C11 for lockless > + * implementations. > + * However, in practice both GCC and Clang fulfill this requirement on > + * all KVM-supported platforms. > + */ > +static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); > + > +static sem_t vcpu_ready; > + > +static bool map_unmap_verify; > + > +static bool verbose; > +#define pr_info_v(...) \ > + do { \ > + if (verbose) \ > + pr_info(__VA_ARGS__); \ > + } while (0) > + > +static void *vcpu_worker(void *data) > +{ > + struct vm_data *vm = data; > + struct kvm_run *run; > + struct ucall uc; > + uint64_t cmd; > + > + run = vcpu_state(vm->vm, VCPU_ID); > + while (1) { > + vcpu_run(vm->vm, VCPU_ID); > + > + if (run->exit_reason == KVM_EXIT_IO) { > + cmd = get_ucall(vm->vm, VCPU_ID, &uc); > + if (cmd != UCALL_SYNC) > + break; > + > + sem_post(&vcpu_ready); > + continue; > + } > + > + if (run->exit_reason != KVM_EXIT_MMIO) > + break; > + > + TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit"); > + TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); > + TEST_ASSERT(run->mmio.len == 8, > + "Unexpected exit mmio size = %u", run->mmio.len); > + TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min && > + run->mmio.phys_addr <= vm->mmio_gpa_max, > + "Unexpected exit mmio address = 0x%llx", > + run->mmio.phys_addr); > + } > + > + if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT) > + TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0], > + __FILE__, uc.args[1], uc.args[2]); > + > + return NULL; > +} > + > +static void wait_for_vcpu(void) > +{ > + struct timespec ts; > + > + TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), > + "clock_gettime() failed: %d\n", errno); > + > + ts.tv_sec += 2; > + TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), > + "sem_timedwait() failed: %d\n", errno); > +} > + > +static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) > +{ > + uint64_t gpage, pgoffs; > + uint32_t slot, slotoffs; > + void *base; > + > + TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); > + TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096, > + "Too high gpa to translate"); > + gpa -= MEM_GPA; > + > + gpage = gpa / 4096; > + pgoffs = gpa % 4096; > + slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); > + slotoffs = gpage - (slot * data->pages_per_slot); > + > + if (rempages) { > + uint64_t slotpages; > + > + if (slot == data->nslots - 1) > + slotpages = data->npages - slot * data->pages_per_slot; > + else > + slotpages = data->pages_per_slot; > + > + TEST_ASSERT(!pgoffs, > + "Asking for remaining pages in slot but gpa not page aligned"); > + *rempages = slotpages - slotoffs; > + } > + > + base = data->hva_slots[slot]; > + return (uint8_t *)base + slotoffs * 4096 + pgoffs; > +} > + > +static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) > +{ > + TEST_ASSERT(slot < data->nslots, "Too high slot number"); > + > + return MEM_GPA + slot * data->pages_per_slot * 4096; > +} > + > +static struct vm_data *alloc_vm(void) > +{ > + struct vm_data *data; > + > + data = malloc(sizeof(*data)); > + TEST_ASSERT(data, "malloc(vmdata) failed"); > + > + data->vm = NULL; > + data->hva_slots = NULL; > + > + return data; > +} > + > +static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, > + void *guest_code, uint64_t mempages, > + struct timespec *slot_runtime) > +{ > + uint32_t max_mem_slots; > + uint64_t rempages; > + uint64_t guest_addr; > + uint32_t slot; > + struct timespec tstart; > + struct sync_area *sync; > + > + max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); > + TEST_ASSERT(max_mem_slots > 1, > + "KVM_CAP_NR_MEMSLOTS should be greater than 1"); > + TEST_ASSERT(nslots > 1 || nslots == -1, > + "Slot count cap should be greater than 1"); > + if (nslots != -1) > + max_mem_slots = min(max_mem_slots, (uint32_t)nslots); > + pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots); > + > + TEST_ASSERT(mempages > 1, > + "Can't test without any memory"); > + > + data->npages = mempages; > + data->nslots = max_mem_slots - 1; > + data->pages_per_slot = mempages / data->nslots; > + if (!data->pages_per_slot) { > + *maxslots = mempages + 1; > + return false; > + } > + > + rempages = mempages % data->nslots; > + data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); > + TEST_ASSERT(data->hva_slots, "malloc() fail"); > + > + data->vm = vm_create_default(VCPU_ID, mempages, guest_code); > + > + pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", > + max_mem_slots - 1, data->pages_per_slot, rempages); > + > + clock_gettime(CLOCK_MONOTONIC, &tstart); > + for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) { > + uint64_t npages; > + > + npages = data->pages_per_slot; > + if (slot == max_mem_slots - 1) > + npages += rempages; > + > + vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, > + guest_addr, slot, npages, > + 0); > + guest_addr += npages * 4096; > + } > + *slot_runtime = timespec_elapsed(tstart); > + > + for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) { > + uint64_t npages; > + uint64_t gpa; > + > + npages = data->pages_per_slot; > + if (slot == max_mem_slots - 2) > + npages += rempages; > + > + gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, > + slot + 1); > + TEST_ASSERT(gpa == guest_addr, > + "vm_phy_pages_alloc() failed\n"); > + > + data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr); > + memset(data->hva_slots[slot], 0, npages * 4096); > + > + guest_addr += npages * 4096; > + } > + > + virt_map(data->vm, MEM_GPA, MEM_GPA, mempages, 0); > + > + sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); > + atomic_init(&sync->start_flag, false); > + atomic_init(&sync->exit_flag, false); > + atomic_init(&sync->sync_flag, false); > + > + data->mmio_ok = false; > + > + return true; > +} > + > +static void launch_vm(struct vm_data *data) > +{ > + pr_info_v("Launching the test VM\n"); > + > + pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); > + > + /* Ensure the guest thread is spun up. */ > + wait_for_vcpu(); > +} > + > +static void free_vm(struct vm_data *data) > +{ > + kvm_vm_free(data->vm); > + free(data->hva_slots); > + free(data); > +} > + > +static void wait_guest_exit(struct vm_data *data) > +{ > + pthread_join(data->vcpu_thread, NULL); > +} > + > +static void let_guest_run(struct sync_area *sync) > +{ > + atomic_store_explicit(&sync->start_flag, true, memory_order_release); > +} > + > +static void guest_spin_until_start(void) > +{ > + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; > + > + while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) > + ; > +} > + > +static void make_guest_exit(struct sync_area *sync) > +{ > + atomic_store_explicit(&sync->exit_flag, true, memory_order_release); > +} > + > +static bool _guest_should_exit(void) > +{ > + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; > + > + return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); > +} > + > +#define guest_should_exit() unlikely(_guest_should_exit()) > + > +/* > + * noinline so we can easily see how much time the host spends waiting > + * for the guest. > + * For the same reason use alarm() instead of polling clock_gettime() > + * to implement a wait timeout. > + */ > +static noinline void host_perform_sync(struct sync_area *sync) > +{ > + alarm(2); > + > + atomic_store_explicit(&sync->sync_flag, true, memory_order_release); > + while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) > + ; > + > + alarm(0); > +} > + > +static bool guest_perform_sync(void) > +{ > + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; > + bool expected; > + > + do { > + if (guest_should_exit()) > + return false; > + > + expected = true; > + } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, > + &expected, false, > + memory_order_acq_rel, > + memory_order_relaxed)); > + > + return true; > +} > + > +static void guest_code_test_memslot_move(void) > +{ > + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; > + uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); > + > + GUEST_SYNC(0); > + > + guest_spin_until_start(); > + > + while (!guest_should_exit()) { > + uintptr_t ptr; > + > + for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; > + ptr += 4096) > + *(uint64_t *)ptr = MEM_TEST_VAL_1; > + > + /* > + * No host sync here since the MMIO exits are so expensive > + * that the host would spend most of its time waiting for > + * the guest and so instead of measuring memslot move > + * performance we would measure the performance and > + * likelihood of MMIO exits > + */ > + } > + > + GUEST_DONE(); > +} > + > +static void guest_code_test_memslot_map(void) > +{ > + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; > + > + GUEST_SYNC(0); > + > + guest_spin_until_start(); > + > + while (1) { > + uintptr_t ptr; > + > + for (ptr = MEM_TEST_GPA; > + ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096) > + *(uint64_t *)ptr = MEM_TEST_VAL_1; > + > + if (!guest_perform_sync()) > + break; > + > + for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; > + ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096) > + *(uint64_t *)ptr = MEM_TEST_VAL_2; > + > + if (!guest_perform_sync()) > + break; > + } > + > + GUEST_DONE(); > +} > + > +static void guest_code_test_memslot_unmap(void) > +{ > + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; > + > + GUEST_SYNC(0); > + > + guest_spin_until_start(); > + > + while (1) { > + uintptr_t ptr = MEM_TEST_GPA; > + > + /* > + * We can afford to access (map) just a small number of pages > + * per host sync as otherwise the host will spend > + * a significant amount of its time waiting for the guest > + * (instead of doing unmap operations), so this will > + * effectively turn this test into a map performance test. > + * > + * Just access a single page to be on the safe side. > + */ > + *(uint64_t *)ptr = MEM_TEST_VAL_1; > + > + if (!guest_perform_sync()) > + break; > + > + ptr += MEM_TEST_UNMAP_SIZE / 2; > + *(uint64_t *)ptr = MEM_TEST_VAL_2; > + > + if (!guest_perform_sync()) > + break; > + } > + > + GUEST_DONE(); > +} > + > +static void guest_code_test_memslot_rw(void) > +{ > + GUEST_SYNC(0); > + > + guest_spin_until_start(); > + > + while (1) { > + uintptr_t ptr; > + > + for (ptr = MEM_TEST_GPA; > + ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) > + *(uint64_t *)ptr = MEM_TEST_VAL_1; > + > + if (!guest_perform_sync()) > + break; > + > + for (ptr = MEM_TEST_GPA + 4096 / 2; > + ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) { > + uint64_t val = *(uint64_t *)ptr; > + > + GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); > + *(uint64_t *)ptr = 0; > + } > + > + if (!guest_perform_sync()) > + break; > + } > + > + GUEST_DONE(); > +} > + > +static bool test_memslot_move_prepare(struct vm_data *data, > + struct sync_area *sync, > + uint64_t *maxslots, bool isactive) > +{ > + uint64_t movesrcgpa, movetestgpa; > + > + movesrcgpa = vm_slot2gpa(data, data->nslots - 1); > + > + if (isactive) { > + uint64_t lastpages; > + > + vm_gpa2hva(data, movesrcgpa, &lastpages); > + if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) { > + *maxslots = 0; > + return false; > + } > + } > + > + movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); > + sync->move_area_ptr = (void *)movetestgpa; > + > + if (isactive) { > + data->mmio_ok = true; > + data->mmio_gpa_min = movesrcgpa; > + data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; > + } > + > + return true; > +} > + > +static bool test_memslot_move_prepare_active(struct vm_data *data, > + struct sync_area *sync, > + uint64_t *maxslots) > +{ > + return test_memslot_move_prepare(data, sync, maxslots, true); > +} > + > +static bool test_memslot_move_prepare_inactive(struct vm_data *data, > + struct sync_area *sync, > + uint64_t *maxslots) > +{ > + return test_memslot_move_prepare(data, sync, maxslots, false); > +} > + > +static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) > +{ > + uint64_t movesrcgpa; > + > + movesrcgpa = vm_slot2gpa(data, data->nslots - 1); > + vm_mem_region_move(data->vm, data->nslots - 1 + 1, > + MEM_TEST_MOVE_GPA_DEST); > + vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); > +} > + > +static void test_memslot_do_unmap(struct vm_data *data, > + uint64_t offsp, uint64_t count) > +{ > + uint64_t gpa, ctr; > + > + for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) { > + uint64_t npages; > + void *hva; > + int ret; > + > + hva = vm_gpa2hva(data, gpa, &npages); > + TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); > + npages = min(npages, count - ctr); > + ret = madvise(hva, npages * 4096, MADV_DONTNEED); > + TEST_ASSERT(!ret, > + "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, > + hva, gpa); > + ctr += npages; > + gpa += npages * 4096; > + } > + TEST_ASSERT(ctr == count, > + "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); > +} > + > +static void test_memslot_map_unmap_check(struct vm_data *data, > + uint64_t offsp, uint64_t valexp) > +{ > + uint64_t gpa; > + uint64_t *val; > + > + if (!map_unmap_verify) > + return; > + > + gpa = MEM_TEST_GPA + offsp * 4096; > + val = (typeof(val))vm_gpa2hva(data, gpa, NULL); > + TEST_ASSERT(*val == valexp, > + "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", > + *val, valexp, gpa); > + *val = 0; > +} > + > +static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) > +{ > + /* > + * Unmap the second half of the test area while guest writes to (maps) > + * the first half. > + */ > + test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2, > + MEM_TEST_MAP_SIZE_PAGES / 2); > + > + /* > + * Wait for the guest to finish writing the first half of the test > + * area, verify the written value on the first and the last page of > + * this area and then unmap it. > + * Meanwhile, the guest is writing to (mapping) the second half of > + * the test area. > + */ > + host_perform_sync(sync); > + test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); > + test_memslot_map_unmap_check(data, > + MEM_TEST_MAP_SIZE_PAGES / 2 - 1, > + MEM_TEST_VAL_1); > + test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2); > + > + > + /* > + * Wait for the guest to finish writing the second half of the test > + * area and verify the written value on the first and the last page > + * of this area. > + * The area will be unmapped at the beginning of the next loop > + * iteration. > + * Meanwhile, the guest is writing to (mapping) the first half of > + * the test area. > + */ > + host_perform_sync(sync); > + test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2, > + MEM_TEST_VAL_2); > + test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1, > + MEM_TEST_VAL_2); > +} > + > +static void test_memslot_unmap_loop_common(struct vm_data *data, > + struct sync_area *sync, > + uint64_t chunk) > +{ > + uint64_t ctr; > + > + /* > + * Wait for the guest to finish mapping page(s) in the first half > + * of the test area, verify the written value and then perform unmap > + * of this area. > + * Meanwhile, the guest is writing to (mapping) page(s) in the second > + * half of the test area. > + */ > + host_perform_sync(sync); > + test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); > + for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk) > + test_memslot_do_unmap(data, ctr, chunk); > + > + /* Likewise, but for the opposite host / guest areas */ > + host_perform_sync(sync); > + test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2, > + MEM_TEST_VAL_2); > + for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2; > + ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk) > + test_memslot_do_unmap(data, ctr, chunk); > +} > + > +static void test_memslot_unmap_loop(struct vm_data *data, > + struct sync_area *sync) > +{ > + test_memslot_unmap_loop_common(data, sync, 1); > +} > + > +static void test_memslot_unmap_loop_chunked(struct vm_data *data, > + struct sync_area *sync) > +{ > + test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES); > +} > + > +static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) > +{ > + uint64_t gptr; > + > + for (gptr = MEM_TEST_GPA + 4096 / 2; > + gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) > + *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; > + > + host_perform_sync(sync); > + > + for (gptr = MEM_TEST_GPA; > + gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) { > + uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); > + uint64_t val = *vptr; > + > + TEST_ASSERT(val == MEM_TEST_VAL_1, > + "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", > + val, gptr); > + *vptr = 0; > + } > + > + host_perform_sync(sync); > +} > + > +struct test_data { > + const char *name; > + uint64_t mem_size; > + void (*guest_code)(void); > + bool (*prepare)(struct vm_data *data, struct sync_area *sync, > + uint64_t *maxslots); > + void (*loop)(struct vm_data *data, struct sync_area *sync); > +}; > + > +static bool test_execute(int nslots, uint64_t *maxslots, > + unsigned int maxtime, > + const struct test_data *tdata, > + uint64_t *nloops, > + struct timespec *slot_runtime, > + struct timespec *guest_runtime) > +{ > + uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES; > + struct vm_data *data; > + struct sync_area *sync; > + struct timespec tstart; > + bool ret = true; > + > + data = alloc_vm(); > + if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, > + mem_size, slot_runtime)) { > + ret = false; > + goto exit_free; > + } > + > + sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); > + > + if (tdata->prepare && > + !tdata->prepare(data, sync, maxslots)) { > + ret = false; > + goto exit_free; > + } > + > + launch_vm(data); > + > + clock_gettime(CLOCK_MONOTONIC, &tstart); > + let_guest_run(sync); > + > + while (1) { > + *guest_runtime = timespec_elapsed(tstart); > + if (guest_runtime->tv_sec >= maxtime) > + break; > + > + tdata->loop(data, sync); > + > + (*nloops)++; > + } > + > + make_guest_exit(sync); > + wait_guest_exit(data); > + > +exit_free: > + free_vm(data); > + > + return ret; > +} > + > +static const struct test_data tests[] = { > + { > + .name = "map", > + .mem_size = MEM_SIZE_MAP_PAGES, > + .guest_code = guest_code_test_memslot_map, > + .loop = test_memslot_map_loop, > + }, > + { > + .name = "unmap", > + .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, > + .guest_code = guest_code_test_memslot_unmap, > + .loop = test_memslot_unmap_loop, > + }, > + { > + .name = "unmap chunked", > + .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, > + .guest_code = guest_code_test_memslot_unmap, > + .loop = test_memslot_unmap_loop_chunked, > + }, > + { > + .name = "move active area", > + .guest_code = guest_code_test_memslot_move, > + .prepare = test_memslot_move_prepare_active, > + .loop = test_memslot_move_loop, > + }, > + { > + .name = "move inactive area", > + .guest_code = guest_code_test_memslot_move, > + .prepare = test_memslot_move_prepare_inactive, > + .loop = test_memslot_move_loop, > + }, > + { > + .name = "RW", > + .guest_code = guest_code_test_memslot_rw, > + .loop = test_memslot_rw_loop > + }, > +}; > + > +#define NTESTS ARRAY_SIZE(tests) > + > +struct test_args { > + int tfirst; > + int tlast; > + int nslots; > + int seconds; > + int runs; > +}; > + > +static void help(char *name, struct test_args *targs) > +{ > + int ctr; > + > + pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", > + name); > + pr_info(" -h: print this help screen.\n"); > + pr_info(" -v: enable verbose mode (not for benchmarking).\n"); > + pr_info(" -d: enable extra debug checks.\n"); > + pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", > + targs->nslots); > + pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", > + targs->tfirst, NTESTS - 1); > + pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", > + targs->tlast, NTESTS - 1); > + pr_info(" -l: specify the test length in seconds (currently: %i)\n", > + targs->seconds); > + pr_info(" -r: specify the number of runs per test (currently: %i)\n", > + targs->runs); > + > + pr_info("\nAvailable tests:\n"); > + for (ctr = 0; ctr < NTESTS; ctr++) > + pr_info("%d: %s\n", ctr, tests[ctr].name); > +} > + > +static bool parse_args(int argc, char *argv[], > + struct test_args *targs) > +{ > + int opt; > + > + while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { > + switch (opt) { > + case 'h': > + default: > + help(argv[0], targs); > + return false; > + case 'v': > + verbose = true; > + break; > + case 'd': > + map_unmap_verify = true; > + break; > + case 's': > + targs->nslots = atoi(optarg); > + if (targs->nslots <= 0 && targs->nslots != -1) { > + pr_info("Slot count cap has to be positive or -1 for no cap\n"); > + return false; > + } > + break; > + case 'f': > + targs->tfirst = atoi(optarg); > + if (targs->tfirst < 0) { > + pr_info("First test to run has to be non-negative\n"); > + return false; > + } > + break; > + case 'e': > + targs->tlast = atoi(optarg); > + if (targs->tlast < 0 || targs->tlast >= NTESTS) { > + pr_info("Last test to run has to be non-negative and less than %zu\n", > + NTESTS); > + return false; > + } > + break; > + case 'l': > + targs->seconds = atoi(optarg); > + if (targs->seconds < 0) { > + pr_info("Test length in seconds has to be non-negative\n"); > + return false; > + } > + break; > + case 'r': > + targs->runs = atoi(optarg); > + if (targs->runs <= 0) { > + pr_info("Runs per test has to be positive\n"); > + return false; > + } > + break; > + } > + } > + > + if (optind < argc) { > + help(argv[0], targs); > + return false; > + } > + > + if (targs->tfirst > targs->tlast) { > + pr_info("First test to run cannot be greater than the last test to run\n"); > + return false; > + } > + > + return true; > +} > + > +struct test_result { > + struct timespec slot_runtime, guest_runtime, iter_runtime; > + int64_t slottimens, runtimens; > + uint64_t nloops; > +}; > + > +static bool test_loop(const struct test_data *data, > + const struct test_args *targs, > + struct test_result *rbestslottime, > + struct test_result *rbestruntime) > +{ > + uint64_t maxslots; > + struct test_result result; > + > + result.nloops = 0; > + if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, > + &result.nloops, > + &result.slot_runtime, &result.guest_runtime)) { > + if (maxslots) > + pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", > + maxslots); > + else > + pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); > + > + return false; > + } > + > + pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", > + result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, > + result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); > + if (!result.nloops) { > + pr_info("No full loops done - too short test time or system too loaded?\n"); > + return true; > + } > + > + result.iter_runtime = timespec_div(result.guest_runtime, > + result.nloops); > + pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", > + result.nloops, > + result.iter_runtime.tv_sec, > + result.iter_runtime.tv_nsec); > + result.slottimens = timespec_to_ns(result.slot_runtime); > + result.runtimens = timespec_to_ns(result.iter_runtime); > + > + /* > + * Only rank the slot setup time for tests using the whole test memory > + * area so they are comparable > + */ > + if (!data->mem_size && > + (!rbestslottime->slottimens || > + result.slottimens < rbestslottime->slottimens)) > + *rbestslottime = result; > + if (!rbestruntime->runtimens || > + result.runtimens < rbestruntime->runtimens) > + *rbestruntime = result; > + > + return true; > +} > + > +int main(int argc, char *argv[]) > +{ > + struct test_args targs = { > + .tfirst = 0, > + .tlast = NTESTS - 1, > + .nslots = -1, > + .seconds = 5, > + .runs = 20, > + }; > + struct test_result rbestslottime; > + int tctr; > + > + /* Tell stdout not to buffer its content */ > + setbuf(stdout, NULL); > + > + if (!parse_args(argc, argv, &targs)) > + return -1; > + > + rbestslottime.slottimens = 0; > + for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { > + const struct test_data *data = &tests[tctr]; > + unsigned int runctr; > + struct test_result rbestruntime; > + > + if (tctr > targs.tfirst) > + pr_info("\n"); > + > + pr_info("Testing %s performance with %i runs, %d seconds each\n", > + data->name, targs.runs, targs.seconds); > + > + rbestruntime.runtimens = 0; > + for (runctr = 0; runctr < targs.runs; runctr++) > + if (!test_loop(data, &targs, > + &rbestslottime, &rbestruntime)) > + break; > + > + if (rbestruntime.runtimens) > + pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", > + rbestruntime.iter_runtime.tv_sec, > + rbestruntime.iter_runtime.tv_nsec, > + rbestruntime.nloops); > + } > + > + if (rbestslottime.slottimens) > + pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", > + rbestslottime.slot_runtime.tv_sec, > + rbestslottime.slot_runtime.tv_nsec); > + > + return 0; > +} > Queued both, thanks. Paolo
diff --git a/tools/testing/selftests/kvm/.gitignore b/tools/testing/selftests/kvm/.gitignore index 32b87cc77c8e..40a36f5570ad 100644 --- a/tools/testing/selftests/kvm/.gitignore +++ b/tools/testing/selftests/kvm/.gitignore @@ -36,5 +36,6 @@ /hardware_disable_test /kvm_create_max_vcpus /memslot_modification_stress_test +/memslot_perf_test /set_memory_region_test /steal_time diff --git a/tools/testing/selftests/kvm/Makefile b/tools/testing/selftests/kvm/Makefile index c30a21c1d676..401ef2e88991 100644 --- a/tools/testing/selftests/kvm/Makefile +++ b/tools/testing/selftests/kvm/Makefile @@ -70,6 +70,7 @@ TEST_GEN_PROGS_x86_64 += dirty_log_perf_test TEST_GEN_PROGS_x86_64 += hardware_disable_test TEST_GEN_PROGS_x86_64 += kvm_create_max_vcpus TEST_GEN_PROGS_x86_64 += memslot_modification_stress_test +TEST_GEN_PROGS_x86_64 += memslot_perf_test TEST_GEN_PROGS_x86_64 += set_memory_region_test TEST_GEN_PROGS_x86_64 += steal_time diff --git a/tools/testing/selftests/kvm/memslot_perf_test.c b/tools/testing/selftests/kvm/memslot_perf_test.c new file mode 100644 index 000000000000..4ae0e5ec0f74 --- /dev/null +++ b/tools/testing/selftests/kvm/memslot_perf_test.c @@ -0,0 +1,1037 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * A memslot-related performance benchmark. + * + * Copyright (C) 2021 Oracle and/or its affiliates. + * + * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. + */ +#include <pthread.h> +#include <sched.h> +#include <semaphore.h> +#include <stdatomic.h> +#include <stdbool.h> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <sys/mman.h> +#include <time.h> +#include <unistd.h> + +#include <linux/compiler.h> + +#include <test_util.h> +#include <kvm_util.h> +#include <processor.h> + +#define VCPU_ID 0 + +#define MEM_SIZE ((512U << 20) + 4096) +#define MEM_SIZE_PAGES (MEM_SIZE / 4096) +#define MEM_GPA 0x10000000UL +#define MEM_AUX_GPA MEM_GPA +#define MEM_SYNC_GPA MEM_AUX_GPA +#define MEM_TEST_GPA (MEM_AUX_GPA + 4096) +#define MEM_TEST_SIZE (MEM_SIZE - 4096) +static_assert(MEM_SIZE % 4096 == 0, "invalid mem size"); +static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size"); + +/* + * 32 MiB is max size that gets well over 100 iterations on 509 slots. + * Considering that each slot needs to have at least one page up to + * 8194 slots in use can then be tested (although with slightly + * limited resolution). + */ +#define MEM_SIZE_MAP ((32U << 20) + 4096) +#define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096) +#define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096) +#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096) +static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size"); +static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size"); +static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size"); +static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size"); + +/* + * 128 MiB is min size that fills 32k slots with at least one page in each + * while at the same time gets 100+ iterations in such test + */ +#define MEM_TEST_UNMAP_SIZE (128U << 20) +#define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096) +/* 2 MiB chunk size like a typical huge page */ +#define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12)) +static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE, + "invalid unmap test region size"); +static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0, + "invalid unmap test region size"); +static_assert(MEM_TEST_UNMAP_SIZE_PAGES % + (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0, + "invalid unmap test region size"); + +/* + * For the move active test the middle of the test area is placed on + * a memslot boundary: half lies in the memslot being moved, half in + * other memslot(s). + * + * When running this test with 32k memslots (32764, really) each memslot + * contains 4 pages. + * The last one additionally contains the remaining 21 pages of memory, + * for the total size of 25 pages. + * Hence, the maximum size here is 50 pages. + */ +#define MEM_TEST_MOVE_SIZE_PAGES (50) +#define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096) +#define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) +static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, + "invalid move test region size"); + +#define MEM_TEST_VAL_1 0x1122334455667788 +#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 + +struct vm_data { + struct kvm_vm *vm; + pthread_t vcpu_thread; + uint32_t nslots; + uint64_t npages; + uint64_t pages_per_slot; + void **hva_slots; + bool mmio_ok; + uint64_t mmio_gpa_min; + uint64_t mmio_gpa_max; +}; + +struct sync_area { + atomic_bool start_flag; + atomic_bool exit_flag; + atomic_bool sync_flag; + void *move_area_ptr; +}; + +/* + * Technically, we need also for the atomic bool to be address-free, which + * is recommended, but not strictly required, by C11 for lockless + * implementations. + * However, in practice both GCC and Clang fulfill this requirement on + * all KVM-supported platforms. + */ +static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); + +static sem_t vcpu_ready; + +static bool map_unmap_verify; + +static bool verbose; +#define pr_info_v(...) \ + do { \ + if (verbose) \ + pr_info(__VA_ARGS__); \ + } while (0) + +static void *vcpu_worker(void *data) +{ + struct vm_data *vm = data; + struct kvm_run *run; + struct ucall uc; + uint64_t cmd; + + run = vcpu_state(vm->vm, VCPU_ID); + while (1) { + vcpu_run(vm->vm, VCPU_ID); + + if (run->exit_reason == KVM_EXIT_IO) { + cmd = get_ucall(vm->vm, VCPU_ID, &uc); + if (cmd != UCALL_SYNC) + break; + + sem_post(&vcpu_ready); + continue; + } + + if (run->exit_reason != KVM_EXIT_MMIO) + break; + + TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit"); + TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); + TEST_ASSERT(run->mmio.len == 8, + "Unexpected exit mmio size = %u", run->mmio.len); + TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min && + run->mmio.phys_addr <= vm->mmio_gpa_max, + "Unexpected exit mmio address = 0x%llx", + run->mmio.phys_addr); + } + + if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT) + TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0], + __FILE__, uc.args[1], uc.args[2]); + + return NULL; +} + +static void wait_for_vcpu(void) +{ + struct timespec ts; + + TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), + "clock_gettime() failed: %d\n", errno); + + ts.tv_sec += 2; + TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), + "sem_timedwait() failed: %d\n", errno); +} + +static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) +{ + uint64_t gpage, pgoffs; + uint32_t slot, slotoffs; + void *base; + + TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); + TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096, + "Too high gpa to translate"); + gpa -= MEM_GPA; + + gpage = gpa / 4096; + pgoffs = gpa % 4096; + slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); + slotoffs = gpage - (slot * data->pages_per_slot); + + if (rempages) { + uint64_t slotpages; + + if (slot == data->nslots - 1) + slotpages = data->npages - slot * data->pages_per_slot; + else + slotpages = data->pages_per_slot; + + TEST_ASSERT(!pgoffs, + "Asking for remaining pages in slot but gpa not page aligned"); + *rempages = slotpages - slotoffs; + } + + base = data->hva_slots[slot]; + return (uint8_t *)base + slotoffs * 4096 + pgoffs; +} + +static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) +{ + TEST_ASSERT(slot < data->nslots, "Too high slot number"); + + return MEM_GPA + slot * data->pages_per_slot * 4096; +} + +static struct vm_data *alloc_vm(void) +{ + struct vm_data *data; + + data = malloc(sizeof(*data)); + TEST_ASSERT(data, "malloc(vmdata) failed"); + + data->vm = NULL; + data->hva_slots = NULL; + + return data; +} + +static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, + void *guest_code, uint64_t mempages, + struct timespec *slot_runtime) +{ + uint32_t max_mem_slots; + uint64_t rempages; + uint64_t guest_addr; + uint32_t slot; + struct timespec tstart; + struct sync_area *sync; + + max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); + TEST_ASSERT(max_mem_slots > 1, + "KVM_CAP_NR_MEMSLOTS should be greater than 1"); + TEST_ASSERT(nslots > 1 || nslots == -1, + "Slot count cap should be greater than 1"); + if (nslots != -1) + max_mem_slots = min(max_mem_slots, (uint32_t)nslots); + pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots); + + TEST_ASSERT(mempages > 1, + "Can't test without any memory"); + + data->npages = mempages; + data->nslots = max_mem_slots - 1; + data->pages_per_slot = mempages / data->nslots; + if (!data->pages_per_slot) { + *maxslots = mempages + 1; + return false; + } + + rempages = mempages % data->nslots; + data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); + TEST_ASSERT(data->hva_slots, "malloc() fail"); + + data->vm = vm_create_default(VCPU_ID, mempages, guest_code); + + pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", + max_mem_slots - 1, data->pages_per_slot, rempages); + + clock_gettime(CLOCK_MONOTONIC, &tstart); + for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) { + uint64_t npages; + + npages = data->pages_per_slot; + if (slot == max_mem_slots - 1) + npages += rempages; + + vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, + guest_addr, slot, npages, + 0); + guest_addr += npages * 4096; + } + *slot_runtime = timespec_elapsed(tstart); + + for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) { + uint64_t npages; + uint64_t gpa; + + npages = data->pages_per_slot; + if (slot == max_mem_slots - 2) + npages += rempages; + + gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, + slot + 1); + TEST_ASSERT(gpa == guest_addr, + "vm_phy_pages_alloc() failed\n"); + + data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr); + memset(data->hva_slots[slot], 0, npages * 4096); + + guest_addr += npages * 4096; + } + + virt_map(data->vm, MEM_GPA, MEM_GPA, mempages, 0); + + sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); + atomic_init(&sync->start_flag, false); + atomic_init(&sync->exit_flag, false); + atomic_init(&sync->sync_flag, false); + + data->mmio_ok = false; + + return true; +} + +static void launch_vm(struct vm_data *data) +{ + pr_info_v("Launching the test VM\n"); + + pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); + + /* Ensure the guest thread is spun up. */ + wait_for_vcpu(); +} + +static void free_vm(struct vm_data *data) +{ + kvm_vm_free(data->vm); + free(data->hva_slots); + free(data); +} + +static void wait_guest_exit(struct vm_data *data) +{ + pthread_join(data->vcpu_thread, NULL); +} + +static void let_guest_run(struct sync_area *sync) +{ + atomic_store_explicit(&sync->start_flag, true, memory_order_release); +} + +static void guest_spin_until_start(void) +{ + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; + + while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) + ; +} + +static void make_guest_exit(struct sync_area *sync) +{ + atomic_store_explicit(&sync->exit_flag, true, memory_order_release); +} + +static bool _guest_should_exit(void) +{ + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; + + return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); +} + +#define guest_should_exit() unlikely(_guest_should_exit()) + +/* + * noinline so we can easily see how much time the host spends waiting + * for the guest. + * For the same reason use alarm() instead of polling clock_gettime() + * to implement a wait timeout. + */ +static noinline void host_perform_sync(struct sync_area *sync) +{ + alarm(2); + + atomic_store_explicit(&sync->sync_flag, true, memory_order_release); + while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) + ; + + alarm(0); +} + +static bool guest_perform_sync(void) +{ + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; + bool expected; + + do { + if (guest_should_exit()) + return false; + + expected = true; + } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, + &expected, false, + memory_order_acq_rel, + memory_order_relaxed)); + + return true; +} + +static void guest_code_test_memslot_move(void) +{ + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; + uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); + + GUEST_SYNC(0); + + guest_spin_until_start(); + + while (!guest_should_exit()) { + uintptr_t ptr; + + for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; + ptr += 4096) + *(uint64_t *)ptr = MEM_TEST_VAL_1; + + /* + * No host sync here since the MMIO exits are so expensive + * that the host would spend most of its time waiting for + * the guest and so instead of measuring memslot move + * performance we would measure the performance and + * likelihood of MMIO exits + */ + } + + GUEST_DONE(); +} + +static void guest_code_test_memslot_map(void) +{ + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; + + GUEST_SYNC(0); + + guest_spin_until_start(); + + while (1) { + uintptr_t ptr; + + for (ptr = MEM_TEST_GPA; + ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096) + *(uint64_t *)ptr = MEM_TEST_VAL_1; + + if (!guest_perform_sync()) + break; + + for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; + ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096) + *(uint64_t *)ptr = MEM_TEST_VAL_2; + + if (!guest_perform_sync()) + break; + } + + GUEST_DONE(); +} + +static void guest_code_test_memslot_unmap(void) +{ + struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; + + GUEST_SYNC(0); + + guest_spin_until_start(); + + while (1) { + uintptr_t ptr = MEM_TEST_GPA; + + /* + * We can afford to access (map) just a small number of pages + * per host sync as otherwise the host will spend + * a significant amount of its time waiting for the guest + * (instead of doing unmap operations), so this will + * effectively turn this test into a map performance test. + * + * Just access a single page to be on the safe side. + */ + *(uint64_t *)ptr = MEM_TEST_VAL_1; + + if (!guest_perform_sync()) + break; + + ptr += MEM_TEST_UNMAP_SIZE / 2; + *(uint64_t *)ptr = MEM_TEST_VAL_2; + + if (!guest_perform_sync()) + break; + } + + GUEST_DONE(); +} + +static void guest_code_test_memslot_rw(void) +{ + GUEST_SYNC(0); + + guest_spin_until_start(); + + while (1) { + uintptr_t ptr; + + for (ptr = MEM_TEST_GPA; + ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) + *(uint64_t *)ptr = MEM_TEST_VAL_1; + + if (!guest_perform_sync()) + break; + + for (ptr = MEM_TEST_GPA + 4096 / 2; + ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) { + uint64_t val = *(uint64_t *)ptr; + + GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); + *(uint64_t *)ptr = 0; + } + + if (!guest_perform_sync()) + break; + } + + GUEST_DONE(); +} + +static bool test_memslot_move_prepare(struct vm_data *data, + struct sync_area *sync, + uint64_t *maxslots, bool isactive) +{ + uint64_t movesrcgpa, movetestgpa; + + movesrcgpa = vm_slot2gpa(data, data->nslots - 1); + + if (isactive) { + uint64_t lastpages; + + vm_gpa2hva(data, movesrcgpa, &lastpages); + if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) { + *maxslots = 0; + return false; + } + } + + movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); + sync->move_area_ptr = (void *)movetestgpa; + + if (isactive) { + data->mmio_ok = true; + data->mmio_gpa_min = movesrcgpa; + data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; + } + + return true; +} + +static bool test_memslot_move_prepare_active(struct vm_data *data, + struct sync_area *sync, + uint64_t *maxslots) +{ + return test_memslot_move_prepare(data, sync, maxslots, true); +} + +static bool test_memslot_move_prepare_inactive(struct vm_data *data, + struct sync_area *sync, + uint64_t *maxslots) +{ + return test_memslot_move_prepare(data, sync, maxslots, false); +} + +static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) +{ + uint64_t movesrcgpa; + + movesrcgpa = vm_slot2gpa(data, data->nslots - 1); + vm_mem_region_move(data->vm, data->nslots - 1 + 1, + MEM_TEST_MOVE_GPA_DEST); + vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); +} + +static void test_memslot_do_unmap(struct vm_data *data, + uint64_t offsp, uint64_t count) +{ + uint64_t gpa, ctr; + + for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) { + uint64_t npages; + void *hva; + int ret; + + hva = vm_gpa2hva(data, gpa, &npages); + TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); + npages = min(npages, count - ctr); + ret = madvise(hva, npages * 4096, MADV_DONTNEED); + TEST_ASSERT(!ret, + "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, + hva, gpa); + ctr += npages; + gpa += npages * 4096; + } + TEST_ASSERT(ctr == count, + "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); +} + +static void test_memslot_map_unmap_check(struct vm_data *data, + uint64_t offsp, uint64_t valexp) +{ + uint64_t gpa; + uint64_t *val; + + if (!map_unmap_verify) + return; + + gpa = MEM_TEST_GPA + offsp * 4096; + val = (typeof(val))vm_gpa2hva(data, gpa, NULL); + TEST_ASSERT(*val == valexp, + "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", + *val, valexp, gpa); + *val = 0; +} + +static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) +{ + /* + * Unmap the second half of the test area while guest writes to (maps) + * the first half. + */ + test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2, + MEM_TEST_MAP_SIZE_PAGES / 2); + + /* + * Wait for the guest to finish writing the first half of the test + * area, verify the written value on the first and the last page of + * this area and then unmap it. + * Meanwhile, the guest is writing to (mapping) the second half of + * the test area. + */ + host_perform_sync(sync); + test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); + test_memslot_map_unmap_check(data, + MEM_TEST_MAP_SIZE_PAGES / 2 - 1, + MEM_TEST_VAL_1); + test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2); + + + /* + * Wait for the guest to finish writing the second half of the test + * area and verify the written value on the first and the last page + * of this area. + * The area will be unmapped at the beginning of the next loop + * iteration. + * Meanwhile, the guest is writing to (mapping) the first half of + * the test area. + */ + host_perform_sync(sync); + test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2, + MEM_TEST_VAL_2); + test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1, + MEM_TEST_VAL_2); +} + +static void test_memslot_unmap_loop_common(struct vm_data *data, + struct sync_area *sync, + uint64_t chunk) +{ + uint64_t ctr; + + /* + * Wait for the guest to finish mapping page(s) in the first half + * of the test area, verify the written value and then perform unmap + * of this area. + * Meanwhile, the guest is writing to (mapping) page(s) in the second + * half of the test area. + */ + host_perform_sync(sync); + test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); + for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk) + test_memslot_do_unmap(data, ctr, chunk); + + /* Likewise, but for the opposite host / guest areas */ + host_perform_sync(sync); + test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2, + MEM_TEST_VAL_2); + for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2; + ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk) + test_memslot_do_unmap(data, ctr, chunk); +} + +static void test_memslot_unmap_loop(struct vm_data *data, + struct sync_area *sync) +{ + test_memslot_unmap_loop_common(data, sync, 1); +} + +static void test_memslot_unmap_loop_chunked(struct vm_data *data, + struct sync_area *sync) +{ + test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES); +} + +static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) +{ + uint64_t gptr; + + for (gptr = MEM_TEST_GPA + 4096 / 2; + gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) + *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; + + host_perform_sync(sync); + + for (gptr = MEM_TEST_GPA; + gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) { + uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); + uint64_t val = *vptr; + + TEST_ASSERT(val == MEM_TEST_VAL_1, + "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", + val, gptr); + *vptr = 0; + } + + host_perform_sync(sync); +} + +struct test_data { + const char *name; + uint64_t mem_size; + void (*guest_code)(void); + bool (*prepare)(struct vm_data *data, struct sync_area *sync, + uint64_t *maxslots); + void (*loop)(struct vm_data *data, struct sync_area *sync); +}; + +static bool test_execute(int nslots, uint64_t *maxslots, + unsigned int maxtime, + const struct test_data *tdata, + uint64_t *nloops, + struct timespec *slot_runtime, + struct timespec *guest_runtime) +{ + uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES; + struct vm_data *data; + struct sync_area *sync; + struct timespec tstart; + bool ret = true; + + data = alloc_vm(); + if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, + mem_size, slot_runtime)) { + ret = false; + goto exit_free; + } + + sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); + + if (tdata->prepare && + !tdata->prepare(data, sync, maxslots)) { + ret = false; + goto exit_free; + } + + launch_vm(data); + + clock_gettime(CLOCK_MONOTONIC, &tstart); + let_guest_run(sync); + + while (1) { + *guest_runtime = timespec_elapsed(tstart); + if (guest_runtime->tv_sec >= maxtime) + break; + + tdata->loop(data, sync); + + (*nloops)++; + } + + make_guest_exit(sync); + wait_guest_exit(data); + +exit_free: + free_vm(data); + + return ret; +} + +static const struct test_data tests[] = { + { + .name = "map", + .mem_size = MEM_SIZE_MAP_PAGES, + .guest_code = guest_code_test_memslot_map, + .loop = test_memslot_map_loop, + }, + { + .name = "unmap", + .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, + .guest_code = guest_code_test_memslot_unmap, + .loop = test_memslot_unmap_loop, + }, + { + .name = "unmap chunked", + .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, + .guest_code = guest_code_test_memslot_unmap, + .loop = test_memslot_unmap_loop_chunked, + }, + { + .name = "move active area", + .guest_code = guest_code_test_memslot_move, + .prepare = test_memslot_move_prepare_active, + .loop = test_memslot_move_loop, + }, + { + .name = "move inactive area", + .guest_code = guest_code_test_memslot_move, + .prepare = test_memslot_move_prepare_inactive, + .loop = test_memslot_move_loop, + }, + { + .name = "RW", + .guest_code = guest_code_test_memslot_rw, + .loop = test_memslot_rw_loop + }, +}; + +#define NTESTS ARRAY_SIZE(tests) + +struct test_args { + int tfirst; + int tlast; + int nslots; + int seconds; + int runs; +}; + +static void help(char *name, struct test_args *targs) +{ + int ctr; + + pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", + name); + pr_info(" -h: print this help screen.\n"); + pr_info(" -v: enable verbose mode (not for benchmarking).\n"); + pr_info(" -d: enable extra debug checks.\n"); + pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", + targs->nslots); + pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", + targs->tfirst, NTESTS - 1); + pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", + targs->tlast, NTESTS - 1); + pr_info(" -l: specify the test length in seconds (currently: %i)\n", + targs->seconds); + pr_info(" -r: specify the number of runs per test (currently: %i)\n", + targs->runs); + + pr_info("\nAvailable tests:\n"); + for (ctr = 0; ctr < NTESTS; ctr++) + pr_info("%d: %s\n", ctr, tests[ctr].name); +} + +static bool parse_args(int argc, char *argv[], + struct test_args *targs) +{ + int opt; + + while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { + switch (opt) { + case 'h': + default: + help(argv[0], targs); + return false; + case 'v': + verbose = true; + break; + case 'd': + map_unmap_verify = true; + break; + case 's': + targs->nslots = atoi(optarg); + if (targs->nslots <= 0 && targs->nslots != -1) { + pr_info("Slot count cap has to be positive or -1 for no cap\n"); + return false; + } + break; + case 'f': + targs->tfirst = atoi(optarg); + if (targs->tfirst < 0) { + pr_info("First test to run has to be non-negative\n"); + return false; + } + break; + case 'e': + targs->tlast = atoi(optarg); + if (targs->tlast < 0 || targs->tlast >= NTESTS) { + pr_info("Last test to run has to be non-negative and less than %zu\n", + NTESTS); + return false; + } + break; + case 'l': + targs->seconds = atoi(optarg); + if (targs->seconds < 0) { + pr_info("Test length in seconds has to be non-negative\n"); + return false; + } + break; + case 'r': + targs->runs = atoi(optarg); + if (targs->runs <= 0) { + pr_info("Runs per test has to be positive\n"); + return false; + } + break; + } + } + + if (optind < argc) { + help(argv[0], targs); + return false; + } + + if (targs->tfirst > targs->tlast) { + pr_info("First test to run cannot be greater than the last test to run\n"); + return false; + } + + return true; +} + +struct test_result { + struct timespec slot_runtime, guest_runtime, iter_runtime; + int64_t slottimens, runtimens; + uint64_t nloops; +}; + +static bool test_loop(const struct test_data *data, + const struct test_args *targs, + struct test_result *rbestslottime, + struct test_result *rbestruntime) +{ + uint64_t maxslots; + struct test_result result; + + result.nloops = 0; + if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, + &result.nloops, + &result.slot_runtime, &result.guest_runtime)) { + if (maxslots) + pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", + maxslots); + else + pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); + + return false; + } + + pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", + result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, + result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); + if (!result.nloops) { + pr_info("No full loops done - too short test time or system too loaded?\n"); + return true; + } + + result.iter_runtime = timespec_div(result.guest_runtime, + result.nloops); + pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", + result.nloops, + result.iter_runtime.tv_sec, + result.iter_runtime.tv_nsec); + result.slottimens = timespec_to_ns(result.slot_runtime); + result.runtimens = timespec_to_ns(result.iter_runtime); + + /* + * Only rank the slot setup time for tests using the whole test memory + * area so they are comparable + */ + if (!data->mem_size && + (!rbestslottime->slottimens || + result.slottimens < rbestslottime->slottimens)) + *rbestslottime = result; + if (!rbestruntime->runtimens || + result.runtimens < rbestruntime->runtimens) + *rbestruntime = result; + + return true; +} + +int main(int argc, char *argv[]) +{ + struct test_args targs = { + .tfirst = 0, + .tlast = NTESTS - 1, + .nslots = -1, + .seconds = 5, + .runs = 20, + }; + struct test_result rbestslottime; + int tctr; + + /* Tell stdout not to buffer its content */ + setbuf(stdout, NULL); + + if (!parse_args(argc, argv, &targs)) + return -1; + + rbestslottime.slottimens = 0; + for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { + const struct test_data *data = &tests[tctr]; + unsigned int runctr; + struct test_result rbestruntime; + + if (tctr > targs.tfirst) + pr_info("\n"); + + pr_info("Testing %s performance with %i runs, %d seconds each\n", + data->name, targs.runs, targs.seconds); + + rbestruntime.runtimens = 0; + for (runctr = 0; runctr < targs.runs; runctr++) + if (!test_loop(data, &targs, + &rbestslottime, &rbestruntime)) + break; + + if (rbestruntime.runtimens) + pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", + rbestruntime.iter_runtime.tv_sec, + rbestruntime.iter_runtime.tv_nsec, + rbestruntime.nloops); + } + + if (rbestslottime.slottimens) + pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", + rbestslottime.slot_runtime.tv_sec, + rbestslottime.slot_runtime.tv_nsec); + + return 0; +}